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Abstract—Our goal is to train a policy for autonomous driving
via imitation learning that is robust enough to drive a real vehicle.
We find that standard behavior cloning is insufficient for handling
complex driving scenarios, even when we leverage a perception
system for preprocessing the input and a controller for executing
the output on the car: 30 million examples are still not enough.
We propose exposing the learner to synthesized data in the form
of perturbations to the expert’s driving, which creates interesting
situations such as collisions and/or going off the road. Rather
than purely imitating all data, we augment the imitation loss with
additional losses that penalize undesirable events and encourage
progress – the perturbations then provide an important signal
for these losses and lead to robustness of the learned model. We
show that the ChauffeurNet model can handle complex situations
in simulation, and present ablation experiments that emphasize
the importance of each of our proposed changes and show that
the model is responding to the appropriate causal factors. Finally,
we demonstrate the model driving a real car at our test facility.

I. INTRODUCTION

Imitation learning is a promising approach for autonomous
driving – not only for learning a policy for the autonomous car
itself, but also for learning policies that mimic human driving
behavior. Having access to such policies is crucial for both
anticipating human behavior onboard, as well as testing the
car’s performance in simulation, prior to deployment. In this
work, we introduce a system that pushes the boundaries of
what imitation learning can achieve in the driving domain, up
to the point that we can trust the learned policy to drive1 a
real vehicle (Fig. 1).

The key challenge in building a robust imitation learning
system for driving has been lingering since the days of
ALVINN (Pomerleau [19]): we need to run the system closed-
loop, which means errors accumulate and induce a shift
from the training distribution. This is a general problem with
imitation learning (Ross et al. [21]), and in other domains it
can be alleviated by actively exposing demonstrators to new
states (Ross et al. [21], Laskey et al. [11]), or by combining
imitation with reinforcement learning (Kuefler et al. [9]).
Unfortunately, the former is not practical in driving, because
we cannot ignore driver commands and drive the car in a
different, possibly unsafe way. The latter requires simulating

†Work done while at Google Brain & Waymo.
1Please see https://sites.google.com/view/learn-to-drive/ for supplemental

videos for this paper.

Fig. 1: ChauffeurNet driving in simulation (top row) and a real
vehicle (bottom row). The cyan path depicts the input route,
green box is the agent, blue dots are the agent’s past positions
and green dots are the predicted future positions which are
used by the controller to drive the agent forward. The top row
shows how ChauffeurNet nudges the agent to drive around a
parked car (yellow box). The bottom row shows ChauffeurNet
driving a real car: braking for the stop-sign (left image) and
generating a trajectory to complete a natural right turn instead
of just following the route (right image).

human behavior: producing such a simulator is one of the main
goals of imitation learning in the first place.

Our goal was therefore to take the demonstrated data as
far as possible, without relying on gathering new labels or
rolling out policies in a simulator. We built our system from
the ground up with this in mind, starting with the choice of
input and output representations. Even though there is a lot of
excitement for end-to-end approaches – which typically focus
on learning to directly predict raw control outputs such as
steering or braking after consuming raw sensor input such as
camera or lidar data – we reduce sample complexity by opting
for a mid-level representation. We use a perception system
that processes raw sensor information and produces our input:
a top-down representation of the environment and intended
route, where objects such as vehicles are drawn as oriented
2D boxes along with a rendering of the road information
and traffic light states. We present this mid-level input to a



recurrent neural network (RNN), named ChauffeurNet, which
then outputs a driving trajectory that is consumed by a
controller which translates it to steering and acceleration.

Despite recent results that point to error accumulation no
longer being an issue with good representations and high
capacity models (Laskey et al. [10]), our first finding was
that not even 30 million examples were sufficient for pure
imitation learning. This is in spite of our mid-level input and
output representations that remove the burden of perception
and control. As an example, we found that this model would
get stuck or collide with another vehicle parked on the side of
a narrow street, when a nudge-and-pass behavior was viable.

The key to our approach for alleviating error accumulation
is to augment our demonstrations by synthesizing perturbations
to the trajectories, thereby exposing the learner to data that is
immediately outside the demonstrations. The mid-level input
representation is crucial for leveraging perturbations: even
though perturbations have been applied at the image level
before (Bojarski et al. [1, 2]) to correct steering errors, they
fail to control acceleration or inform the learner of what to do
near collisions. In contrast, we leverage the mid-level input
and output representations to perturb the actual trajectory, and
augment the imitation loss with auxiliary losses that penalize
collisions, being off-road, etc.

