Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

A 2-Approximation Algorithm for
the Online Tethered Coverage Problem

Gokarna Sharma*, Pavan Poudel*, Ayan Duttaf, Vala Zeinali*, Tala Talaei Khoei*, Jong-Hoon Kim*
*Department of Computer Science, Kent State University, Kent, OH 44242, USA
Emails: {sharma@cs.,ppoudell @,vzeinali @ ttalaeik @,jkim@cs. }kent.edu
TSchool of Computing, University of North Florida, Jacksonville, FL. 32224, USA
Email: a.dutta@unf.edu

Abstract—We consider the problem of covering a planar
environment, possibly containing unknown obstacles, using a
robot of square size D x D attached to a fixed point S by a cable
of finite length L. The environment is discretized into 4-connected
grid cells with resolution proportional to the robot size. Starting
at S, the task of the robot is to visit each cell in the environment
that are not occupied by obstacles and return to S with the
cable fully retracted. Our goal is to minimize the total distance
traveled by the robot to fully cover the unknown environment
while avoiding tangling of the cable. In this paper, we present
a novel online algorithm to solve this problem that achieves
2-approximation for the total distance traveled by the robot
compared to the minimum distance that needs to be traveled.
Our algorithm significantly improves the 27 /D-approximation
achieved by the best previously known online algorithm designed
for this problem. The approximation bound is also validated using
rigorous simulated experiments.

I. INTRODUCTION

Coverage path planning which requires a robot (or a team
of robots) to completely cover a given area is a well-studied
problem in robotics. It has many practical applications, such
as autonomous sweeping, vacuum cleaning, and lawn mowing
among others [7]. The goal is to plan path(s) so that the
robot(s) can visit every point in the area. This problem has
been studied heavily in the literature for a battery operated
(i.e., cordless) robot assuming that the battery has an unlimited
energy budget for moving long distances [2, 3, 6, 10, 16].
Therefore, given a robot, a single path can be planned to cover
the given environment (possibly containing obstacles as well).
Recently, this problem has been studied considering limited
energy budget battery operated robots [17, 18].

However, there are applications which pose greater energy
demands than an on-board battery can provide [5]. For exam-
ple, an autonomous robot for urban street cleaning may require
high power and can only be provided by AC power outlets
[15]. In such situations, energy is provided to the robot using
a cable connected to the power outlet and it is called a fethered
or corded robot. Moreover, tethered-robot-based navigation
is necessary in environments where information can only be
transmitted via a communication cable, such as underground
mines and electrostatic mine-fields [1, 15].

The planning of the path(s) to cover a given environment
using a tethered robot is called the tethered coverage problem
(denoted as the TC problem). The TC problem can be formally
defined as follows: Given a robot of size D x D connected to a

fixed base point .S (or outlet) by a cable of finite length L, the
robot visits each point of the environment avoiding tangling
the cable around obstacles present in the area [15]. TC is
different from the untethered (or cordless) coverage problem
(where there is no such cable attached to the robot; robot has
an on-board battery). However, TC is a significantly complex
problem since in addition to bypassing obstacles, the robot
must avoid tangling and tearing its cable from its base point.

The offline version of TC (denoted as OFFLINETC) as-
sumes that the robot has the knowledge of the environment
including obstacles (such as knowledge on locations, shape
and size etc.) a priori. Shnaps and Rimon [15] presented an
algorithm for OFFLINETC. The online version of TC (denoted
as ONLINETC) assumes that the robot has no knowledge of the
environment and the obstacles a priori. Shnaps and Rimon [15]
presented an algorithm for ONLINETC which obtains 2L/D-
approximation. The approximation is obtained comparing the
length of the path(s) by the robot using the designed algorithm
to the minimum length of the path(s) that need to be traversed
by the robot (Definition 3).

Contributions. Similar to the model proposed by Shnaps and
Rimon [15], we consider the online tethered path planning
problem ONLINETC with a robot of size D x D being
connected to a fixed base point S by a cable of finite length
L. The cable is assumed to be a flexible non-stretchable
cord, that can move freely within the obstacle-free portion
of the environment. Following [15], the cable is assumed to
be released by a spring loaded recoiling mechanism mounted
on the robot (more on Section III), which keeps the cable
taut at all times. The environment is discretized into cells (a
discrete 4-connected grid) with size same to the robot size
D x D. The robot has sufficient on-board memory to store
information necessary to facilitate coverage process. The goal
is to find a set of paths II = {m,...,m,}, p > 1, for the
robot so that

o Condition (a): Each path m; (a sequence of cells) starts
and ends at S,

o Condition (b): At the end of each path m;, the cable is
fully retracted, and

¢ Condition (c¢): The paths in II collectively cover the
environment P, i.e., U'_m; = P.

We will show that any algorithm satisfying simultaneously

conditions (a)—(c) correctly solves ONLINETC. However, in
this paper, we are interested in finding a set of paths II that
optimize the following performance metric:

o Performance metric: The fotal length of the paths in 11,

>P_, |mil, is minimized.

We establish the following main theorem.

Theorem 1 (Main Result): There is an algorithm that
correctly solves ONLINETC and guarantees 2(1 — %)-
approximation to the total length of the paths traversed by the
robot compared to that of the minimum path length for the
coverage; N is the total number of obstacle-free, accessible
cells in P from S and D is the robot size.

