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Abstract—High-quality depth information is required to per-
form 3D vehicle detection, consequently, there exists a large per-
formance gap between camera and LiDAR-based approaches. In
this paper, our monocular camera-based 3D vehicle localization
method alleviates the dependency on high-quality depth maps
by taking advantage of the commonly accepted assumption that
the observed vehicles lie on the road surface. We propose a
two-stage approach that consists of a segment network and a
regression network, called Segment2Regress. For a given single
RGB image and a prior 2D object detection bounding box, the
two stages are as follows: 1) The segment network activates the
pixels under the vehicle (modeled as four line segments and a
quadrilateral representing the area beneath the vehicle projected
on the image coordinate). These segments are trained to lie on
the road plane such that our network does not require full
depth estimation. Instead, the depth is directly approximated
from the known ground plane parameters. 2) The regression
network takes the segments fused with the plane depth to predict
the 3D location of a car at the ground level. To stabilize the
regression, we introduce a coupling loss that enforces structural
constraints. The efficiency, accuracy, and robustness of the pro-
posed technique are highlighted through a series of experiments
and ablation assessments. These tests are conducted on the KITTI
bird’s eye view dataset where Segment2Regress demonstrates
state-of-the-art performance. Further results are available at
https://github.com/LifeBeyondExpectations/Segment2Regress

I. INTRODUCTION

Vehicle detection constitutes one of the fundamental ele-
ments required to analyze and understand dynamic road envi-
ronments [7]. Recent LiDAR-based approaches have demon-
strated reliable results by extracting semantic features from
sparse point clouds [40, 39, 33]. In the context of intelligent
vehicle technology, LiDAR, in particular, remains a privileged
solution for its versatility (full 360°), accuracy (£5-15¢m
RMSE) and robustness (e.g. functional during day and night).
In fact, its high-quality depth measurements facilitate the
3D vehicle localization. Despite all the advantages offered
by LiDAR, such equipment is expensive, cumbersome to
install and to calibrate, heavy and consumes a non-negligible
quantity of energy. All these limitations make passive sensors,
such as color cameras, very desirable to solve the task of
3D object localization in lieu of LiDAR. Therefore, a few
attempts have been made to explore RGB-based 3D detection
and localization [2, 1, 36, 25]. Relying on the advance-
ment of the 2D object detectors [9, 13, 31, 22], camera-
based 3D vehicle detection methods internally include the
2D object detector (usually two-stage 2D object detector [9]),
and directly estimate vehicles’ metric positions. Alternatively,

Fig. 1.  Overview. Given (a) an RGB image and (b) a binary mask of
a 2D bounding box, we localize a 3D vehicle under the road environment
assumption. We segment the four line segments and a quadrilateral (vehicle
segments S) in image coordinate, where green, cyan, red, and magenta line
segments indicate left, front, right, back line segments, respectively, and the
yellow region describes the bottom quadrilateral. Then, we regress the four
corners of the vehicle (vehicle points X’) from the vehicle segments fused
with a compact depth estimated by (c) given plane parameters.

segmentation information [2], shape retrieval [24] and explicit
depth fusion [36] have been proposed, however, these works
did not alleviate the depth dependency problem. The need for
such depth maps is problematic for two major reasons. First,
the computational time required to estimate the depth of a
scene is a bottleneck for the entire 3D object detection module,
while, for vehicular based application, the real-time aspect is
critical. Second, high-quality depth map from a single image
is a complex task which often requires additional data, such
as LiDAR, RGB-D data [5], or stereo images [10, 23], to train
the depth estimation network.