We evaluate our system, as well as the relative importance
of both loss augmentation and data augmentation, first in
simulation. We then show how our final model successfully
drives a car in the real world and is able to negotiate situations
involving other agents, turns, stop signs, and traffic lights.
Finally, it is important to note that there are highly interactive
situations, such as merging, which go beyond the capabilities
of purely offline-collected data. Our system is a stepping stone
towards better simulation and initialization for RL approaches.

II. RELATED WORK

Learned policies for real-world driving. Imitation learning
policies for the task of autonomous driving date back to the
seminal paper on ALVINN (Pomerleau [19]), which mapped
camera and laser range map inputs to steering controls. More
recently, Bojarski et al. [1, 2] demonstrated autonomous steer-
ing using camera input alone, but the real-world driving results
were limited to simple tasks like lane and road following only,
with a human driver taking over control when a lane change
or a turning maneuver was required.
Policies tested in an open-loop setting. End-to-end prediction
of both steering and speed/acceleration has been addressed in
Codevilla et al. [4], which uses a single camera image along
with high-level control commands as input, and by Hecker
et al. [8] which uses 360-degree camera images along with
desired route planner as inputs. However, the latter only eval-
uate their method in terms of a mean-squared error between
the ground-truth and predicted speed and steering values 0.3
seconds in the future without any closed-loop control. Xu et al.
[25] predict discrete or continuous actions from uncalibrated
large-scale video data, but again only evaluate their results in
an open-loop setting. In this paper, we show that evaluation

in a closed-loop setting is crucial to validate the model’s
ability to deal with drift issues. In addition, none of the above
approaches deal with dynamic obstacles or traffic controls.
Intermediate representations. Instead of directly predicting
controls, Chen et al. [3] demonstrated a convolutional net
that learns a mapping from an input image to an explicit,
hand-crafted list of 13 affordance indicators such as the
distance to the preceding car. These affordance indicators are
then consumed by a hand-crafted rule-based controller that
computes the desired acceleration and steering commands to
drive a car in highway environments only. Sauer et al. [22]
generalize this to a conditional affordance framework for urban
environments and demonstrate results within the CARLA sim-
ulator (Dosovitskiy et al. [6]). Unlike our representation, the
hand crafted features do not generalize to all driving scenarios,
such as complex intersections. Using mid-level representations
in a spirit similar to our own, Müller et al. [15] train a system
in simulation using CARLA by training a driving policy from
a scene segmentation network to output high-level control,
thereby enabling transfer learning to the real world using a
different segmentation network trained on real data. Pan et al.
[17] also describes achieving transfer of an agent trained in
simulation to the real world using a learned intermediate scene
labeling representation. A convolutional network operating on
a space-time volume of bird’s eye-view representations is also
employed by Luo et al. [14], Djuric et al. [5], Lee et al. [12]
for tasks like 3D detection, tracking and motion forecasting.
Policies that work in closed-loop settings. To address the
problem of drift in closed-loop control with a learned policy,
methods typically resort to collecting labels for states that
are outside of the demonstration. DAgger (Ross et al. [21])
iteratively rolls out the learner’s current policies and asks
experts to correct each state, and DART (Laskey et al. [11])
injects noise into the expert’s controls at demonstration time
to get to states that are outside the expert’s policy. Bojarski
et al. [1] addressed the drift issue by augmenting the training
data with synthetically shifted and rotated camera views as
input and the corresponding adjusted steering values as target.
Codevilla et al. [4] also adopted a similar setup but found this
kind of data augmentation to be not sufficiently robust. Instead,
inspired by DART, they inject temporally correlated noise to
the control signal during data generation and ask the expert to
record the corrective control as the target, which limits their
approach to data generated in a simulated environment (and to
only 10% of the data due to the expert effort required). In our
approach, we apply synthetic perturbations in the pose space
directly and do not need expert input to generate the training
labels. This enables us to present the network with both a large
amount of real driving expert data as well as a large amount
of synthetically perturbed data that explores a much more
diverse set of drifts (translation, rotation, heading, speed), than
what is possible with just the steering perturbation explored by
Bojarski et al. [1]. Additionally, perturbation in the pose space
enables us to generate synthetic collisions with other objects
and the environment, and the corresponding losses help the
network to learn to avoid these and generalize better. We have



found this aspect of our work to be crucial to its robustness
in dealing with dynamic obstacles – something which hasn’t
been addressed in either of the two approaches before.
Alternatives to imitation learning. Alternative approaches
to imitation learning rely on access to a good simulator.
These include reinforcement learning (Shalev-Shwartz et al.
[23], Liang et al. [13]), hybrids of reinforcement and imitation
learning (Kuefler et al. [9], Rhinehart et al. [20]), and motion
planning (Paden et al. [16]). In this work, we focus on the
ability to drive not only in isolation, but around and in
interaction with other (human) agents, for which accurate
simulation is particularly challenging. Our work helps improve
our ability to simulate other agents via imitation learning.