The approximation achieved in Theorem 1 is a signifi-
cant improvement compared to the 2L/D-approximation for
ONLINETC obtained by Shnaps and Rimon [15]. Our result
also shows that the lower bound of 2log(L/D)-approximation
given by Shnaps and Rimon [15] for risk-parameterized
tethered coverage problem does not apply to ONLINETC.
Furthermore, we show that there are instances of ONLINETC
for which no algorithm achieves better than 2(1 — %)-
approximation for the total length of the paths traversed
(compared to the minimum length). This implies that our
algorithm is optimal for ONLINETC, in the worst-case. We
have illustrated such an instance while proving the lower
bound.

Our result is obtained using three techniques: (i) discretiza-
tion of the environment, (ii) tree map construction, and (ii) a
modified Depth First Search (DFS) traversal on the constructed
tree keeping track of all new frontiers (cells) that are yet-to-
be-visited by the robot. Each of these techniques is performed
on-the-fly by the robot. The DFS traversal is constrained so
that it respects the length L of the cable, meaning that it never
reaches to a cell for which the distance from the fixed base
point S is more than L. The new frontiers are visited by the
DEFS traversal through usual forward and backtrack phases. We
prove that when the new frontiers list becomes empty, then
all the accessible cells in the environment are visited, which
provides the complete coverage guarantee. We analyze the cost
(length of the path) provided by our algorithm to show that
it achieves the approximation of factor 2(1 — 3;). Extensive
simulation results show that our proposed algorithm is fast,
complete, and never tangles the cable.

II. BACKGROUND

The earliest work on tethered navigation considered multiple
robots attached by cables to different base points [9]. The
objective was to make sure that each robot has its unique
target and all the robots reach them simultaneously. Recently,
a geometric approach is presented to search for the shortest
tethered path along the configuration space for a mobile robot
[12]. Tethered navigation with self-crossing of cable has been
considered in [4, 19]. However, all these papers [4, 9, 12,
19] dealt with the offline path planning problem where the
environment is known a priori and pre-processing can be done
to optimize the paths of the robots. Our work in this paper
handles the exploration issue in an unknown environment.

The efficiency of an online algorithm can be computed by its
approximation [8, 11], which is (in the context of this paper)
the upper bound on the ratio of the length of the path(s) by
the candidate online algorithm to the minimum possible length
of the path(s) to cover all the accessible cells in any environ-
ment. Shnaps and Rimon [15] recently presented a 2L/D-
approximation algorithm to solve the ONLINETC problem.
They also provided a 2log(L/D)-approximation lower bound
for the risk-parameterized online tethered coverage. In this
paper, we significantly improve the approximation provided
in [15] to 2. We have also found that the lower bound of
[15] does not apply to ONLINETC. This is notable since our
approximation is independent of L, whereas the approximation
in [15] increases linearly with L.

A closely related problem to TC is the untethered coverage
problem. Icking et al. [11] and Gabriely and Rimon [6] studied
this problem with no energy constraints, so that the robot can
travel arbitrarily long distances without needing to recharge the
battery. They established both lower and upper approximation
ratio bounds. Recently, an energy-constrained version of the
untethered coverage problem is studied in [14, 16, 17, 18].
Wei and Isler [17, 18] studied the offline version and Shnaps
and Rimon [16] studied the online version with provable
guarantees. On the other hand, Sharma et al. [14] has provided
an optimal solution for this problem.

III. PROBLEM MODEL AND PRELIMINARIES

We use the same model as in the previous work of Shnaps
and Rimon [15]. We consider a robot r initially positioned
at a fixed base point S. The base point S is assumed to
be inside a planar polygonal area P. P may contain static
planar polygonal obstacles. Following [15], the obstacles are
assumed to be fixed in the sense that even when the cable
is tangled around them, the force of the cable cannot move
them from their positions. See Fig. 1 for an illustration of an
example environment with different numbers of rectangular
obstacles (O;). P is discretized into square grids, meaning that
the discritization structures the environment into a discrete 4-
connected grid. The robot r has size D x D so that it fits
within a grid-cell in P. The robot can move to any of the four
neighbor cells of the cell that it is currently positioned. It has
a cable of length L (that is attached to the base point .S) once
fully expanded; initially the cable is fully retracted and hence
r can be at S. Similar to [15], the cable is assumed to have
a recoiling mechanism which keeps it taut at all times. With
cable length of L, the distance r can travel is at most L units
far from S, ie., r can visit |[L/D] cells in P of increasing
distance from S. Robot r is equipped with a compass (for
the global coordinate system), a position sensor (e.g., GPS),
and an obstacle-detection sensor (e.g., laser rangefinder). We
presume that it can identify obstacles in any of its neighboring
cells using the laser rangefinder. Moreover, we assume that
initially r does not have any knowledge about P, i.e., P is an
unknown environment for r.

We have the following observation on the size of P. This
is for the feasibility of covering all cells in P.

[rT— Banksm
g “Traversal Fath
@‘__-\—. = i rT 1 0 -m.lu .Aliuuming |® 0,
., J / — |
N + [I N
- — { | i
N '\J‘ 0 | X Tl 0.
o, e h /
v i N /
cable | £ i |
E o, | 0, |
......... i | s

Fig. 1: An illustration of cable’s stretching and recoiling
mechanisms and tangling (crossing) of the cable.

Observation 1: If a cell of P is located such that its
distance from the fixed base point S is > |L/D] - D, then r
cannot fully cover P.

Since the cable length is L when fully expanded, for any
cell at distance = from S, it needs to expand the cable by at
most length x - D to reach there from .S. What Observation
1 intuitively means is that any cell of P cannot be farther
than |L/D| cells away from S measured in L; distance (or
Manhattan distance); otherwise some cells in P will be left
unexplored by r since it cannot reach those cells. Therefore,
the environment boundary is at most of radius |L/D |- D with
its center at S. The list of cells that r visits starting from S
constitute a path.