In this paper, we describe how to estimate the 3D positions
of vehicles from a single RGB image (see Fig. 1). To alleviate
the dependency on high-quality and high-computation depth
(scene depth), we take advantage of the commonly admitted
assumption that cars lie on a planar road surface. In this paper,
we call this assumption the road environment assumption.
Thus, our strategy includes localizing the vehicle at the ground
level (i.e., the bird’s eye view). We utilize the depth from the
known road plane, called the plane depth which is quickly esti-
mated from a given planar equation that can be deduced using
prior knowledge on the camera installation or via calibration
with respect to the ground surface. Under these conditions, our



method achieves fast inference speed and obtains state-of-the-
art performance in the KITTI bird’s eye view benchmark [8].
Moreover, our method is robust to hard cases, such as occluded
or truncated cars. To summarize, the key contributions of our
work are as follows:

o Under the road environment assumption, we propose a
two-stage approach for monocular 3D vehicle localization
composed of the segment network and the regression
network (called Segment2Regress), where we fuse the
plane depth to regress the 3D metric location.

o We introduce the coupling loss, which jointly constrains
the structural priors of the vehicle such as size, heading,
and planarity.

o Our approach is validated through systematic experiments
and an ablation study. Among monocular camera-based
methods, our proposed two-stage approach achieves a
state-of-the-art performance with a compact plane depth,
not the full depth of the given scene.

II. RELATED WORK

In this section, we briefly review the object detection
approaches according to output types: 2D and 3D cases.

2D object detection The recent advances in deep-learning
architectures [18, 12, 20] and the development of large-
scale datasets [4, 19, 6] have enabled the success of the 2D
object detection task. Existing 2D object detection approaches
are categorized into two groups: single-stage and two-stage
approaches. Two-stage 2D object detectors [9, 20, 13] are
slower but demonstrate the higher performance in accuracy by
differentiating the two steps; region proposal and classification,
while single-stage approaches [31, 22, 21] incorporate the
complicated steps into one straightforward network. In this
work, we utilize a single-stage 2D object detector (we adapt
YOLO [31]) to generate a 2D bounding box for a vehicle,
which is the input of the proposed network. Note that any 2D
object detector can be employed with our approach.

3D vehicle detection LiDAR-based 3D vehicle object detec-
tion methods have been extensively researched [3, 30, 40, 39].
Zhou et al. [40] introduce the voxel features to overcome
the sparse point cloud. Yang et al. [39] focus on the bird’s
eye view 3D localization by projecting the 3D point clouds
into accumulated planes. Recently, a few studies [3, 17, 30]
suggest combining RGB images with LiDAR measurement.
Specifically, Qi et al. [30] utilize the image-based 2D object
detector to generate the frustum which minimized the search-
space of the target object. Chen et al. [3] and Ku et al. [17]
introduce a multi-view fusion approach to perform multi-
modal feature fusion. Alongside the development of these
LiDAR-based approaches, a few attempts for RGB-based 3D
object detection are notable [2, 1, 25, 36]. Usually, RGB-based
approaches [25, 2, 1] re-build the architecture based on the
two-stage 2D object detector [9] to predict the location of cars
in metric units. To overcome the lack of the depth information
in an RGB image, Xu and Chen [36] propose a method
that fused an RGB image and depth information, which is

estimated by monocular depth estimation network [10]. How-
ever, estimation of the monocular depth information requires
additional computation and the resulting accuracy is sensitive
to the quality of the estimated depth. Following [36], we
take advantage of depth information, but we utilize simplified
depth information, plane depth under the road environment
assumption. Thanks to the plane depth, we can decrease
the dependency on the estimated scene depth and lessen
the computational cost.

III. SEGMENT2REGRESS FOR 3D LOCALIZATION

In this section, we present the details of the proposed
3D vehicle localization approach which is composed of two
networks: the segment network and the regression network.
Under the road environment assumption, the segment network
activates the pixels that correspond to the area under a vehicle
in the image coordinate (Sec. III-A). We fuse the estimated
segments with the plane depth to aid the estimation of the
metric location of the car of interest (Sec. III-B). Then,
the regression network predicts the 3D location of the vehi-
cle (Sec. III-C). Thanks to this architecture, we avoid the scene
depth estimation and localize the 3D vehicles at the ground
level, i.e., bird’s eye view localization, as shown in Fig. 2.

