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Abstract—While reinforcement learning (RL) has the potential
to enable robots to autonomously acquire a wide range of skills,
in practice, RL usually requires manual, per-task engineering of
reward functions, especially in real world settings where aspects
of the environment needed to compute progress are not directly
accessible. To enable robots to autonomously learn skills, we
instead consider the problem of reinforcement learning without
access to rewards. We aim to learn an unsupervised embedding
space under which the robot can measure progress towards a
goal for itself. Our approach explicitly optimizes for a metric
space under which action sequences that reach a particular state
are optimal when the goal is the final state reached. This enables
learning effective and control-centric representations that lead
to more autonomous reinforcement learning algorithms. Our
experiments on three simulated environments and two real-world
manipulation problems show that our method can learn effective
goal metrics from unlabeled interaction, and use the learned goal
metrics for autonomous reinforcement learning.

I. INTRODUCTION

Reinforcement learning (RL) is a promising approach for
enabling robots to autonomously learn a breadth of visuomotor
skills such as grasping [36, 24], object insertion and placement
tasks [31], and non-prehensile manipulation skills [16, 15, 7].
However, reinforcement learning relies heavily on a reward
function or metric that indicates progress towards the goal. In
the case of vision-based skills, specifying such a metric is par-
ticularly difficult for a number of reasons. First, object poses
are not readily accessible and pre-trained object detectors
struggle without fine-tuning with data collected in the robot’s
domain [39]. Second, even when fine-tuned object detectors
are available, the location of objects may not be a sufficient
representation to identify success for some tasks, while a
more suitable representation would require task-specific en-
gineering. For example, if our goal is to manipulate a rope
into a particular shape, the corresponding reward function
would need to detect the shape of the rope. In many ways,
such task-specific engineering of rewards defeats the point of
autonomous reinforcement learning in the first place, as the
ultimate goal of RL is to eliminate such manual and task-
specific efforts.

Motivated by this problem, one appealing alternative ap-
proach is to provide an example image of a desired goal
state [10, 48, 15, 43, 34, 11], and derive a reward function
using the goal image. While such goal observations are appli-
cable to a variety of goal-centric tasks and often easy for a user
to provide, they do not solve the problem of rewards entirely:
naive distances to the goal image, such as mean squared error
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Fig. 1. General overview of our method. Our method, DPN, enables au-
tonomous reinforcement learning, without human-provided reward functions,
on vision-based manipulation problems.

in pixel space, do not provide a suitable metric space for
reinforcement learning as they are sensitive to small changes
in lighting, differences in camera exposure, and distractor
objects. In this paper, our goal is to leverage autonomous,
unlabeled interaction data to learn an underlying informative
metric that can enable the robot to achieve a variety of goals
with access to only a single image of the task goal. This
capability would enable reinforcement learning of such tasks
to be significantly more autonomous.

To approach this problem, we aim to learn an embedding
space that imposes a metric with respect to a goal image,
without using human supervision. One natural option is to
use unsupervised representation learning methods [48, 15, 34].
However, these models are largely trained as density esti-
mators, meaning that they will pay attention to the most
salient aspects of the images rather than the ones that are
relevant for control. Instead, our goal is to learn a control-
centric representation that takes into account how a sequence
of actions leads to a particular observation and ignores other
changes in the observation space that are not caused by actions.

Our key insight is that any sequence of actions is optimal



under the binary reward function of reaching the final state
resulting from those actions. Further, we can use this prop-
erty to explicitly optimize for control-centric metric spaces
from unsupervised interactions. In particular, we propose to
explicitly optimize for a metric such that the sequences of
actions that lead to a given goal image have high-likelihood
when optimizing with respect to the metric. Our approach
can be viewed as a generalization of universal planning net-
works [43] to distributions of actions, while critically showing
that such models can be trained from real-world unsupervised
interaction rather than simluated expert demonstration data.
Our experiments on three simulated domains and two real-
world domains demonstrate that our approach can effectively
enable robots to learn reaching, object pushing, and rope
manipulation tasks from raw pixel observations without human
reward feedback and with minimal engineering.

II. RELATED WORK

Our work aims to enable a robot to learn a variety of
skills without human supervision, hence falling under the
category of self-supervised robotic learning [36, 2, 13, 6, 32].
We specifically approach this problem from the perspective
of representation learning, using the learned embedding as
a goal metric for reinforcement learning for reaching goal
images. Prior works have aimed to learn representations for
control through auto-encoding [27, 48, 15, 16, 34], pre-
trained supervised features [40], spatial structure [15, 16, 23],
and viewpoint invariance [41]. However, unlike these works,
we build a metric that specifically takes into account how
actions lead to particular states, leading to control-centric
representations that capture aspects of the observation that can
be controlled, while discarding other elements.