III. MODEL ARCHITECTURE

A. Input Output Representation

We begin by describing our top-down input representation
that the network will process to output a drivable trajectory.
At any time t, our agent (or vehicle) may be represented in a
top-down coordinate system by pt, θt, st, where pt = (xt, yt)
denotes the agent’s location or pose, θt denotes the heading or
orientation, and st denotes the speed. The top-down coordinate
system is picked such that our agent’s pose p0 at the current
time t = 0 is always at a fixed location (u0, v0) within the
image. For data augmentation purposes during training, the
orientation of the coordinate system is randomly picked for
each training example to be within an angular range of θ0±∆,
where θ0 denotes the heading or orientation of our agent at
time t = 0. The top-down view is represented by a set of
images of size W ×H pixels, at a ground sampling resolution
of φ meters/pixel. Note that this view of the environment
moves with the agent as it moves, so the agent always sees
a fixed forward range, Rfwd = (H − v0)φ of the world –
similar to having an agent with sensors that see only up to
Rfwd meters forward.

As shown in Fig. 2, the input to our model consists of
several images of size W ×H pixels rendered into this top-
down coordinate system. (a) Roadmap: a color (3-channel)
image with a rendering of various map features such as lanes,
stop signs, cross-walks, curbs, etc. (b) Speed limit: a single
channel image with lane centers colored in proportion to their
known speed limit. (c) Traffic lights: a temporal sequence of
grayscale images where each frame of the sequence represents
the known state of the traffic lights at each past timestep.
Within each frame, we color each lane center by a gray level
with the brightest level for red lights, intermediate gray level
for yellow lights, and a darker level for green or unknown
lights2. (d) Route: the intended route along which we wish
to drive, generated by a router (think of a Google Maps-
style route). (e) Current agent box: this shows our agent’s
full bounding box at the current timestep t = 0. (f) Dynamic
objects in the environment: a temporal sequence of images

2We employ an indexed representation for roadmap and traffic lights
channels to reduce the number of input channels, and to allow extensibility
of the input representation to express more roadmap features or more traffic
light states without changing the model architecture.

(a) Roadmap (b) Speed Limit (c) Traffic Lights

(d) Route (e) Agent Box (f) Dynamic Boxes

(g) Past Agent Poses (h) Future Agent Poses

Fig. 2: Driving model inputs (a-g) and output (h).

showing all the potential dynamic objects (vehicles, cyclists,
pedestrians) rendered as oriented boxes. (g) Past agent poses:
the past poses of our agent are rendered into a single grayscale
image as a trail of points.

We use a fixed-time sampling of δt to sample any past or
future temporal information, such as the traffic light state or
dynamic object states in the above inputs. The traffic lights and
dynamic objects are sampled over the past Tscene seconds,
while the past agent poses are sampled over a potentially
longer interval of Tpose seconds. This simple input represen-
tation, particularly the box representation of other dynamic
objects, makes it easy to generate input data from simulation
or create it from real-sensor logs using a standard perception
system that detects and tracks objects. This enables testing
and validation of models in closed-loop simulations before
running them on a real car. This also allows the same model
to be improved using simulated data to adequately explore
rare situations such as collisions for which real-world data
might be difficult to obtain. Using a top-down 2D view also
means efficient convolutional inputs, and allows flexibility
to represent metadata and spatial relationships in a human-
readable format. Papers on testing frameworks such as Tian
et al. [24], Pei et al. [18] show the brittleness of using raw
sensor data (such as camera images or lidar point clouds)
for learning to drive, and reinforce the approach of using an
intermediate input representation.