A. Segment network

The segment network takes an RGB image and a 2D
bounding box of a target vehicle as input, where the 2D
bounding box is pre-computed using any 2D object detector
(YOLO [31] in this paper). Given this input data, the goal
of the segment network is to estimate the area beneath the
vehicle (the ground region occupied by a car) in the image
domain. This bottom region usually forms a quadrilateral in
the image domain and is expressed with a group of activated
pixels (segments). Nevertheless, in this work, we estimate
additional four line segments (left, front, right, and back line
segments, see Fig. 2) alongside the bottom region to gain
several advantages. Specifically, thanks to these additional
four line segments, we can 1) estimate the heading of the
vehicle with the line segments, 2) support the estimation of
the bottom region via the observed line segments (typically
two line segments are visible for truncated vehicles), and
3) disambiguate the physical attributes (the size) of the car,
i.e., the width and the length. For simplicity, we refer to a set
of segments including the bottom region and line segments
as vehicle segments S={b;,bs,b,,by, by} = {be;)};_,, where
each segment b(;) follows left (), front (f), right (1), back (b),
and bottom ground (g) order.’

To estimate the vehicle segments, we design the segment
network based on stacked encoder-decoder architectures [27,
28]. Specifically, we utilize stacked hourglass networks [28]
as a base network, which shows superior performance on
key-point estimation by refinement and noise filtering. For
our target task, we stack four hourglass modules with two

IThe index of b(;) directly maps to the output channel index of the segment
network.
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Fig. 2.

The overall architecture of the proposed Segment2Regress network. Given an input tensor, (a) the segment network generates the vehicle

segments S based on stacked hourglass networks [28]. (b) The estimated vehicle segments S and the plane depth computed by the plane parameters are
combined by the fusion process. (c) The regression network predicts the four bottom corners of a vehicle in world coordinate, called vehicle points X'. For
visualization purpose, we overlay a grayscale image with the colored vehicle segments, where green, cyan, red, magenta, and yellow indicate each vehicle

segment, respectively.

additional layers (one transpose convolution and one convolu-
tion layers) at the end of each hourglass module to increase
the resolution (four times higher than the output from the
original hourglass network [28]), and generate sharp segments.
In addition, we attach two activation functions (hyperbolic
tangent function and Leaky Rectified Linear Units [37]) to
estimate the confidence map (see Fig. 2(a)). With these
modifications, the segment network filters the wrong vehicle
segments consecutively, as shown in Fig. 7.

To train the segment network, we minimize the following

Lo loss:
4
Loeg =
k=1

where E@) is the i-th predicted vehicle segment from k-th hour-
glass network. The loss is computed in a pixel-wise manner.
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B. Fusion of plane depth

Recently, monocular 3D object detection has benefited from
single image depth estimation techniques which significantly
contributed to improved the accuracy [36]. To fully exploit the
road environments assumption, we fuse the vehicle segments
with an approximated depth map estimated from the road
plane parameters (i.e., plane depth) instead of relying on a
highly accurate depth map (i.e., scene depth) [10, 23] (see the
example in Fig. 3). The plane parameters can be accurately
estimated from geometric prior, e.g., the elevation and the
intrinsic parameters of the camera [11]. This strategy has the

advantage of providing metric depth estimation faster than
other depth estimation techniques.

To fuse the different data distribution, i.e., vehicle segments
and the plane depth, we introduce a fusion-by-normalization.
First, we apply a batch normalization [15] to the vehicle
segments, and then multiply them with the plane depth in a
pixel-wise way. After the multiplication, we apply the instance
normalization [35, 14] with learnable parameters (Fig. 4).
Since batch normalization normalizes features along the mini
batches, it maintains the instance-level responses (i.e., vehicle
segments). On the other hand, instance normalization normal-
izes each feature independently with the trainable parameters,
so the plane depth is fused into each channel in an adaptive
manner, like Nam et al. [26]. We validate the fusion-by-
normalization method in our ablation study, Table II. All these
steps are visualized in Fig. 4.