Previous approaches to building control-centric goal rep-
resentations include using inverse models [2, 35] and mu-
tual information estimation [47]. Unlike our approach, these
methods will not necessarily encode all of the aspects of an
observation needed to reach a goal. Further, inverse models are
susceptible to local optimum when planning greedily. Other
methods have built effective reward functions or goal metric
spaces using either expert demonstration data [1, 50, 14, 43],
pre-trained goal-conditioned policies [17], or other forms of
supervision [8, 12]. Our approach, on the other hand, does not
use supervision and requires only unlabeled interaction data.

Related to learning goal representations, a number of prior
works have considered the problem of learning control-centric
state representations from interaction data [38, 5, 22, 30,
45, 29], for use with planning or reinforcement learning
under a known reward or cost. Other works have combined
auxiliary representation learning objectives with reinforcement
learning [9, 20, 42]. Unlike all of these methods, we focus
on representations that induce accurate and informative goal
metrics and do not assume access to any reward functions or
metrics on state observations.

III. PRELIMINARIES
Our method builds upon universal planning networks
(UPN) [43], which learn abstract representations for visuomo-

tor control tasks using expert demonstration trajectories. The
representation learned from UPN provides an effective metric
that can be used as a reward function to specify new goal state
from images in model-free reinforcement learning.

To learn such representations, the UPN is constructed as
a model-based planner that performs gradient-based planning
in a latent space using a learned forward dynamics model.
UPN encodes the initial image of a particular control task
into the latent space, and then iteratively executes plans to
reach the latent representation of the goal image. The plans
are selected via gradient descent on the latent distance between
the predicted terminal state and the encoding of the actual
target image. Simultaneously, an outer imitation objective
ensures that the learned plans match the sequences of actions
of the training demonstrations. Consequentially, UPNs learn
a latent distance metric by directly optimizing a plannable
representation with which gradient-based planning leads to the
desired actions.

Concretely, given initial and goal observations o; and o,
e.g., as seen in the two images in Fig. 2, the model uses an
encoder f to encode the images into latent embeddings:

Xt = f(0t§ eenc) Xg = f(o,(ﬁ 9enc)>

where f(-,0cnc) is a convolutional neural network. After en-
coding, the features x; and x4 are fed into a gradient descent
planner (GDP), which outputs a predicted plan ;.. to reach
x4 from x;. The GDP is composed of a forward dynamics
model g with parameters g4y, Where X; 1 = g(X¢, a¢; Oqyn)-
The learned Plan is initialized randomly from a uniform
distribution &, ~ U(—1,1) and is updated iteratively via
gradient descent as follows:
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where a is the gradient descent step size and ﬁplan

||xt {741 — Xgl|3. In practice, we find the Huber loss is more
effective than the /¢y loss for Lp,,. After computing the
predicted plan, UPN updates the planner by imitating the
expert actions ay,; ,  in the outer loop. The imitation objective
is computed as Limitation = ||Qtt+7 — az‘:t+T||§ and is used
to update the parameters of the encoder and forward dynamics
6 := {benc, Oayn } respectively:
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where [ is the step size for the outer gradient update.

Srinivas et al. [43] applied the learned latent metric as a
reward function for model-free reinforcement learning to a
range of visuomotor control tasks in simulation and showed
that the robot can quickly solve new tasks with image-based
goals using the latent metric. However, in order to learn
effective representations for new tasks, UPNs require access
to optimal expert demonstrations, which are difficult and time-
consuming to collect, making it difficult to extend to a variety
of tasks, in particular, real-world tasks. In response, we will
show a key extension to UPNs that can effectively learn such
latent representations without using expert demonstrations in
the next section.



IV. UNSUPERVISED DISTRIBUTIONAL PLANNING
NETWORKS

Our end goal is to enable a robot to use reinforcement
learning to reach provided goal images, without requiring
manually-provided or hand-engineered rewards. To do so,
we will derive an approach for learning a metric space on
image observations using only unsupervised interaction data.
Universal planning networks (UPNs) [43] show how we can
learn such a metric from demonstration data. Further, Ghosh
et al. [17] observe that one can learn such a metric with access
to a goal-conditioned policy by optimizing for a goal metric
that reflects the number of actions needed to reach a particular
goal. However, if our end-goal is to learn a policy, we are faced
with a “chicken-and-egg” problem: does the goal-conditioned
policy come first or the goal metric? To solve this problem, we
propose to learn both at the same time. Our key observation is
that a sequence of any actions, even random actions, is optimal
under the binary reward function of reaching the final state
resulting from those actions. Specifically, we can use random
interaction data to optimize for a metric such that the following
is true: when we find a sequence of actions that minimizes the
distance metric between the final predicted embedding and the
embedded goal image, the true sequence of actions has high
probability. Concretely, consider interaction data consisting of
an initial image o7, a sequence of actions aj.;—; executed by
the robot, and the resulting image observation o;. We can use
data like this to optimize for a latent space x = f(0;0enc)
such that when we plan to reach x; = f(0¢; fenc), We have
high probability of recovering the actions taken to get there,
al:—1-