Notice that if there are some obstacles within P located
in such a way that they divide P into two sub-polygons P;
and P, with P; and P> sharing no common boundary, then r
cannot fully cover P. Therefore, we assume that there is no
such cell ¢ in P. That means, there is (at least) a path from
S to any obstacle-free cell of P.

Observation 2: If there is at least a path connecting S with
any cell ¢ in P, then c has at least one neighboring cell that
is not occupied by any obstacle.

We call a cell free if it is not occupied by an obstacle. We call
a cell reachable if it satisfies the definition below.

Definition 1 (Reachable Cell): Any cell ¢ in P is called
reachable (or accessible) by the robot r, if and only if (a)
it is a free cell, (b) it is within distance |L/D] - D from
S (Observation 1), and (c) there must be at least a path of
consecutive free cells from S to ¢ (Observation 2).

The online tethered coverage problem ONLINETC can now
be formally defined as follows.

Definition 2 (ONLINETC): Given an unknown polygonal
environment P possibly containing unknown obstacles and a
robot 7 having a cable of length L attached to a fixed base
point S inside P, ONLINETC is for r to visit all the reachable
cells in P through a set of paths II such that

o Conditions (a)—(c) are satisfied, and
o The performance metric is minimized.

Difficulties of the TC Problem. One difficulty is the finding
the best position to mount the cable’s recoiling mechanism.
Shnaps and Rimon [15] argued that it would be better to mount
it on the robot itself since friction aids in keeping the cable
taut between successive contact points back to the base point.
Moreover, the cable forms a single continuous curve from S
to the robot’s current position, and may not be stepped over by
the robot. Additionally, TC must satisfy several constraints not
typically encountered in untethered (cordless) coverage. First,

the cable forms a dynamic obstacle that must be avoided by
the robot. Second, the robot has to avoid crossing it, especially
when circumnavigating an obstacle (Fig. 1). When a tethered
robot happens to circumnavigate an obstacle, it must unwind
the cable by retracing its path in order to complete coverage
and eventually return to S. Third, the robot’s accessible
area is restricted by the cable length. To achieve maximum
coverage, the robot may have to reach peripheral points in the
environment by using the shortest path from .S (Fig. 1). Hence,
in addition to its current position, the robot must consider the
entire path traveled from .S to that location.

Approximation. As mentioned earlier, we measure the quality
of the online algorithm by its approximation ratio with the
minimum cost possible for any algorithm. For N accessible
cells, the minimum cost is /V-D. Following Shnaps and Rimon
[15], we compare the algorithm’s cost with N - D to obtain
the approximation. There may be no algorithm that obtains
cost N - D even with complete knowledge of P. Therefore,
we also compare our algorithm’s performance (in terms of
approximation, path length, and run time) against the best
offline algorithm, denoted as OFFLINEALG; essentially the
algorithm of Shnaps and Rimon [15] for OFFLINETC.

Definition 3 (Approximation): An algorithm solving TC,
Prc, is a k-approximation algorithm, if the cost of solving
any instance p of Prco does not exceed k times the minimum
cost of solving p knowing p a priori.

IV. BASIC RESULTS

We discuss two basic results below that lead to our proposed
algorithm for ONLINETC.

Decomposition of the Environment. Following [16, 17, 18],
we decompose the environment P into square cells of size
D x D, which is the size of the robot itself. Similar to [16,
17, 18], we assume that the obstacles are such that they do
not partially occupy any cell in P, i.e., for a cell, an obstacle
either occupies it completely or does not occupy it at all.

An equi-distance contour is a poly-line where the cells on
it has the same distance to/from the base point S (the left of
Fig. 2). The cells on a contour can be ordered from one side
to the other (7 is assumed to have the knowledge of the global
coordinate system using the on-board compass). We use the
left to right order. We can also order the contours based on
their distance to S in a strictly-increasing fashion.

Let ¢ be a cell and C be contour. Let d(c) denote the
distance to S from ¢ and let d(C') denote the distance to S
from C. If d(C;) = d(C;) + 1, we say that contour C; is
contour C;’s next contour. The contour C' with d(C) =1 is
called the first contour; the first contour has at most 4 cells
that are neighbors of S.

Tree Map of the Environment. Initially, the robot r is placed
at the fixed base point S. In this case, the tree, denoted by
Tp, has only one node S, which we call the root of Tp.
If there is no obstacle in P, each cell except the boundary
cells of P will have exactly four neighbor cells. Since r
has the global coordinate system, each of the (at most) four

SN u\ 13 @@}-@?‘ ':[3
‘g\\m\ N, \"12_ \/E}:' QP'@- @
EUE N ®©@dodl
. P B Y o L T
T 0000900
o E il T
3 \i\‘& e @GO)
-1 | 3 A \\\; 0, ;L‘E\ I.Z){git_l)“fs \fgal
S I | 1 - i Yy
VIO 000 @
bt 0deeee®

Fig. 2: An example tree map T’p on the right constructed for
the environment P on the left. It is guaranteed in Tp that the
cells at any contour C; are at depth d in Tp.

neighboring cells can be consistently labeled West, North,
East, and South in the clockwise order starting from cell
in the West of r. Note that this ordering does not affect
the algorithm as long as the ordering used in each cell is
consistent. That is, West in each cell should point the same
direction throughout the environment. This ordering helps us
in the DFS traversal process in the algorithm; otherwise we
cannot provide guarantee on the algorithm that all reachable
cells in the environment are covered by the algorithm.