C. Regression network

After the fusion with the plane depth, the purpose of the re-
gression network is to regress the 3D position of the observed
vehicle, i.e., 3D corners of the vehicle in metric units. We
model these bottom corners as four 3D points X' = {X; }?:1,
where each point X;=[z;,y;, 2] directly maps the absolute
position of the vehicle (in the camera’s referential), e.g., the
first corner X; denotes the 3D intersection point between the
left and front line segments. We refer to these four points X
as vehicle points. Therefore, our regression network predicts
a set of 12 variables which model the vehicle position. We



(a) Scene depth by Godard et al. [10] (b) Plane depth

Fig. 3. Comparison of two different depth information: (a) Scene depth
estimated by single image depth estimation approach [10] and (b) plane
depth computed by the given plane parameters, which is computationally

cheaper than the scene depth estimation. We use an RGB image in the KITTI
dataset [8] for inference in both cases.
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Fig. 4. Illustration of fusion-by-normalization. To facilitate the prediction
of the metric locations in the following regression network, plane depth
and the generated vehicle segments S — from the segment network — are
combined in a normalized way.

intentionally employ such relaxed-parametrization instead of
the more widely used minimal representation [3] (e.g., center
position, width, length, and rotation angle in a top-down view).
This choice is motivated by recent studies, such as Xu et
al. [38], where the authors underline the advantage of over-
parametrization, i.e., escape from spurious local optima. In
addition, to enforce the structural constraints and to group
the relaxed-regression variables, we introduce three losses
respectively imposing the following geometric properties:
size, heading, and planarity of vehicle. These constraints are
combined through our coupling loss such that the relaxed-
regression variables are coupled to other adjacent regression
variables to satisfy the geometric properties. To estimate the
vehicle points X', we train our regression network such that it
minimizes the absolute distance between the ground-truth 3D
point X; and its prediction X; as:

4
Lreg = Z HX] - XjHl + Lcouple7 2
=1

where [|-||; is the mean absolute error and L. indicates the
coupling loss, which incorporates a set of structural constraints
between points to ensure a shape-aware estimation of the 3D
position of vehicles.

Coupling loss To apply the structural prior of the vehicle, we
introduce a coupling loss, which consists of three constraints
related to size, heading, and planarity of the vehicle (see
Fig. 5).

1) Size loss. First, we exploit the size of the vehicle to jointly
regularize adjacent vehicle points. In the size loss, we measure
the size (width and length) at each vehicle point X; and

Ground truth (X;)
> e Prediction (X;)
Coupling loss
o A R R
® LT - Size
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(c) With coupling loss

Fig. 5. Illustration of coupling loss. (a) Without coupling loss, the
estimated vehicle points do not follow structural constraints. (b) The minimal-
parametrization model (center X, width w, length [, and orientation 0) suffers
from local minimas [38]. (c) With coupling loss, we can regularize the vehicle
points jointly while forcing structural conditions. We denote the ground truth
of the vehicle point as X; and prediction of the vehicle point as X ;.

minimize the absolute distance as:

L= ’d(Xja Xj+1) — d(f(j?ijﬂ)‘
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)
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where d(-,-) is the Euclidean distance between the two adja-
cent points> and |-| is the absolute value.

2) Heading loss. Second, the heading of vehicle is another
important structural information because it can distinguish the
front/rear (width) and left/right (length). The pair of adjacent
points are related to the direction of the cars. Therefore,
the heading constraint can be applied through the following
formulation:

. _ e
Ljead = ’f(XijJrlv e) — f(X; X411, e1)

—_ ——
+ ‘f(Xijh e3) — f(X;X;_1, e3)

“)

)

where X ;X ;1 is the unit direction vector from X; to X
and f(-,-) denotes the cosine similarity between two vectors.
The two vectors e;=[1,0,0] " and e3=[0,0, 1] are the z and
z axes in the camera’s referential, respectively.