If I denotes the set of all the inputs enumerated above,
then the ChauffeurNet model recurrently predicts future poses
of our agent conditioned on these input images I as shown by
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Fig. 3: Training the driving model. (a) The core ChauffeurNet
model with a FeatureNet and an AgentRNN, (b) Co-trained
road mask prediction net and PerceptionRNN, and (c) Training
losses are shown in blue, and the green labels depict the
ground-truth data. The dashed arrows represent the recurrent
feedback of predictions from one iteration to the next.

the green dots in Fig. 2(h).

pt+δt = ChauffeurNet(I,pt) (1)

In Eq. (1), current pose p0 is a known part of the in-
put, and then the ChauffeurNet performs N iterations and
outputs a future trajectory{pδt,p2δt, ...,pNδt} along with
other properties such as future speeds. This trajectory can
be fed to a controls optimizer that computes detailed driving
control (such as steering and braking commands) within the
specific constraints imposed by the dynamics of the vehicle
to be driven. Different types of vehicles may possibly utilize
different control outputs to achieve the same driving trajectory,
which argues against training a network to directly output low-
level steering and acceleration control. Note, however, that
having intermediate representations like ours does not preclude
end-to-end optimization from sensors to controls.

B. Model Design

Broadly, the driving model is composed of several parts as
shown in Fig. 3. The main ChauffeurNet model shown in part
(a) of the figure consists of a convolutional feature network
(FeatureNet) that consumes the input data to create a digested
contextual feature representation that is shared by the other
networks. These features are consumed by a recurrent agent
network (AgentRNN) that iteratively predicts successive points
in the driving trajectory. Each point at time t in the trajectory
is characterized by its location pt = (xt, yt), heading θt and
speed st. The AgentRNN also predicts the bounding box of the
vehicle as a spatial heatmap at each future timestep. In part
(b) of the figure, we see that two other networks are co-trained
using the same feature representation as an input. The Road
Mask Network predicts the drivable areas of the field of view
(on-road vs. off-road), while the recurrent perception network
(PerceptionRNN) iteratively predicts a spatial heatmap for each
timestep showing the future location of every other agent in
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Fig. 4: (a) Schematic of ChauffeurNet. (b) Memory updates
over multiple iterations.

the scene. We believe that doing well on these additional tasks
using the same shared features as the main task improves
generalization on the main task. Fig. 3(c) shows the various
losses used in training the model, which we will discuss in
detail below.

Fig. 4 illustrates the ChauffeurNet model in more detail. The
rendered inputs shown in Fig. 2 are fed to a large-receptive
field convolutional FeatureNet with skip connections, which
outputs features F that capture the environmental context and
the intent. These features are fed to the AgentRNN which
predicts the next point pk on the driving trajectory, and the
agent bounding box heatmap Bk, conditioned on the features
F from the FeatureNet, the iteration number k ∈ {1, . . . , N},
the memory Mk−1 of past predictions from the AgentRNN,
and the agent bounding box heatmap Bk−1 predicted in the
previous iteration.

pk, Bk = AgentRNN(k, F,Mk−1, Bk−1) (2)

The memory Mk is an additive memory consisting of a
single channel image. At iteration k of the AgentRNN, the
memory is incremented by 1 at the location pk predicted
by the AgentRNN, and this memory is then fed to the next
iteration. The AgentRNN outputs a heatmap image over the
next pose of the agent, and we use the arg-max operation
to obtain the coarse pose prediction pk from this heatmap.
The AgentRNN then employs a shallow convolutional meta-
prediction network with a fully-connected layer that predicts
a sub-pixel refinement of the pose δpk and also estimates the
heading θk and the speed sk. Note that the AgentRNN is un-
rolled at training time for a fixed number of iterations, and the



losses described below are summed together over the unrolled
iterations. This is possible because of the non-traditional RNN
design where we employ an explicitly crafted memory model
instead of a learned memory. For visual reference, see site:
section G where we show various predictions and losses for a
single example. In the next section, we show how to train the
model above to imitate the expert.

IV. IMITATING THE EXPERT

A. Imitation Losses

1) Agent Position, Heading and Box Prediction: The Agen-
tRNN produces three outputs at each iteration k: a probability
distribution Pk(x, y) over the spatial coordinates of the pre-
dicted waypoint obtained after a spatial softmax, a heatmap of
the predicted agent box at that timestep Bk(x, y) obtained after
a per-pixel sigmoid activation that represents the probability
that the agent occupies a particular pixel, and a regressed
box heading output θk. Given ground-truth data for the above
predicted quantities, we can define the corresponding losses
for each iteration as:

Lp = H(Pk, P
gt
k ) (3)

LB =
1

WH

∑
x

∑
y

H(Bk(x, y), Bgtk (x, y)) (4)

Lθ =
∥∥θk − θgtk ∥∥1 (5)

where the superscript gt denotes the corresponding ground-
truth values, and H(a, b) is the cross-entropy function. Note
that P gtk is a binary image with only the pixel at the ground-
truth target coordinate bpgtk c set to one.