Robot 7 picks the first free cell ¢; according to this order
and includes it in T'p as a child of S. If the cell labeled West
is a reachable cell, then r picks that cell. Otherwise, it goes in
order of North, East, and South until it finds the first cell that
is reachable. Recall that there is at least one neighbor cell from
any cell that is not occupied by any obstacle (Observation 2).
We now have two nodes in Tp = {S, ¢}, with ¢; as a child
node of S. Furthermore, ¢; is a cell in the first contour C.

Since r is building Tp while exploring P, it will move to
c; after it is included as a child in T'’». The robot r then again
repeats the process of building T» from its current cell c;.
While at ¢q, r is only allowed to add one of the neighboring
cells of ¢ that are in the second contour Cs (i.e., d(C2) = 2)
as a child of c;. For this, » will include a neighboring cell cy
of ¢y in Tp only if ¢y is a cell in contour C5. Furthermore,
if some cell is already a part of T’p, then this cell will not
be included in Tp again. This process will then continue. The
right of Fig. 2 provides an illustration of the tree map 7Tp
developed for the environment P shown on the left.

Essentially, any edge of T'» connects two cells ¢;, ¢; 1 of P
such that ¢; € C; and ¢;41 € Ciyq, for 0 < i < |L/D] —1;
In Fig. 2, each cell of contour C; on the environment P on
the left are at depth ¢ in Tp shown on the right. Therefore,
using this approach, all the cells in the first contour C will
be children of S (the root of Tp), all the cells in the second
contour Cy will be children of the nodes of Tp that are cells
in the first contour C1, and so on. Let Tp fina be the tree
map of the environment P after all the reachable cells of P
are included in Tp. Let Depth(Tp, finar) denote the depth of
the tree Tp finar; the root S has depth 0, the child node of S
has depth 1, and so on. Let IV, be the nodes of Tp such that
the distance from S to each node in N, is x.

Lemma 1: In tree Tp finai, €ach cell ¢ € Cy is positioned
at depth x. Furthermore, any non-leaf node of Tp fina has at
least one and at most four children nodes.

Proof: Follows easily from construction of Tp since the
cells at contour C', become the children of the cells of contour
Cpsuch that p=x — 1, for 1 <x < |L/D|. []

Lemma 2: For complete coverage, the corresponding tree
map (Tp,finq:) of any unknown polygonal environment P,
will have Depth(Tp fina) < |L/D].

Proof: This lemma follows combining the results of
Observation 2 and Lemma 1. []

A 2(1 — 1/N)-Approximation — |
Lower Bound. Suppose the =
robot 7 has the cable of fixed

length L. Let P be a planar

environment of size L/2 x L/2. = 0,

Let the robot be of size D x D
and L > D. Let the environment
P is such that a single square |
obstacle of size (L/2) — 2D x =
(L/2) —2D is pOSitiODed inside Fig. 3: The lower bound
P leaving only the corridor of construction.

width D around the boundary of

P (see Fig. 3). According to this construction, there will be
exactly N = (4L/2D) — 4 cells of size D x D available
for the robot r to cover. Let the base point for the robot r
be the bottom left corner cell of P. The approximation is
obtained comparing the cost of the best possible algorithm
with minimum cost N - D (Definition 3).

Theorem 2 (Lower Bound): For the construction above,
any algorithm for ONLINETC has 2(1 — 1/N)-approximation
to fully cover P.

Proof: Following Fig. 3, the cost is at least 2(N — 1)D.
Therefore, there exists a lower bound of 2(N—1)D/(N-D)
2(1 — 1/N)-approximation to cover N cells in P.

2
[

V. ALGORITHM

We now present an algorithm that achieves a 2(1 — 1/N)-
approximation (analysis is in Section VI) for ONLINETC in
an unknown planar environment P. The pseudocode is given
in Algorithm 1.

A. Overview of the Algorithm

The main idea is to incrementally explore the environment
P while simultaneously constructing a tree map 7p to keep
track of the new frontiers that still need to be covered. Initially,
r is placed at the fixed base point S with the cable fully
retracted. Robot 7 then proceeds to cover P by using Depth
First Search (DFS) traversal [13]. Robot r starts its DFS
traversal from S and visits the leftmost cells of each contour
with increasing depth until it reaches contour at depth |L/D |
from S, i.e., in contour CLL/DJ . In some cases, r does not need
to reach contour C’LL /D]s for example, when the obstacles
are such that there is no free cell beyond some contour
CD/,D/ < I_L/DJ

Consider the situation of r after reaching to a cell in a
contour C'p~. If 7 cannot continue visiting a cell in the next
contour C'pryq, it will backtrack to visit the new frontiers
(not-yet-visited) of C; to Cpr_;. The process of visiting

the leftmost previously unvisited cell in each contour of
increasing distance is called the forward phase and the process
of retreating back from a cell from which no forward phase
is possible, is called the backtrack phase. The forward and
backtrack phases are executed by r alternatively until all the
cells in P are visited. Initially (before the algorithm starts),
every cell of P is unvisited. The tree construction 7p helps to
keep track of whether there are cells that still need to be visited
by r and also to control the total distance traveled for visiting
all the reachable cells in P. Without this, the DFS traversal
cannot provide both coverage and approximation guarantees.
While covering the cells using DFS traversal, the robot r
keeps track of its current distance Dy, from S. D, is depth
of the cell in T’ where r is currently positioned. This distance
helps in backtracking while the tree depth reaches |L/D].