3) Plane loss. Last, we impose the planarity loss to ensure
the vehicle is located on the ground plane. In practice, the
ground-truth value provided by the KITTI dataset [8] does
not provide points lying exactly on a single ground plane.

’In the coupling loss, we utilize the mod operation to compute the two
adjacent points in practice.



Therefore, we rectify the ground-truth to respect this constraint
by adjusting their vertical positions (y-axis) according to the
provided parameters of the plane from the previous study [17].
Considering the normal of the plane n and the elevation of the
camera to the road surface d, the plane loss can be formulated
as: _

Lne =0T - X;+4d|. (5)

plane

Using the above three loss functions related to the structural
relationship, we define the coupling loss as follows:

4
LCOUPZE = Z aLiize + BLiLead + /yLizlanw (©6)
j=1

where each of the terms in the coupling loss is weighted by
the balancing parameters «, /3, and . We set «, (3, and ~y as
0.01, 1.0 and 1.0, respectively. We discuss the effect of the
proposed coupling loss in an ablation study (see Table III).

IV. EXPERIMENTS

In this section, we evaluate the proposed approach on the
KITTT object detection benchmark (bird’s eye view) [8]. First,
we present a comparison of our method with recent state-of-
the-art techniques, this assessment underlines the robustness
and efficiency of Segment2Regress under challenging condi-
tions. In addition, we conduct a systematic ablation study to
validate the factors of coupling loss, fusion-by-normalization,
and road plane assumption.

A. Implementation details

The size of the input tensor is 4 x 256 x 512 pixels
(CxHxW) which contains an RGB image and the binary mask
of a given 2D car detection bounding box. With this input
tensor, the segment network estimates the vehicle segments
which have a shape of 5 x 128 x 256 pixels. Then, the
estimated vehicle segments are combined with the plane depth
by the fusion-by-normalization process. It should be noted
that this process preserves the shape of the original segment
network output. Concerning the regression network, we use
ResNet101 [12] with some slight adjustments. At the first
layer, we add a dropout layer [34] and set the drop ratio
to 0.1 for training. At the last layer, we configure 12 output
parameters that represent the 3D location of the four corners
of a car (vehicle points X). The two networks (the segment
network and the regression network) are trained independently.
We do not load the pre-trained weight for the two networks.
The learning rate is initiated at 0.0002 and decreases to 10
times smaller at 20 epochs and 5 times smaller at 40 epochs.
This training stage is performed with an Adam optimizer [16]
with batch size of 32. The training ends after 50 epochs for
each training phase. We use three GPUs (GeForce GTX 1080
Ti) for training. The proposed method processes each vehicle
of interest individually such that custom local planes can be
utilized for each object to improve the localization accuracy.
Moreover, with a single GPU, we can process 10 objects
simultaneously (available batch size) without an additional
computational load. In practice, an RGB image acquired in

a road environment captures the limited number of cars. For
example, the KITTI dataset contains less than 10 vehicles
on average. Thus, we consider the computational time for 10
vehicles per frame, i.e., FPS.

B. Evaluation

Dataset and metric The KITTI dataset [8] is a real-world
public dataset captured for various traffic scenarios (highway
and city scenes) for research in robotics and computer vision
fields. This dataset also includes a variety of modalities: stereo
cameras, a 3D Velodyne and GPS/IMU. It also provides online
benchmarks for stereo, optical flow, object detection, and other
tasks.

In this dataset, we exploit the bird’s eye view benchmark
that measures the 3D object detection on the top-down view,
i.e., exclude the vertical components (y-axis). It should be
noted that the ground truth of 3D bounding boxes is not
annotated to precisely respect the ground plane assumption.
These rather inaccurate annotations violate our hypothesis,
therefore, we adjust the ground truth data such that the vehicle
points & lie on a single road plane via a projection along the
y-axis.?