So far, this computation is precisely the same as the original
UPN optimization, except that we perform the optimization
over randomly sampled interaction data, rather than demon-
strations. In particular, we surpass the need for expert demon-
strations because of the observation that random interaction
data can also be viewed as “expert” behavior with respect to
the cost function of reaching a particular goal observation at
the last timestep of a trajectory (whereas the original UPN
was optimizing with respect to the cost function of reaching
a goal state with a sequence of optimally short actions). Once
we have a representation that can effectively measure how
close an observation is to a goal observation, we can use it
as an objective that allows us to optimize for reaching a goal
observation quickly and efficiently, even though the data that
was used to train the network did not reach goals quickly.
While not all robotic tasks can be represented as reaching a
particular goal observation, goal reaching is general to a wide
range of robotic control tasks, including object arrangement
such as setting a table, deformable object manipulation such as
folding a towel, and goal-driven navigation, such as navigating
to the kitchen.

However, note that, unlike in the case of expert demonstra-
tion data, we are no longer optimizing for a unique solution
for the sequence of actions: there are multiple sequences of
actions that lead to the same goal. Hence, we need to model all

of these possibilities. We do so by modeling the distribution of
action sequences that could achieve the goal, in turn training
the UPN as a stochastic neural network to sample different
action sequences. Interestingly, universal planning networks
are already stochastic neural networks, since the initial action
sequence is randomly sampled before each planning optimiza-
tion. However, as described in Section III, they are trained with
a mean-squared error objective, which encourages the model
to represent uncertainty by averaging over possible outcomes.
To more effectively model the multiple possible sequences of
actions that can lead to a potential goal observation, we extend
universal planning networks by enabling them to sample from
the distribution of potential action sequences. To do so, we
introduce latent variables into the UPN model and build upon
advances in amortized variational inference [26, 21] to train
the model, which we will discuss next.

A. Distributional Planning Network Model

To extend universal planning networks towards modeling
distributions over actions, we introduce latent variables into
the model. We thus consider the following distribution,

p(at:t+T|0ta 0t+T+1)
= /p(at:t+T|Zt:t+T7 O¢, 0t+T+1)p(Zt:t+T)dZt:t+T,

by introducing latent variables z; for each timestep ¢. We
model the prior over each timestep independently, and model
each marginal as a standard Gaussian:

t+T

p(Zt:t+T) = H p(Zt’)

t'=t

p(zt) = N(Ov I)

We model p(at.ti1|ZetiT,08,044741) Using a neural net-
work with parameters 6 with two components. The first
component is a deterministic gradient descent action planner
with respect to latent action representations z,. ., with
gradient descent initialized at z;.;4+7. The second component
is a feedforward decoder that maps from an individual latent
action representation z; to a probability distribution over the
corresponding action a;. We will next describe these two
components in more detail before discussing how to train this
model.

Concretely, the gradient-based planner component consists of:

(a) an encoder f(-;0enc), which encodes the current and goal
observation 0,04 into the latent state space x;, Xg,

(b) a latent dynamics model X411 = g(X¢, 2;; f4yn) that now
operates on latent actions z} rather than actions a;, and

(¢) a gradient descent operator on z;,, ;- that is initialized at a

or /(0
sample from the prior z;;;", - = Z¢.1+7, and runs n,, steps

of gradient descent to produce z;(:fr’)T, using learned step
size «y; for step i = 1,...,np.
Like before, the gradient descent operator computes gradients
with respect to the planning loss L4y, Which corresponds to
the Huber loss between the predicted X, 71 and the encoded
goal observation, X,.
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Fig. 2.

Diagram of our distributional planning networks model. Our model enables learning a representation x that induces a control-centric goal metric

on images o from unlabeled interaction data. It does so by explicitly training for a metric under which gradient-based planning leads to the a sequence of
actions that reach the final image. To effectively model the many action sequences that might lead to a goal after T' timesteps, we introduce latent variables

Z.¢+7 and train the model using amortized variational inference.

Once we have computed a sequence of latent actions
zt:sz‘r using the planner, we need to decode the latent val-
ues into actions. We do so using a learned action decoder
h(a¢|zy; O0ace). This feedforward neural network outputs the
mean of a Gaussian distribution over the action with a fixed
constant variance. Overall, the parameters of our model are
0 = {benc, Oayn, bact, @ }. The architectures for each of these
components are described in detail in Appendix A. We next

describe how to train this model.