2) Agent Meta Prediction: The meta prediction network
performs regression on the features to generate a sub-pixel
refinement δpk of the coarse waypoint prediction as well as
a speed estimate sk at each iteration. We employ L1 loss for
both of these outputs:

Lp−subpixel =
∥∥δpk − δpgtk ∥∥1 (6)

Lspeed =
∥∥sk − sgtk ∥∥1 (7)

where δpgtk = pgtk −bp
gt
k c is the fractional part of the ground-

truth pose coordinates.

B. Past Motion Dropout

During training, the model is provided the past motion
history as one of the inputs (Fig. 2(g)). Since the past motion
history during training is from an expert demonstration, the net
can learn to “cheat” by just extrapolating from the past rather
than finding the underlying causes of the behavior. During
closed-loop inference, this breaks down because the past
history is from the net’s own past predictions. For example,
such a trained net may learn to only stop for a stop sign if it
sees a deceleration in the past history, and will therefore never
stop for a stop sign during closed-loop inference. To address
this, we introduce a dropout on the past pose history, where
for 50% of the examples, we keep only the current position
(u0, v0) of the agent in the past agent poses channel of the

Fig. 5: Trajectory Perturbation: The current agent location (red
point) in the original logged example is perturbed to generate
the perturbed training example.

input data. This forces the net to look at other cues in the
environment to explain the future motion profile.

V. BEYOND PURE IMITATION

In this section, we go beyond vanilla cloning of the expert’s
demonstrations in order to teach the model to arrest drift and
avoid bad behavior such as collisions and off-road driving by
synthesizing variations of the expert’s behavior.

A. Synthesizing Perturbations

Running the model as a part of a closed-loop system over
time can cause the input data to deviate from the training
distribution. To prevent this, we train the model by adding
some examples with realistic perturbations to the agent trajec-
tories. The start and end of a trajectory are kept constant, while
a perturbation is applied around the midpoint and smoothed
across the other points. Quantitatively, we jitter the midpoint
pose of the agent uniformly at random in the range [−0.5, 0.5]
meters in both axes, and perturb the heading by [−π/3, π/3]
radians. We then fit a smooth trajectory to the perturbed point
and the original start and end points. As shown in Fig. 5,
such training examples bring the car back to its original
trajectory after a perturbation. We filter out some perturbed
trajectories that are impractical by thresholding on maximum
curvature. But we do allow the perturbed trajectories to collide
with other agents or drive off-road, because the network can
then experience and avoid such behaviors even though real
examples of these cases are not present in the training data.
In training, we give perturbed examples a weight of 1/10
relative to the real examples, to avoid learning a propensity
for perturbed driving.

B. Beyond the Imitation Loss

1) Collision Loss: Since our training data does not have
any real collisions, the idea of avoiding collisions is implicit
and will not generalize well. To alleviate this issue, we add
a specialized loss that directly measures the overlap of the
predicted agent box Bk with the ground-truth boxes of all the
scene objects at each timestep.

Lcollision =
1

WH

∑
x

∑
y

Bk(x, y) . Objgtk (x, y) (8)

where Bk is the likelihood map for the output agent box
prediction, and Objgtk is a binary mask with ones at all



Tscene Tpose δt N ∆
1.0 s 8.0 s 0.2s 10 25◦

W H u0 v0 φ
400 px 400 px 200 px 320 px 0.2 m/px

TABLE I: Parameter values for the experiments in this paper.

Rendering FeatureNet AgentRNN
(N=10)

PerceptionRNN
(N=10)

Overall

8 ms 6.5 ms 145 ms 35 ms 160 ms

TABLE II: Run-time performance on a NVIDIA P100 GPU.

pixels occupied by other dynamic objects (other vehicles,
pedestrians, etc.) in the scene at timestep k. At any time
during training, if the model makes a poor prediction that leads
to a collision, the overlap loss would influence the gradients
to correct the mistake. However, this loss would be effective
only during the initial training rounds when the model hasn’t
learned to predict close to the ground-truth locations due to
the absence of real collisions in the ground truth data. This
issue is alleviated by the addition of trajectory perturbation
data, where artificial collisions within those examples allow
this loss to be effective throughout training without the need
for online exploration like in reinforcement learning settings.