All the results presented in this paper strictly follow the
KITTT’s official metrics. For example, we exclusively consider
cars while omitting trucks or buses — as stated in [8]. The
dataset is divided into three cases: easy, moderate, and hard.
We measure the Average Precision (AP) of the bird’s eye view
bounding box for each case, where we set the IoU thresholds
as 0.7.

Comparison We compare our approach with recent monoc-
ular camera-based methods [2, 1, 36, 24, 32]. The resulting
scores are summarized in Table I. Due to limited information
provided by a single RGB image (absence of depth), most
approaches suffer from limited performance. To cope with this
problem, Xu and Chen [36] presented a multi-fusion method
that incorporates depth information estimated by the single
depth estimation approach [10]. This strategy improved the
performance significantly but remains sensitive to hard cases.
On the other hand, our proposed approach shows promising
performances for every difficult category (see Fig. 8). We
attribute this robustness to our ground plane based depth ap-
proximation which cannot be affected by a clutter environment
or occlusions — because it is directly derived from the plane
equation. Indeed, when the cars are occluded or truncated,
the localization uncertainty of unknown points increases. In
our method, the plane depth regularizes the estimated vehicle
points at the ground level. Furthermore, our coupling loss
further enforces structural priors jointly, and improves the
robustness to hard cases. Qualitative results on the KITTI
dataset are available in Fig. 6.

In our self-validation, we challenge our method with various
types of bounding box inputs: ground truth with/without noise
and estimation from another 2D object detection network. For

3Since we modify the ground truth along the y-axis, it does not affect the
bird’s eye view metric.



. Car 2D AP IoU=0.7 [val/test] Car BEV AP 10U=0.7 [val]
Method Modality Speed (FPS) Easy [ Moderate Hard Easy | Moderate [ Hard
Mono3d [2] Mono 3 93.89/92.33 | 88.67/88.66 | 79.68 / 78.06 || 5.22 5.19 413
3DOP [1] Stereo 0.83 93.08 /90.00 | 88.07/88.34 | 79.39/778.79 || 12.63 949 759
Multi-Fusion (36] Mono 10.52%% -7 -7 -7- .14 6.59 543
witi-Fusion - Mono+Depth [10] 8 ~79043 ~78733 ~776.78 || 22.03 13.63 11.60
ROI-10D [24] Mono+Depth [29] 5 853277533 | 71327/69.64 | 69.70 / 61.18 || 14.76 955 757
OFT-NET [32] Mono 2 -7- -7- 7- 11.06 8.79 891
Ours + GT 2D BBox Mono 60* 100 / - 100 / - 100 / - 22.73 1731 16.87
Ours + GT 2D BBox (noise) Mono 60% 62597 - 5516/ - 027 - 22.61 17.40 16.89
Ours + YOLO 31155+ Mono 5 63.18 7 - 5559 - 2997 - 1921 1535 1451
TABLE I

3D VEHICLE LOCALIZATION. AVERAGE PRECISION (AP) OF BIRD’S EYE VIEW BENCHMARK ON KITTI DATASET [8]. WE DESCRIBE THE MODALITY
AND THE SPEED FROM OTHER METHODS AND ADDITIONALLY PROVIDE THE 2D AP ON KITTI VAL/TEST DATASET [8]. OFT-NET [32] AND OUR
SEGMENT2REGRESS DOES NOT PREDICT THE 2D BOUNDING BOXES. * MEANS THE PURE INFERENCE TIME OF OUR NETWORK. ** INDICATES THE

EXPECTED SPEED. WE DID NOT FINE-TUNE YOLO [31]*** BUT FILTERED OUT THE FALSE-POSITIVE 2D VEHICLE PREDICTIONS TO MEASURE THE PURE
ACCURACY OF 3D VEHICLE LOCALIZATION.