B. Distributional Planning Network Training

Since we are training on random interaction data, there are
many different sequences of actions that may bring the robot
from one observation to another. To effectively learn from
this data, we need to be able to model the distribution over
such action sequences. To do so, we train the above model
using tools from amortized variational inference. We use an
inference network to model the the variational distribution,
which is factorized as

t+T

) =[] alzvlar: ¢),

t'=t

Q¢(Zt:t+T|at:t+T

where ¢(z:|as; ¢) outputs the parameters of a conditional
Gaussian distribution N (ue(at),04(at)). Following Kingma
and Welling [26], we use this estimated posterior to optimize
the variational lower bound on the likelihood of the data:

EDPN (0 (b)

Zt t+T~qe [Ingé (at t+T‘0ta 0t+T+1)]

+5DKL(Q¢(Zt;t+T|at:t+T) || p(Zt:e41)). (1)

A value of B = 1 corresponds to the correct lower bound.
As found in a number of prior works (e.g. [19, 4]), we find
that using a smaller value of 3 leads to better performance.
We compute this objective using random interaction data
that is autonomously collected by the robot, and optimize
it with respect to the model parameters 6 and the inference

network parameters ¢ using stochastic gradient descent. Mini-
batches are sampled by sampling a trajectory from the dataset,
01,41, ..., and selecting a length-7T" segment at random within
that trajectory: o4, ay, ..., a4+71,0¢+7+1. We compute the ob-
jective using these sampled trajectory segments by first passing
the executed action sequence into the inference network to
produce a distribution over z;.,,.7. The second term in the
objective operates on this Gaussian distribution directly, while
the first term is computed using samples from this distribution.
In particular, we compute the first term by passing observations
04,044741 and the samples z;.;.7 as input to the gradient
descent planner, running gradient descent for n, timesteps,
and decoding the result into a;.;1 7 to produce the distribution
po(arsrr|os, 00 4741) = N(apiyr,I). See Figure 2 for a
summary of the model and training.

C. RL with the Learned Goal Metric

Training the distributional planning network provides us
with several key components. Most importantly, the encoder
f(; Ocne) of the DPN provides an embedding of images under
which distances to goal images accurately reflect whether
or not a sequence of actions actually reached the goal. The
combination of the image encoder f, latent dynamics g, and
action decoder h serves as a policy that can optimize over a
sequence of actions that will reach an inputted goal image.

One easy way to use the DPN model is directly as a goal-
conditioned policy. In particular, consider a human-provided
goal image o, for a desired task. We can compute a sequence
of actions to reach this goal image &;,(r by running a
forward pass through the DPN with o; and o, as input
and gradient descent initialized at a sample from the prior
zt(?iT ~ p(z¢.+47). However, note that the model outputs a
distribution over all action sequences that might reach the final
state after 7" actions. This means that we can expect the action
sequence produced by DPN to reach the goal, but may not do
so in a timely manner. In turn, the DPN encoder represents
a true metric of whether or not an embedded image x has



reached the same state as another embedded image x’, as it
is minimizing for an action sequence that reaches the correct
image. As a result, we can alternatively use this metric space
with reinforcement learning to optimize for efficiently reaching
a goal image.

Thus, after training the DPN model on autonomous, unla-
beled interaction, we discard most of the DPN model, only
keeping the encoder f(-;0en): this encoder provides a goal
metric on images. To enable a robot to autonomously learn
new tasks specified by a human, we assume a human can
provide an image of the goal o4, from the perspective of the
robot. We then run reinforcement learning, without hand-tuned
reward functions, by deriving a reward function from this goal
metric. We derive rewards according to the following equation:

r(0¢;04) = —exp(Ls(0t,04))
where L5 corresponds to the Huber loss:

£6(0t7og) = ||dppx(f(0¢; Oenc) — f(og; Benc), 0) 1
where for the i-th entry x; of some vector x,

1.2
X5

for |x;| <6
dppn(x,0); =1 2 iso,
ppN (X, 6) { §|xi| — %52 otherwise.

Following Srinivas et al. [43], we use § = 0.85. We then
use the soft actor-critic (SAC) algorithm [18] for running
reinforcement learning with respect to this reward function.

V. EXPERIMENTS

The goal of our experiments is to test our primary hypoth-
esis: can DPN learn an accurate and informative goal metric
using only unlabeled experience? We design several simulated
and real world experiments in order to test this hypothesis with
both synthetic and real images in multiple domains, ranging
from simple visual reaching tasks to more complex object
arrangement problems. In all cases, the objective is to reach
the goal state which is illustrated to the agent by a goal image.
We will release our code upon publication, and you can find
videos of all results at the following link'.

To quantify the performance of DPN, we compare our
method to leading prior approaches for learning goal metrics
from unlabeled interaction data. In particular, we compare to
the following approaches:

e We train a multi-step inverse model to predict the
intermediate actions a;; 7 given two observations
04,04 71. Following Agrawal et al. [2] and Pathak et al.
[35], we use a siamese neural network that first embeds
the two observations and then predicts the actions from
the concatenated embeddings. We include a forward-
consistency loss as a regularizer of the inverse model
suggested in Pathak et al. [35]. We use the embedding
space as a goal metric space.

e We train a variational autoencoder (VAE) [26], and use
distances in the latent space as a goal metric, as done by
prior work [34].