2) On Road Loss: Trajectory perturbations also create
synthetic cases where the car veers off the road or climbs
a curb or median because of the perturbation. To train the
network to avoid hitting such hard road edges, we add a
specialized loss that measures overlap of the predicted agent
box Bk in each timestep with a binary mask Roadgt denoting
the road and non-road regions within the field-of-view.

Lonroad =
1

WH

∑
x

∑
y

Bk(x, y) . (1−Roadgt(x, y)) (9)

3) Geometry Loss: We would like to explicitly constrain the
agent to follow the target geometry independent of the speed
profile. We model this target geometry by fitting a smooth
curve to the target waypoints and rendering this curve as a
binary image in the top-down coordinate system. The thickness
of this curve is set to be equal to the width of the agent. We
express this loss similar to the collision loss by measuring
the overlap of the predicted agent box with the binary target
geometry image Geomgt. Any portion of the box that does not
overlap with the target geometry curve is added as a penalty
to the loss function.

Lgeom =
1

WH

∑
x

∑
y

Bk(x, y) . (1−Geomgt(x, y)) (10)

4) Auxiliary losses: Similar to our own agent’s trajectory,
the motion of other agents may also be predicted by a recur-
rent network. Correspondingly, we add a recurrent perception
network PerceptionRNN that uses as input the shared features
F created by the FeatureNet and its own predictions Objk−1
from the previous iteration, and predicts a heatmap Objk at
each iteration. Objk(x, y) denotes the probability that location
(x, y) is occupied by a dynamic object at time k. For iteration
k = 0, the PerceptionRNN is fed the ground truth objects at

Model Description wimit wenv

M0 Imitation with Past Dropout 1.0 0.0
M1 M0 + Traj Perturbation 1.0 0.0
M2 M1 + Environment Losses 1.0 1.0
M3 M2 with less imitation 0.5 1.0
M4 M2 with Imitation Dropout Dropout prob = 0.5 (see V-C).

TABLE III: Model configuration for the model ablation tests.

the current time.

Lobjects =
1

WH

∑
x

∑
y

H(Objk(x, y), Objgtk (x, y)) (11)

Co-training a PerceptionRNN to predict the future of other
agents by sharing the same feature representation F used by
the PerceptionRNN is likely to induce the feature network
to learn better features that are suited to both tasks. Several
videos of predicted trajectories from PerceptionRNN on logged
data are shown on the supplemental site: section F.

We also co-train to predict a binary road/non-road mask by
adding a small network of convolutional layers to the output of
the feature net F . We add a cross-entropy loss to the predicted
road mask output Road(x, y) which compares it to the ground-
truth road mask Roadgt.

Lroad =
1

WH

∑
x

∑
y

H(Road(x, y), Roadgt(x, y)) (12)

C. Imitation dropout

Overall, our losses may be grouped into
two sub-groups: the imitation losses Limit =
{Lp,LB ,Lθ,Lp−subpixel,Lspeed} and the environment
losses Lenv = {Lcollision,Lonroad,Lgeom,Lobjects,Lroad}.
The imitation losses cause the model to imitate the expert’s
demonstrations, while the environment losses discourage
undesirable behavior such as collisions. To further increase
the effectiveness of the environment losses, we experimented
with randomly dropping out the imitation losses for a random
subset of training examples. We refer to this as “imitation
dropout”. In the experiments, we show that imitation dropout
yields a better driving model than simply under-weighting
the imitation losses. During imitation dropout, the weight on
the imitation losses wimit is randomly chosen to be either 0
or 1 with a certain probability for each training example. The
overall loss is given by:

L = wimit
∑

`∈Limit

`+ wenv
∑

`∈Lenv

` (13)

VI. EXPERIMENTS

A. Data

The training data to train our model was obtained by
randomly sampling segments of real-world expert driving and
removing segments where the car was stationary for long
periods of time. Our input field of view is 80m × 80m
(Wφ = 80) and with the agent positioned at (u0, v0), we
get an effective forward sensing range of Rfwd = 64m.
Therefore, for the experiments in this work we also removed
any segments of highway driving given the longer sensing
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Fig. 6: Model ablation test results on three scenario types. For
videos, please see [supplemental site: section C].

range requirement that entails. Our dataset contains approxi-
mately 26 million examples which amount to about 60 days of
continuous driving. As discussed in Section III, the vertical-
axis of the top-down coordinate system for each training
example is randomly oriented within a range of ∆ = ±25◦

of our agent’s current heading, in order to avoid a bias for
driving along the vertical axis.The rendering orientation is set
to the agent heading (∆ = 0) during inference. Data about the
prior map of the environment (roadmap) and the speed-limits
along the lanes is collected apriori. For the dynamic scene
entities like objects and traffic-lights, we employ a separate
perception system based on laser and camera data similar to
existing works in the literature (Yang et al. [26], Fairfield and
Urmson [7]). Table I lists the parameter values used for all the
experiments in this paper. The model runs on a NVIDIA Tesla
P100 GPU in 160ms with the detailed breakdown in Table II.