Algorithm 1: ONLINETCALG

1 Robot: Initially at the base point S and knows L and D.
2 Environment: Planar area with radius L with center S possibly
containing obstacles; obstacle positions and numbers not known.
3 Sensors: Compass, position sensor, and obstacle-detection
sensors capable of locating current position and detecting
obstacles in the cells adjacent to the robot’s current cell.
Data structures: Tree map Tp and new frontier stack F'.
Initialize: Tp = {S}, F' = {S}, distance (depth) Dcyr = 0.
while F #£ ()
C, <+ contour of cell z (depth of = from S in Tp);
p < top element in F7
remove p from F’;
10 pi +— the leftmost neighboring cell of p among at most 4
neighboring cells of p not occupied by any obstacle;
1 insert the second, third, and fourth neighboring cells (if
any, in the order North, East and South) of p in F’;
12 p1 0
13 if p; # () then

14 if d(Cp,) > Dcur then p1 « py;

15 else if there is an obstacle in the neighboring cell of p;
in the direction of the base point S or Cp, > C) then

16 d(Cp,) < Deur + 1; p1 < p1:

17 if p1 # 0 then

18 move to p1 from p;

19 insert p1 in T’p making p; a child node of p;

20 Deur < Deur + 15

21 if p1 # 0 and p; has unvisited neighboring cells in F and
Dcur < LL/DJ then

22 pick the leftmost unvisited cell and continue the DFS
traversal;

23 else

24 backtrack towards S following the path in T’p to reach

to the first node (or cell) which has unvisited
neighboring cells in F' and for each backtrack
traversal of an edge in T'p, set Deyy < Deur — 13

B. Detailed Description of the Algorithm.

We now describe Algorithm 1 in detail. We call our algo-
rithm ONLINETCALG. It uses two data structures: (1) The
tree map Tp of the known part of the unknown environment
P and (2) A new frontier stack F'. The tree map Tp at any
time holds the cells already covered by ONLINETCALG as
well as their reachable unvisited neighbors. The new frontier

stack I' consists of the unvisited reachable cells in T’p (that
are neighbors of the cells already in 7p). F' also holds the
distance value D, < |L/D|, which is the depth of the cells
in TP.

The new frontier list F' is a stack of cells. Since F' is a
stack, the cells with higher distance from S in Tp are on the
top of the stack and will be popped first. Robot r visits a cell
¢; when d(C¢,) > Dey, in Tp.

When the DFS traversal cannot go further in its forward
phase, that means either it reached a cell at distance |L/D|-D
or there is no next cell to visit (the cell at next contour is
occupied by an obstacle). In this case, r backtracks to reach
to the first node that has unvisited neighbor cells in stack F'.
The traversal finishes when ' = (). If there are N reachable
cells in P, then we will show that when F' = () then r has
already visited all IV cells and hence, ONLINETC is achieved.

Execution Examples of ONLINETCALG. Fig. 4 illustrates
how ONLINETCALG covers P. We have two scenarios with
obstacles 01, O, in left one and a single obstacle O3 in
the right one. The robot r starts the DFS traversal from S.
The paths colored blue denote the forward traversal phase
of ONLINETCALG and the paths colored red denote the
backtrack traversal phase in both scenarios.

In the left of Fig. 4, r performs the forward phase of DFS
traversal in the increasing order of shortest L; distance from
S to each of the cell (which is essentially the contour number
of the cell) in the tree map 7T». The contour numbers of the
cells behind the obstacles O, and O3 w.r.t. S are in increasing
order going from one end to the other end of each obstacle
and hence the robot r can follow the same increasing order
path during the traversal.

(28 | (28} | f.8 (58 | (@38}
413

5 7

@7 3n | @n mE | Ea
“ 5 [T &

(28 (a8
0 L

)
9 10

: __I u'.e,l. .6

(1.8)| |28 | (36} | (45
3 4 5

e

Fig. 5: The DFS traversal and the corresponding tree map.

In the right of Fig. 4, the contour numbers of the cells

8] s e R e e e ral G RN
2 o e s v . i e .
/ T il \l i T

0 R A SRR

7 NN N N N Y LN R L S

_3/1 B Tl = 2\5 (| a 10

F4r Sk Sk s ™ 2| AR i 10 11

Ea\al PN S N0y

£ |E|_.1] s B kE/l 33 11 12

s vl el L

Y'. T 2/1 | B Fd a k- ¢ '2 A 12 13

RAr AP AV irdr SN O 5 e

Fig. 6: An illustration of changes on contour numbers

behind the obstacle w.r.t. S are first decreasing and then in
increasing order after crossing the horizontal line through S
when traversing alongside the obstacle from top or bottom.
This is because, in the left of Fig. 4, the horizontal and vertical
lines passing through S do not cross any obstacle and in the
right of Fig. 4 the horizontal line passing through S crosses
the obstacle Os.

Note that robot 7 cannot perform the forward phase of DFS
traversal in decreasing order of contour numbers. Algorithm 1
handles this problem by updating the contour numbers of each
cell behind the obstacle w.r.t. S in increasing order on-the-fly
(line 15). We discuss this approach below in Section V-C.
Robot 7 then performs the DFS traversal. This traversal is
depicted in more details in the left of Fig. 5. The corresponding
tree map built on-the-fly is shown in the right of Fig. 5.

In Figs. 4 and 5, the paths depict the robot moving in North,
East, and South directions. The robot moving North happens
when from its current cell, there is no cell on the West of it
to visit but there is a reachable cell on North of it. The robot
moving East happens when from the current cell, no cell to
move to West and then North is possible. Similarly, the robot
moving South happens when there is no cell to move to West,
North, or East is possible from the current cell.