Fig. 6. Qualitative results of the proposed Segment2Regress. To validate the performance, we utilize the KITTI raw dataset [8], which only provides RGB
images. We obtain the 2D bounding boxes from YOLO [31] and calculate the static plane from the sensor setup of KITTI [8]. With the given input data, we
infer the vehicle points of the target objects through our Segment2Regress network. The yellow cube is the prediction by our network (for visualization, we
set the height of cars as 2 meters) and cyan represents the front phase (heading) of the vehicles. We follow the KITTI’s official rules [8] and only consider
the single class, i.e., cars, not vans or trucks.

the noise case, we randomly translated the ground truth up
to 20 pixels under a uniform distribution. As for the network
case, we use YOLO [31] to estimate the 2D bounding boxes.
It is worth mentioning that YOLO [31] was pre-trained on
COCO dataset [19] without fine-tuning on the KITTI 2D
object benchmark [8]. Thus, it performed less accurately than
the other fine-tuned networks [2, 36, 1, 24] on 2D detec-
tion, as shown in Table I. Nonetheless, our Segment2Regress
network still demonstrates higher accuracy under hard cases,
which highlights the robustness of the proposed approach
against input 2D bounding boxes. On the other hand, other
approaches [2, 36, 1, 24] internally include a two-stage 2D
object detector network (Faster-RCNN [9]) and simultaneously
fine-tune the whole system from the ground truth of the 2D/3D

bounding boxes. Thus, they show higher accuracy in the KITTI
2D object detection benchmark.

C. Ablation study

In this section, we describe our extensive ablation study
to confirm our three contributions that mainly increase the
performance of our method. First, we analyze the effect of
the fusion-by-normalization. Second, we evaluate the influence
of the coupling loss. Third, we assess the robustness to the
plane depth accuracy. The metrics in Tables II, III, and IV are
the Average Precision (AP) of the bird’s eye view benchmark
on the KITTI validation dataset [8]. Since the contributions
are related to both regression and fusion, the prediction is
purely based on the regression network and the fusion-by-
normalization process. Using the ground truth of the vehicle



(b) 2" Seg* (c) 3" Seg* (d) 42 Seg* (e) Visualized

(a) 1%t Seg*

Left line Front line

Right line

~.

Rear line Bottom

Fig. 7. Visualization of vehicle segments from each hourglass network in segment network. Fig. 7-(a) gives the results from the first hourglass network,
Fig. 7-(b), Fig. 7-(c), and Fig. 7-(d) show the results from the following hourglass modules. The consecutive process filters out the wrongly segmented lines.
Fig. 7-(e) is the visualization of the final estimation Fig. 7-(d), which is overlaid with an RGB image.

Coupling | Batch | Plane Inst Car BEV AP IoU=0.7 [val] Fusion Coupling loss Car BEV AP IoU=0.7 [val]
loss norm* | depth | norm** Easy [ Moderate [ Hard Size | Heading | Planarity Easy | Moderate | Hard
v 540 4.92 6.05 v 29.75 2241 21.80

v v 5.29 4.78 5.97 v v 34.96 26.32 30.12

v v v 0.99 1.16 1.46 v v 35.70 31.45 31.02

v 4 v/ 5.21 4.75 5.88 4 v 42.63 33.20 37.95

v v/ v/ 13.87 10.75 12.88 v v v 41.56 35.05 31.56

v v v v/ 45.70 34.48 39.32 v 4 v 45.70 34.48 39.32

TABLE II TABLE III

ANALYSIS OF FUSION-BY-NORMALIZATION. WE INTENTIONALLY OMIT
THE COMPONENTS IN THE FUSION-BY-NORMALIZATION PROCESS TO
VERIFY EACH STEP. THE MARKS MEAN THAT WE APPLY THE
CORRESPONDING CONDITION. BATCH NORMALIZATION LAYER [15] AND
INSTANCE NORMALIZATION LAYER [35] ARE ABBREVIATED TO BATCH
NORM* AND INST NORM** RESPECTIVELY.

segments, we re-train the regression network and fusion-
by-normalization process. The obtained metric becomes the
upper-bound performance of our Segment2Regress network.