The supplementary website is at https:/sites.google.com/view/dpn-public
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Fig. 3.  We conduct experiments on several different vision-based mani-
pluation domains, including simluated rope manipulation, simulated pushing,
robot reaching, and robot pushing in the real world.

« We lastly evaluate /5 distance in pixel space as the goal
metric.

All of the above approaches are trained on the same unlabeled
datasets for each problem domain, except for the pixel distance
metric, which is not learned. Because inverse models have a
tendency to only pay attention to the most prominent features
of an image to identify the actions, we expect the inverse mod-
els to work best in situations where the robot’s embodiment
is a critical aspect of the goal, such as reaching tasks, rather
than tasks involving objects. However, even in situations such
as reaching, the metric underlying the learned embedding may
not correspond to true distances between states in a meaningful
way. On the other hand, because VAEs learn an embedding
space by reconstructing the input, we expect VAEs to work
best in situations where the goal involves particularly salient
parts of the image. Finally, we do not expect pixel error to
work well, as matching pixels exactly is susceptible to local
minima and sensitive to lighting variation and sharp textures.

Finally, we use the soft actor-critic (SAC) [18] with default
hyperparameters as the RL algorithm for training all experi-
ments with all four metrics respectively.

We provide full hyperparameters, architecture information,
and experimental setup details in Appendix A in the supple-
mental material.

A. Simulation Experiments

We evaluate our approach starting from simulated experi-
ments using the MuJoCo physics engine [46]. For all simulated
experiments, the inputs o; and o4 are 100 X 100 RGB images.

Simulated Reaching. The first experimental domain is a
planar reaching task, where the goal of the task is for a 2-
link arm to reach a colored block. We collect 30000 videos
of unlabeled physical interactions and train DPN, the inverse
model, and the VAE on the random dataset. Note that since this
is a fully observed setup with no object interaction, we do not



Simulated reaching

A,

—e— DPN (ours)

Simulated rope manipulation

Simulated pushing

iy |
g

125

o
&
S

o

=

o
o
=3

o
o

‘er-' vvvﬂ

=3
=

=3
=3

—v— Inverse model 0.15

True distance to the goal
= =
= =

True distance to the goal
True distance to the goal

o
=l
&

& 'L/\/ [T
—=— Pixel
VAE
20 40 60 80 50 5 100 125
Number of RL steps Number of RL steps

0.0
150 25 50 Ko 100
Number of RL steps

150
Fig. 4. Quantitative simulation results that evaluate the effectiveness of the goal metrics induced by each method by measuring the true distance to the goal
state when running reinforcement learning with the reward derived from the learned goal metric. Performance is averaged across multiple tasks and error bars

indicate standard error. Each RL step requires 20 samples from the environment.

trajectories of learned RL policy w.r.t. four metrics

DPN metric

goal image Inverse model metric Pixel metric

VAE metric

0.6

0.4

02

(normalized)

0.0 .
(] T 2 3 FE 1 3 3 T 1 E)

latent distance

—o— DPN (ours) —=—[nverse model —=— Pixel VAE time

Fig. 5. Comparisons of normalized latent distance to the goal determined by four approaches for the simulated rope manipulation task. We evaluate each
latent metric on the trajectories (from a top-down view) of RL policy with respect to DPN, inverse model, VAE, and pixel space, shown above from left to
right. Note in the leftmost plot that, though the metric learned by the inverse model achieves a lower normalized latent distance than the DPN metric, it goes
to around O once the gripper moves closer to its corresponding position in the goal image without touching the rope as shown in the second and fourth plot
from the left. This suggests that the inverse model metric fails to capture the actual goal of task, which is directing the rope to the right form.
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latent metric on the trajectories of RL policy with respect to DPN and inverse model respectively, shown in the images above from left to right.

use the multi-step inverse model with recurrence and instead
use a one-step inverse model with feed-forward networks, as
suggested by Pathak et al. [35].

We evaluate all learned metrics along with the pixel space
metric by running SAC on 10 different tasks where the target
block is at a different position for each task. The input to the
RL policy is the joint angles of the robot. We summarize the
comparison in Figure 4. As shown in the plot, our method is
able to reach the goal within 0.05cm in 60 RL steps and gets
closer to 0 after 100 steps (see Figure 7). The RL policies with
metrics learned by VAE and the inverse model are also able to
get to the proximity of the goal but are less accurate. This is
reasonable since VAEs usually pay attention to the most salient

part of the image while inverse models usually pay attention to
objects that correlate most with the actions, i.e. the robot arm
in this domain. Tracking the arm movement is sufficient to
solving reaching tasks. The pixel space distance, meanwhile,
struggles to find the goal as expected since pixel-wise distance
is susceptible to minor environmental changes.