C. A Corner Case and Its Solution

Consider the situation of obstacle position and fixed base
point position as depicted in the right of Fig. 4. What is
happening here is the horizontal line passing through S is
crossing obstacle Os. This kind of scenario is the most difficult
to handle in our algorithm. This is because providing the
contour numbers to the cells in the right of O3 based on their
distances from S creates the problem that » may not visit those
cells using Algorithm 1. This is because the contour numbers
for those cells are smaller than the contour number of the cells
on North, South, and West of the obstacle. For example, see
the left of Fig. 6. Algorithm 1 requires the robot to visit the
cells in an increasing order of contour numbers. Therefore,
without careful update of the contour numbers of the affected
cells, some portion of the environment might remain unvisited.

We solve this problem in Algorithm 1 using an approach
where the robot r detects this problem and changes the contour
numbers of those cells on-the-fly. See for example the right
of Fig. 6 that depicts how the contour numbers for the cells
on the right of O; in the left of Fig. 6 are updated on-the-fly
by the robot.

The approach of changing the contour numbers for a cell ¢;
is as follows. Let the robot r be currently at cell ¢; with depth

D;. Let c¢; be the neighboring cell of ¢; with depth D;_;.
Let L; be a line connecting c¢; with .S. The robot r checks if
L; crosses an obstacle. If this is true, r checks whether the
neighboring cell of ¢; on line L; is occupied by an obstacle.
If this is also true, then r updates the contour number of c¢;
to D; + 1. See for example the left of Fig. 6. Suppose r is
currently at the middle cell in contour Cs. Consider cell 7
just below 8. If we draw L7 connecting S with 7, then it
crosses obstacle O;. From the current cell of r, it can sense
that neighboring cell of 7 on L7 is occupied by O;. In this
case, r changes the contour number of cell 7 to 9 (which is r’s
contour number 8 plus 1). This then affects all the cells on the
right of 7 as well and they will also be updated accordingly.
For example, the contour number 8 on South of contour 9
(and East of newly updated cell 9) becomes 10. The complete
depiction of the changes is given in the right of Fig. 6.

This case may appear when a vertical line and/or horizontal
line passing through S crosses an obstacle (or separate obsta-
cles) and there is a path for a robot to reach the cells behind
the obstacle by circumnavigating the obstacle. In this case,
the contour numbers of the cells behind the obstacle w.r.t. S
are in decreasing order going from one end to the other. The
robot then uses our approach discussed above and fixes the
contour numbers on-the-fly so that all reachable cells beyond
the obstacle(s) are covered.

VI. ANALYSIS OF THE ALGORITHM

A. Complete Coverage Guarantee of ONLINETCALG

The goal here is to show that using ONLINETCALG, the
robot r that is initially at the fixed base point S with the
cable fully retracted covers all reachable grid cells of the
environment P and returns to S with cable fully retracted.

Lemma 3 (No Tangling): The robot r never crosses (or
tangles) its cable during the execution of ONLINETCALG.

Proof: The full proof is omitted due to space constraints.
However, it is quite evident that using the tree map 7’p (which
guarantees no cycle) and DFS traversal on T’ with the depth
constraint of |[L/D], the robot never runs into a situation
where the cable is tangled. []

Lemma 4 (Coverage Guarantee): Using algorithm ON-
LINETCALG, the robot r completely covers the environment.

Proof: Let us assume that ONLINETCALG does not
provide full coverage of the unknown environment P and thus,
stops before some reachable cells of P still to be inserted into
Tp. Let ¢y be the cell of contour C, such that C, is the
smallest contour among all other cells of P that are reachable
but uncovered by r. Since a path of length at most L exists
from S to ¢1, « < |L/D] (depth in Tp). Let ¢y be the cell
adjacent to ¢; along the tree path from c¢; back to S. Since
d(C.,) < d(C,,) and c¢; holds the minimal C. value among
all reachable uncovered cells, co must be a covered cell in P.
ONLINETCALG inserts every reachable neighbor (at most 4)
of the current cell in the list of new frontiers yet to be visited
(line 11, Algorithm 1) Therefore c¢; must have been inserted
into F' when the robot explored co and eventually covered

by ONLINETCALG. Therefore, ONLINETCALG covers every
cell reachable from S by a cable of length L.]

B. Approximation of the Algorithm

We establish in this section an upper bound on the path
length generated by ONLINETCALG to cover all the cells
of P reachable from S. We use the notion of approximation
given in Definition 3 for this purpose. We assume that the
robot 7 travels with uniform velocity. Finally, we measure
ONLINETCALG’s total path length (denoted as ALG) relative
to the minimum path length (denoted as MIN). We first
establish a lower bound on MIN in any planar polygonal
environment P. Denote by N the total number (D x D) of
cells in P that are reachable by a cable of length L from S.

Lemma 5 (Minimum Cost): For any planar polygonal en-
vironment P consisting of [NV cells reachable by a cable of
length L from a fixed base point S, MIN > N - D.

Proof: The purpose in TC is to cover all reachable cells,
For N cells reachable by a cable of length L from .S, any
shortest path for the robot r to visit those N cells must have
length N times the distance D the robot r needs to traverse
to transition from one cell to one of the four cells adjacent to
it. Hence, MIN > N - D. [|

We now prove the upper bound on ALG for ONLINET-
CALG. We start with the following lemma.

Lemma 6: Using Algorithm ONLINETCALG, the robot r
traverses any single edge of T'p ¢4 at most 2 times.