Fusion process We present a case study for the proposed
fusion-by-normalization method. This method is effective for
fusing vehicle segments and plane depth. For the comparison,
we apply the coupling loss to all experiments, and change the
components in Fig. 4. Table II shows the existence of plane
depth itself cannot leverage the performance, but the associ-
ation of two normalization layers (batch normalization [15]
and instance normalization [35]) increase the performance
significantly.

EVALUATION OF THE COUPLING LOSS. WE ACHIEVE THE UPPER-BOUND
ACCURACY OF OUR METHOD WHEN WE TAKE INTO ACCOUNT THE ALL
ELEMENTS OF COUPLING LOSS. MARK MEANS THAT WE APPLY THE
CORRESPONDING CONDITION.

A static plane | Estimated planes [17] gzrsyBEvl\?;;SX:Oj I[{\;ig
5.21 4.75 5.88

v 38.60 33.83 39.03

v 45.70 34.48 39.32

TABLE IV
INFLUENCE OF PLANE DEPTH. WE ADDRESS THAT FUSION OF PLANE
DEPTH IS NECESSARY FOR THE METRIC PREDICTION FROM REGRESSION
NETWORK. MARK MEANS THAT WE APPLY THE CORRESPONDING
CONDITION.

Coupling loss To highlight the relevance of the coupling loss,
we test various combinations involving the different elements
of the coupling loss. The results obtained through this ablation
study are provided in Table III. Based on the fusion-by-
normalization method, we train the regression network with
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Sampled 3D vehicle localization results for hard cases in the KITTI dataset: (a) Truncated, (b) side-occluded, (c) rear-occluded, and (d) far

located samples. The top row shows the predicted result (projection of the predicted 3D bounding box) in the image domain, where we denote the prediction
by the proposed approach as a yellow cube with a cyan-colored front face, and the input 2D bounding box as a magenta box. The bottom row describes
the corresponding results in the bird’s eye view, where the red quadrilateral represents the prediction from our Segment2Regress, the green one is estimated
purely from the regression network using the ground truth of vehicle segments, and the blue one is the ground truth of the 3D vehicle localization.

different variations of the coupling loss. From this test, we
notice that the plane loss is the most effective to regularize the
regression variables. When we apply the all elements of the
coupling loss, the accuracy increases further. In other words,
our coupling loss effectively regularizes the relaxed-regression
variables by grouping the adjacent regression variables while
considering its geometric properties: size, heading, and pla-
narity of the vehicle.

plane parameters We demonstrate the influence of the
plane parameters in Table IV. The static plane means that we
calculate the static plane parameters from the sensor setup of
the KITTI dataset [8], such as the elevation of the camera and
the calibration parameters. In other words, the static plane is
identical throughout all the different images. Even from these
rough static plane parameters, the regression network performs
better than when it does not utilize plane depth. When we
achieve the more accurate road equations, the performance of
the regression network increases further. The accuracy of plane
parameters affects our vehicle localization results, and even the
fusion of static plane parameters outperforms the non-fusion
experiment.

V. CONCLUSION

We have presented a novel approach for 3D vehicle local-
ization from a single RGB image and plane parameters. To
fully exploit the road environment assumption (vehicles lie on
the road surface), we formulate the 3D vehicle localization
as two sub-tasks (two stages): 1) Segment the vehicle region
in the image domain (segment network) and 2) regress the
vehicle points in the 3D domain (regression network), where
we newly introduce a coupling loss to enforce the structure
and heading of the vehicles. In addition, we estimate the
3D vehicle localization in metric units through a fusion-
by-normalization approach with the plane depth, which can
be computed from simple plane parameters without heavy

computation. We successfully validated our method on the
bird’s eye view KITTI dataset and by an ablation study. The
proposed approach can be considered as an independent 3D
localization module applicable to any 2D object detector.
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