B. Models

We train and test not only our final model, but a sequence of
models that introduce the ingredients we describe one by one
on top of behavior cloning. We start with M0, which does
behavior cloning with past motion dropout to prevent using
the history to cheat.M1 adds perturbations without modifying
the losses. M2 further adds our environment losses Lenv in
Section V-B. M3 and M4 address the fact that we do not
want to imitate bad behavior – M3 is a baseline approach,
where we simply decrease the weight on the imitation loss,
whileM4 uses our imitation dropout approach with a dropout
probability of 0.5. Table III lists the configuration for each of
these models.

C. Closed Loop Evaluation

To evaluate our learned model on a specific scenario, we
replay the segment through the simulation until a buffer period
of max(Tpose, Tscene) has passed. This allows us to generate
the first rendered snapshot of the model input using all the
replayed messages until now. The model is evaluated on this

input, and the fitted controls are passed to the vehicle simulator
that emulates the dynamics of the vehicle thus moving the
simulated agent to its next pose. At this point, the simulated
pose might be different from the logged pose, but our input
representation allows us to correctly render the new input for
the model relative to the new pose. This process is repeated
until the end of the segment, and we evaluate scenario specific
metrics like stopping for a stop-sign during the simulation.
Since the model is being used to drive the agent forward, this
is a closed-loop evaluation setup.

1) Model Ablation Tests: Here, we present results from
experiments using the various models in the closed-loop
simulation setup. We first evaluated all the models on simple
situations such as stopping for stop-signs and red traffic
lights, and lane following along straight and curved roads by
creating 20 scenarios for each situation, and found that all the
models worked well in these simple cases. Therefore, we will
focus below on specific complex situations that highlight the
differences between these models.

a) Nudging around a parked car: To set up this scenario,
we place the agent at an arbitrary distance from a stop-sign on
an undivided two-way street and then place a parked vehicle on
the right shoulder between the the agent and the stop-sign. We
pick 4 separate locations with both straight and curved roads
then vary the starting speed of the agent between 5 different
values to create a total of 20 scenarios. We then observe if
the agent would stop and get stuck behind, collide with the
parked car, or correctly pass around the parked car, and report
the aggregate performance in Fig. 6a. We find that other than
M4, all other models cause the agent to collide with the parked
vehicle about half the time. The baseline M0 model can also
get stuck behind the parked vehicle in some of the scenarios.
Model M4 nudges around the parked vehicle and then brings
the agent back to the lane center. This can be attributed to
the model’s ability to learn to avoid collisions and nudge
around objects because of training with the collision loss
and trajectory perturbation. Comparing models M3 & M4,
it is apparent that “imitation dropout” was more effective at
learning the right behavior than only re-weighting the imitation
losses. Note that by varying the agent starting speed, we create
scenarios where the agent approaches the parked car at a very
high relative speed and thus does not have enough time to
nudge around the car given the dynamic constraints. A 10%
collision rate for M4 is thus not a measure of the absolute
performance of the model since we do not have a perfect driver
which could have performed well at all the scenarios here. But
in relative terms, this model performs the best.

b) Recovering from a trajectory perturbation: We place
the agent approaching a curved road and vary the starting
position and the starting speed of the agent to generate a
total of 20 scenario variations. Each variation puts the agent
at a different amount of offset from the lane center with a
different heading error relative to the lane. We then measure
how well the various models are at recovering from the lane
departure. Fig. 6b presents the results aggregated across these
scenarios and shows the contrast between the baseline model



M0 which is not able to recover in any of the situations and
the models M3 & M4 which handle all deviations well. All
models trained with perturbation data are able to handle 50%
of the scenarios which have a lower starting speed. At a higher
starting speed,M3 &M4 do better thanM1 &M2 because
they place a higher emphasis on the imagination losses.

c) Slowing down for a slow car: To set up this scenario,
we place the agent on a straight road at varying initial speeds
and place another car ahead with a varying but slower constant
speed, generating a total of 20 scenario variations, to evaluate
the ability to slow for and then follow the car ahead. From
Fig. 6c, we see that some models slow down to zero speed
and get stuck. For the variation with the largest relative speed,
there isn’t enough time for most models to stop the agent
in time, thus leading to a collision. For these cases, model
M3 which uses imitation loss re-weighting works better than
the model M4 which uses imitation dropout. M4 has trouble
in two situations due to being over aggressive in trying to
maneuver around the slow car and then grazes the left edge
of the road. This happens in the two extreme variations where
the relative speed between the two cars is the highest.