Proof: Let e;o € T'p be an edge that connects a parent
(v1) and a child (v2) node in Tp. The edge ey, is traversed by
the robot first time when it is in the forward phase and then
again when it is in the backtrack phase. We show here that
if e15 is already visited for the second time in the backtrack
phase, it will then never be visited again during the whole
execution of the algorithm. Let T'7? be a sub-tree of Tp with
the root node vy. We can say that the edge e; is the only edge
that connects 7'5* with the rest of the tree Tp\T'2*. Therefore,
once r backtracks to vy from wvo, it will never visit T;éz again
and hence the edge ejo will never be used. [|

Lemma 7 (Cost Upper Bound): For any planar polygonal
environment P consisting of N cells (of size D x D) reachable
by a cable of length L from a fixed base point .S, Algorithm
ONLINETCALG has cost ALG < 2(N —1)-D.

Proof: We know that any tree with N nodes has exactly
(N —1) edges and Tp, finq that is constructed by ONLINET-
CALG while under coverage is clearly a tree. Moreover, we
have from Lemma 6 that each edge of Tp finq: is traversed
by the robot r at most 2 times during the execution of
ONLINETCALG. Since the edges of Tp, final denote a
transition from one cell to one of its four adjacent cell, the
length the robot r needs to move while traversing an edge of
Tp, rinai is D. Hence, combining all these results, we have
ALG <2(N —1)-D.]
Proof of Theorem 1: Combining the results of Lemmas 5
and 7, we have that ALG/MIN <2(N—-1)D/ND < 2(1—
1/N).

& ONLINETCALG % MIN # OFFLINEALG B Shhaps and Rimon [14]
10% =

107 =
108
10°

104

Path Length (log scale)

103
0

133" o ‘FLQ A0

o o e
g ‘\QQ‘t qpqﬁ' quﬂ bggi

Environment Size

Fig. 7: Log scale comparison of path lengths obtained by ON-
LINETCALG, OFFLINEALG, MIN, and the approximation
bound of [15].

VII. EVALUATION

In this section, we present the results obtained by per-
forming simulation experiments with our algorithm using
Python.The simulation is performed on an Intel Core 17-7700K
processor and 32 GB RAM. We have varied the size of the
environment P from 20 x 20 cells to 400 x 400 cells, as well
as position of base point S within P, and shapes, sizes and
positions of the obstacles unknown to . We have used a robot
of size 2x2 (i.e., D = 2). The length L of the cable is set
to 2D times the side of the environment.We have considered
5 different environment configurations of varying sizes. We
classify these configurations below (shown in Fig. 9):

@ ONLINETCALG & OFFLINEALG
2 — = - P & &
— - - » - L
s
£
%|1.5
o
o
[=%
<
! o b 3 = 2 : 2 ;)
o L A0 a® N b
v By ,\QQ* ,LQD* ,5@01‘ hQQ*

Environment Size
Fig. 8: Approximations for ONLINETCALG and OF-

FLINEALG compared to the minimum path length MIN.

« (conf 1) There is no obstacle in P and the base point S
is located at a random cell in P.

e (conf 2) S is located in a boundary cell of P, a large
obstacle is placed inside P leaving the corridor of width
D,2D,3D,4D etc. around the boundary of P.

e (conf 3) S is located at the center of P, four obsta-
cles are placed inside P leaving only the corridor of
width D,2D,3D,4D etc. between the obstacles and P’s
boundary.

o (conf 4) Concave obstacles are placed within P.

e (conf 5) Concave obstacles are placed in such a way
that either a horizontal or vertical line passing through S
crosses at least one obstacle.

Each test case is run 10 times and the average result is

presented here. First we show the path lengths incurred by

e
=5

L J R

T

0 2 4 B B 10 12 14 16 18 X0 g 2 4 €
conf 1

B 10 12 14 16 18 20 2 4 6
conf 2

£ 10 12 14
conf 3

16 18 20 0 2 4 & B 10 12 14 16 18 W0 2 4 &

conf 4

g 10 12 14 16 128 20
conf 5

Fig. 9: An illustration of five different configurations (conf 1 to conf 5) and actual paths followed by r using ONLINETCALG.

In this illustration, environment size is set to 20 x 20.

different algorithms including our proposed ONLINETCALG
(Fig. 7). MIN = N - D is the minimum possible cost
for covering N cells with D being the cell size. We also
compare the path lengths obtained by ONLINETCALG against
an optimal offline algorithm similar to [15]. The plots in
Fig. 7 show that our proposed ONLINETCALG performs
comparably with the OFFLINEALG. However, as expected,
both of their path costs are higher than MIN. On the other
hand, ONLINETCALG achieves significantly lower path costs
compared to the 2L/ D-approximation provided in [15].

The plots in Fig. 8 validate the theoretical worst-case
approximation provided by ONLINETCALG. We can observe
that the approximation of ONLINETCALG is always < 2.
On the other hand, even with a priori knowledge about the
environment, the OFFLINEALG does not guarantee the optimal
path(s) in all types of environments validating our lower bound
approximation (Section IV).

W OnuUNETCALG B MIN B OFFLINEALG
Environment size (20x20) Environment size (40x40) Environment size (100=100)
250 — (1000 &000
= 200 550 o
- 4000
g‘ 150
x 4) 500
= |ao - - = - s
= - 5 | |zoon
- . I 0 il o NAN i
Q 14 17 3® M 1) 18 31 43 53 1] 8 15 56 &7
Environment size (200x200) Enviranment size (300x300) Environment slze (400x400)
25000 [s0000 = | [roocan
20000 40000
= 75000 .
91 |15000 20000
@ 50000
= lvoooo i . {20000 i = " -
£
E 5000 h Il 10000 L L]
i . oM | 8 - e
L] 2 15 70 75 o 1 14 78 79 4] 1 15 78 &

Obstacle Percentage (%) ——————

Fig. 10: Comparison of path lengths obtained by ONLINET-
CALG, OFFLINEALG, and MIN.