Simulated Rope Manipulation. The goal of the second
experiment is to manipulate a rope of 7 pearls into various
shapes using a parallel-jaw gripper, where the setup is shown
in Figure 3. In this experiment, we aim to test if our method
can focus on the shape of the rope rather than the position
of the gripper since, unlike simulated reaching, only encoding
the movement of the gripper into the latent space would lead



trajectories of learned RL policy w.r.t. DPN metric

||
Gl

=

EE

goal image

time —

Fig. 7. Roll-outs of learned RL policy using the DPN metric of simulated
reaching, simulated pushing, and robot reaching experiments from top to
bottom.

to ignoring the actual goal of the task: manipulating the rope.

We collect 20000 10-frame random videos. Similar to
simulated reaching, we then train a one-step inverse model
for rope manipulation.

We evaluate the four metrics by running SAC on 4 tasks
where the rope is displaced to a different shape in each task.
The input to the RL policy are the end-effector positions and
velocities of the gripper. For evaluation, we define the true
distance to goal following Xie et al. [49], measuring the aver-
age distance of corresponding pearls in the rope. As seen from
the results in Figure 4, our method does substantially better
than the other three approaches, achieving around 0.05cm on
average to the shapes shown in the goal images. The other
three approaches fail to lead to effective RL training. To
conduct a more direct comparison of all the latent metrics,
we plot the latent distance to the goal of four approaches
when rolling out the trajectories of learned RL policy with all
the four metrics as reward functions respectively in Figure 5.
Notice that the metrics learned by the inverse model and the
VAE go to around 0 once the gripper goes to its corresponding
position in the goal image but completely disregards the rope.
In contrast, the DPN metric only decreases when the rope is
manipulated to the target shape. This experiment demonstrates
that DPN is able to produce a more informative metric without
collapsing to the most salient feature in the image.

Simulated Pushing. For our third simulated experiment, we
perform a simulated pushing task where a robot arm must
push a target object to a particular goal position amid one
distractor. In order to make this environment more realistic,
we use meshes of a vase and a strainer from thingiverse.com
with different textures for the two objects and a marble texture
for the table (see Figure 3).

For this task, we collect 3000 random 16-frame videos and
train a multi-step recurrent inverse model for comparison.

Based on the previous two experiments, the pixel distance
does not serve as a good metric, so we drop it and only eval-
uate DPN, inverse models and VAEs. For this task, knowing
only the hand’s position is not sufficient to solve the task.
Hence, in addition to end-effector positions and velocities of

the robot hand, a latent representation of the current image
extracted from the inverse model is also provided as an input
the RL policy for all methods (see Appendix D for more
details). As seen in Figure 4, DPN learns to push both objects
toward the goal position with a distance close to Ocm (see
Figure 7 for an example). With the multi-step inverse model,
the robot only pushs one of the objects to goal, as indicated
by the large standard error in Figure 4. Under the VAE metric,
the robot cannot quite learn how to push both objects and RL
training does not make significant progress.

B. Real World Robot Experiments

In order to ascertain how well our approach works in the
real world with real images, we evaluate on two robot domains.
Similar to the simulated tasks, a robot, a Fetch Manipulator,
needs to reach a goal image using images from a forward-
facing camera by applying continuous end effector velocities.
Both setups are shown in Figure 3.

Robot Reaching. First, we evaluate our method for a simple
environment, where the robot must learn to move its end-
effector along the xy plane to a certain position above a
table. We collect unlabeled interaction data by having the
arm randomly move above the table. For this task, we capture
5000 episodes, which corresponds to approximately 28 hours
of capture.

We train DPN on 4000 samples and use the remaining 1000
samples for validation. Seeing that the inverse and VAE mod-
els are the next best-performing in simulation experiments,
we also train both on this dataset using the same procedures
described earlier. We also use the one-step inverse model
for this experiment with the same reason discussed in the
simulated reaching section.

For the first task, the goal image consists of the arm hover-
ing above a hole at the front-middle of the table. For the second
task, the goal image consists of the arm hovering at the top
left corner of the table. For both tasks, we run reinforcement
learning for approximately 300 episodes, corresponding to
around 3 hours, for each of the DPN, the inverse model,
and VAE metrics. To evaluate performance, we roll out the
learned policy 3 times at the checkpoint that achieved the
highest training reward, according to the learned metric, and
compute the average true distances to goal position at each
final timestep (see Figure 7). As shown in Figure 8, we find
that the policies that use our DPN metric and the inverse metric
performs fairly similarly, while the agent that used the VAE
metric performs considerably worse.

Across these two tasks, the VAE model may have performed
worse due to slight changes in lighting and camera angle,
as previously discussed. Furthermore, as discussed in the
simulated reaching example, both DPN and the inverse model
likely performed similarly because they both focused on the
parts of the videos that correlate most heavily with the actions,
i.e. the location of the arm.