2) Input Ablation Tests: With input ablation tests, we want
to test the final M4 model’s ability to identify the correct
causal factors behind specific behaviors, by testing the model’s
behavior in the presence or absence of the correct causal factor
while holding other conditions constant. In simulation, we
have evaluated our model on 20 scenarios with and without
stop-signs rendered, and 20 scenarios with and without other
vehicles in the scene rendered. The model exhibits the correct
behavior in all scenarios, thus confirming that it has learned to
respond to the correct features for a stop-sign and a stopped
vehicle. Please see the site: section B for examples.

3) Logged Data Simulated Driving: For this evaluation, we
take logs from our real-driving test data (separate from training
data), and use our trained network to drive the car using the
vehicle simulator keeping dynamic objects, traffic-light states
etc. the same as in the logs. Some example videos are shown
on the site: section E and they illustrate the ability of the model
in dealing with multiple dynamic objects and road controls.

4) Real World Driving: We have also evaluated this model
on our self-driving car by replacing the existing planner mod-
ule with the learned modelM4 and have replicated the driving
behaviors observed in simulation. The videos of several of
these runs are available on the supplemental site: section D
and they illustrate not only the smoothness of the network’s
driving ability, but also its ability to deal with stop-signs and
turns and to drive for long durations in full closed-loop control
without deviating from the trajectory.

D. Open Loop Evaluation

In an open-loop evaluation, we take test examples of expert
driving data and for each example, compute the L2 distance
error between the predicted and ground-truth waypoints. Un-
like the closed-loop setting, the predictions are not used to
drive the agent forward and thus the network never sees its
own predictions as input. Fig. 7 shows the L2 distance metric
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Fig. 7: Prediction Error for models M0 and M4 on unper-
turbed evaluation data (1 pixel = 0.2m).

in this open-loop evaluation setting for models M0 and M4

on a test set of 10,000 examples. These results show that
model M0 makes fewer errors than the full model M4, but
we know from closed-loop testing that M4 is a far better
driver than M0. This shows how open-loop evaluations such
as Fig. 7 are insufficient indicators of real driving performance,
and closed-loop evaluations are critical while assessing such
driving models.

E. Failure Modes
At our ground resolution of 20 cm/pixel, the agent currently

sees 64 m in front and 40 m on the sides and this limits the
model’s ability to perform merges on T-junctions and turns
from a high-speed road. Specific situations like U-turns and
cul-de-sacs are also not currently handled, and will require
sampling enough training data. The model occasionally gets
stuck in some low speed nudging situations. It sometimes
outputs turn geometries that make the specific turn infeasible
(e.g. large turning radius). We also see some cases where the
model gets over aggressive in novel and rare situations for
example by trying to pass a slow moving vehicle. We believe
that adequate simulated exploration may be needed for highly
interactive or rare situations.

VII. DISCUSSION

In this paper, we presented our experience with what it
took to get imitation learning to perform well in real-world
driving. We found that key to its success is synthesizing inter-
esting situations around the expert’s behavior and augmenting
appropriate losses that discourage undesirable behavior. This
constrained exploration is what allowed us to avoid collisions
and off-road driving even though such examples were not
explicitly present in the expert’s demonstrations. To support
it, and to best leverage the expert data, we used mid-level
input and output representations which allow easy mixing of
real and simulated data and alleviate the burdens of learning
perception and control. With these ingredients, we got a model
good enough to drive a real car. That said, the model is not yet
fully competitive with motion planning approaches but we feel
that this is a good step forward for machine learned driving
models. There is room for improvement: comparing to end-
to-end approaches, and investigating alternatives to imitation
dropout are among them. But most importantly, we believe
that augmenting the expert demonstrations with a thorough
exploration of rare and difficult scenarios in simulation, per-
haps within a reinforcement learning framework, will be the
key to improving the performance of these models especially
for highly interactive scenarios.
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