We are interested to find out how the path lengths obtained
by different algorithms change with varying obstacle amount
in the environment. Fig. 10 shows the path lengths obtained by
ONLINETCALG, OFFLINEALG, and MIN. The five sets of
bars in each subplot indicate different environment configura-

Envirorment Size (20 x 20 Enviranrment Size (40 % 40) Ervirenment Size (100% 100)
0.0025 0.02 0.4
i o 0015 0.3 T
=
o |(0.0015
o 001 0.2
|| 000)
E .
" o l | - I I) I
JANRAn HENEA | @
o 14 17 39 51 o B N 43 83 o a8 15 56 67
Environment Size (200 x 200 Environment Size (300x 300) Enviranment Size (400 x 400)
g 50 200
. 40 7
Tl 150
= -
E = 30
EAIE 100
= 20
5
Ellz2 50
= 10
T EEEm |, [W o
0 2 15 70 78 01 14 76 79 I B 1S

Obstacle Percentage (%)

Fig. 11: Execution time of ONLINETCALG for different
environment sizes with varying obstacle percentages.

tions (1—5). The results depict that the path length decreases as
the obstacle percentage increases for each environment size as
with the increasing area occupied by the obstacles, the number
of reachable cells decreases. As r needs to traverse a shorter
path to cover the complete environment with higher obstacle
amount, the run time of ONLINETCALG also decreases.
However, even with no obstacle in the environment, the run
time of ONLINETCALG is always within a reasonable range,
the maximum being 150 seconds for a 400 x 400 environment.

VIII. CONCLUDING REMARKS

We have presented a novel algorithm for ONLINETC and
showed that the cost approximation of our proposed algorithm
is always within a factor of 2 compared to the minimum cost
possible for complete coverage of an unknown environment.
Thus we significantly improve the 2L/ D-approximation of the
best previously known algorithm for solving ONLINETC. The
simulation results show the effectiveness of our algorithm. An
immediate direction of future work would be to investigate
whether we could generalize this result to continuous robot
motion.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]
[13]

[14]

(15]

[16]

(7]

(18]

(19]

REFERENCES

Pablo Abad-Manterola, Issa A. D. Nesnas, and Joel W. Burdick.
Motion planning on steep terrain for the tethered axel rover. In
ICRA, pages 41884195, 2011.

Ercan U. Acar, Howie Choset, and Ji Yeong Lee. Sensor-based
coverage with extended range detectors. /IEEE Transactions on
Robotics, 22:189-198, 2006.

R.A. Baezayates, J.C. Culberson, and G.J.E. Rawlins. Searching
in the plane. Inf. Comput., 106(2):234-252, October 1993. ISSN
0890-5401.

Peter Brass, Ivo Vigan, and Ning Xu. Shortest path planning for
a tethered robot. Comput. Geom. Theory Appl., 48(9):732-742,
October 2015. ISSN 0925-7721.

Hermann Endres, Wendelin Feiten, and Gisbert Lawitzky. Field
test of navigation system: Autonomous cleaning in supermar-
kets. In ICRA, pages 1779-1781. IEEE Computer Society, 1998.
Yoav Gabriely and Elon Rimon. Spanning-tree based coverage
of continuous areas by a mobile robot. Annals of Mathematics
and Artificial Intelligence, 31(1-4):77-98, May 2001. ISSN
1012-2443.

Enric Galceran and Marc Carreras. A survey on coverage path
planning for robotics. Robotics and Autonomous systems, 61
(12):1258-1276, 2013.

Subir Kumar Ghosh and Rolf Klein. Survey: Online algorithms
for searching and exploration in the plane. Comput. Sci. Rev.,
4(4):189-201, November 2010. ISSN 1574-0137.

Susan Hert and Vladimir J. Lumelsky. The ties that bind:
Motion planning for multiple tethered robots. Robotics and
Autonomous Systems, 17(3):187-215, 1996.

Susan Hert, Sanjay Tiwari, and Vladimir Lumelsky. A terrain-
covering algorithm for an auv. Autonomous Robots, 3:91-119,
1996.

Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar
Langetepe. On the competitive complexity of navigation tasks.
In Revised Papers from the International Workshop on Sensor
Based Intelligent Robots, pages 245-258, 2002. ISBN 3-540-
43399-6.

Takeo Igarashi and Mike Stilman. Homotopic path planning on
manifolds for cabled mobile robots, 2010.

Stuart J Russell and Peter Norvig. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,, 2016.
Gokarna Sharma, Ayan Dutta, and Jong-Hoon Kim. Optimal
online coverage path planning with energy constraints. In
AAMAS, 2019.

Iddo Shnaps and Elon Rimon. Online coverage by a tethered
autonomous mobile robot in planar unknown environments.
IEEE Trans. Robotics, 30(4):966-974, 2014.

Iddo Shnaps and Elon Rimon. Online coverage of planar
environments by a battery powered autonomous mobile robot.
IEEE Trans. Automation Science and Engineering, 13(2):425—
436, 2016.

Minghan Wei and Volkan Isler. A log-approximation for
coverage path planning with the energy constraint. In /CAPS,
pages 532-539, 2018.

Minghan Wei and Volkan Isler. Coverage path planning under
the energy constraint. In /CRA, pages 368-373, 2018.

Patrick G. Xavier. Shortest path planning for a tethered robot
or an anchored cable. In ICRA, pages 1011-1017, 1999.