Robot Pushing. Seeing that DPN and the inverse model
performed similarly on the reaching task, we construct a
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Fig. 8. Results for the real world reaching and pushing tasks. Our approach
is able to learn a metric on real images that enables successful autonomous
RL for both reaching and object pushing, whereas prior methods do not
consistently lead to successful reinforcement learning.

harder object pushing task that requires the two metrics to
pay attention to smaller features in the environment and to
take longer-horizon interactions into account.

For this task, the robot has to maneuver a given object from
an initial position to a goal position on the table. This task is
complicated by a distractor object next to the actual object.
We choose two stuffed animals as our given objects and use
an aluminum hopper to prevent them from falling off the table
during data collection and RL. Data collection occurs in the
same manner as in the reaching experiment. In total, we collect
5000 episodes, taking approximately one day on one robot.

Since our simulated pushing results indicated that the VAE

metric performed poorly, we only compare DPN with the
inverse model for this experiment. Again, we trained an agent
with each of the DPN and inverse metrics for approximately
400 episodes and roll the highest-reward policy out 3 times.
As shown in Figure 8, the agent trained with DPN is able to
successfully push the stuffed animal to the goal position, while
the agent trained with the inverse model is at best only able
to push it to the middle of the table. The two metric curves
shown in Figure 6 give some intuition as to why this is the
case. When we plot the metrics for the policy learned w.r.t.
the DPN metric, we see that both metrics correctly decrease,
although the DPN metric is better at recognizing the similarity
of later images, and is thus smaller. Meanwhile, when we plot
them for the policy learned w.r.t. the inverse model, we see
that the inverse metric incorrectly associates a small latent
distance with the earlier images and thus rewards the RL
agent for doing nothing, making it difficult for the RL agent
to meaningfully move the object. These results seem to match
what we saw in the simulated pushing experiment and suggest
that DPN does better at distinguishing smaller features that are
important for a goal, while the inverse model ignores them and
over-prioritizes arm placement.

VI. DISCUSSION

Summary. In this paper, we presented an approach for unsu-
pervised learning of a control-centric metric space on images
that allows a robot to evaluate its progress towards a specific
goal. Our approach proposes more effective and autonomous
reinforcement learning while only having access to the goal
image by leveraging the learned metric. We then evaluated our
method on simulated and real-world tasks, including reaching,
pushing, and rope manipulation. Our results suggest that the
DPN metric enables RL to perform well on these robotics
tasks while converging faster than state-of-the-art techniques
for unsupervised goal representations.

Limitations and Future Work. While we are able to show
very good performance for an interesting set of robotics tasks,
our method is limited to goal-reaching tasks, which leaves out
a number of other interesting RL tasks. Despite this limitation,
we believe learning a control-centric metric using our approach
may be applicable to a wider range of settings by applying the
cost function towards tracking an entire trajectory rather than
simply a final state. We are excited to take our approach be-
yond the current tasks and consider learning control-theoretic
metrics in this wider range of settings.

Beyond vanilla RL, which we study in this paper, a number
of other methods rely heavily on effective distance metrics
in state space, which have so far limited their application to
non-vision domains due to the lack of suitable metrics. This
includes goal relabeling for multi-goal RL [3, 37], planning
with learned models [28, 33], and automatic curriculum gen-
eration [44]. In future work, we hope to explore the use of
our metric in combination with these methods.
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APPENDIX

In this appendix, we summarize our DPN approach in
Algorithm 1. We also provide additional details about our
implementation details and experimental setup.

A. Architecture and Hyperparameters

For all approaches except the /5 distance in pixel space,
we use a 4-layer convolutional neural networks with 64 5 x 5
filters each layer and spatial soft-argmax [15] after the last
convolution layer to represent the encoder f(-;8enc), Which
encodes images into latent space. For DPN, we represent
the latent dynamics g(x;,a;;fayn) as 2-layer fully-connected
neural networks with 128 hidden units. The inference network
q(z¢|as; @) is modeled as a 2-layer fully-connected neural
network with hidden units 16 where the last layer has two
heads that output the mean p,(a;) and the standard deviation
og(ay). The action decoder h(ai|z};0,) is also a 2-layer
neural network with 16 hidden units. We use 8 = 0.5 as the
KL constraint value in Lppy. We use n, = 20 as the number
of gradient descent steps that update zj.,, » and the learned
size «;’s are initialized with 0.05. For all experiments, we
train DPN for approximately 12 hours on an NVIDIA Titan X
GPU. For the inverse model, we represent the latent multi-step
inverse model as a recurrent neural network with 128 units.
For VAE, while the architecture of the encoder is the same
across all methods as mentioned above, the decoder consists
of 4 deconvolutional layers with 64 5 x 5 filters except that the
last layer has 3 5 x 5 filters in order to reconstruct the image.
All three approaches are trained with Adam optimizer [25]
with learning rate 0.0005.

B. Simulated Reaching

We collect 3000 videos of the unlabeled interaction by
sampling torques uniformly from [—5,5], where each video
consists of 10 images. Along with each video, we also store
a sequence of torques as actions and robot joint angles. For
training all methods, we use a training set that contains 28500
videos and a validation set that has 1500 videos.

The length of each RL step is 1000 and the maximum path
length is 50.

C. Simulated Rope Manipulation

For collecting 20000 10-frame random videos, we randomly
sample positions of gripper at each time step. We use 19000
videos for training and the remaining 1000 for validation.

We set the maximum path length to be 5 and the length of
one RL step to be 500.

D. Simulated Pushing

At each time step of the random data collection, we ap-
ply a random end-effector velocity sampled uniformly from
[—20,20]. In this way, we collect 3000 videos, where 2850
videos are used for training and 150 are used for validation.

Each RL step consists of 2000 timesteps and the maximum
path length is 100 timesteps. As mentioned in Section V, the
input to the RL policy is the position of the robot hand along

Algorithm 1 Distributional Planning Networks

Require: random dataset {(0p.¢ 4741, @se47) }
Require: KL constraint value 3, outer step size -~y
Initialize @g.n,—1
Define the prior p(z.t4+7) = N(0,1)
while training do
Sample a batch of random data o4, Oy 711, a.eq7
Sample latent actions z¢.¢ 11 ~ q¢ (24447 |A¢:147)
Initialize z;(g) = Z4qT
for i =0,1,...,n, — 1 do
En00d¢ Xt = f(0t§ eenc)» Xt+T+1 = f(OtJrTJrl; Henc)
Set ﬁgl) =X
for 7 =0,1,...,7 do
~ (1 (1) (i)
Xitja1 = g(XtJrj? Zit g Oayn)

end for 4 ‘
Compute E;(:l)an = Er_f (X§2T+1a Xt+T+1)
Update Z;(Zi;") = Z;(z)JrT - aivz;g)JrT‘C;lan
end for '
~ H(np—1)
Compute &s.¢17 = h(2,, {7 5 Oact)
Compute  Lppn = logpg(apitr|or, 0ryr1) +

BDkL(q¢(Ze:t+7|asi+1) || P(Zee4T))
Compute VyLppn and V4 Lppn
Update 6 < 6 — vV Lppn
Update ¢ < ¢ — vV Lppn

end while

Return 6, ¢

with the latent representation of the current image extracted
from the inverse model. We find that the state representation
learned by the inverse model is the most accurate across all
methods, and hence adopt it for training RL policies w.r.t.
all metrics. However, DPN learns the most effective goal
representations that produce the best RL performance as shown
in Fig 4. Such results suggest an interesting point that good
state representations might not necessarily be suitable for goal
representations. DPN optimizes for the distance metric induced
by the goal representation, and thus it might discover the best
goal but probably not the best state representations.

E. Robot Setup

The initial state of the robot is with its arm above the middle
of a table. The arm is constrained to move in a square region
that is approximately 0.16m? in area. In both tasks, we collect
100 x 100 RGB images from a front facing camera alongside
joint information, and use continuous end effector velocities
as actions, which are normalized to be between [—1, 1]. Side
lights are used to enable nighttime data collection.

F. Robot Reaching

During unlabeled interation data collection, each episode
consists of 20 timesteps starting from a fixed initial state. At
each timestep, we uniformly sample an action to apply to the
arm and keep the arm within bounds by applying an inward
end effector velocity at table edges.



We use the learned metrics for reinforcement learning of
two reaching tasks, where the only reward exposed to the
reinforcement learning agent is derived from the latent metric.
Because we have access to the true end effector position, we
use /o distance between the final position and goal position
to evaluate final performance. This distance is not provided to
the robot.

In order to make the first task more challenging, we limit
the policy to normalized actions between -0.1 and 0.1. This
makes it harder for the arm to reach the goal if it initially
chooses an incorrect direction of motion. This task, in turn, is
designed to see how well each metric works at the start of an
episode, where the arm was farther from its goal.

Meanwhile, in the second task, we leave the policy’s actions
unscaled, making it more likely that the arm will violate
bounds and be pushed back inward by the correcting inward
velocity once it comes close to an edge. Therefore, this task
is meant to show how well each metric performs at the later
timesteps of a policy, where the arm is closer to its goal.

The length of each RL step is 20 and the maximum path
length is 20.

G. Robot Pushing

Each episode for random data collection consists of 15
timesteps. In order to vary the initial positions of the objects,
we use a mix of scripted shuffling methods and manual
rearrangement when objects got stuck in a corner, leading to
data collection that is nearly entirely autonomous

For the reinforcement learning task, the arm had to learn
to push the either the red or the tan stuffed animal from the
middle of the table to a point at the front of the table depending
on the goal image (see Fig 8).

The length of each RL step is 20 and the maximum path
length is 20.



