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Abstract—This paper presents a real-time reactive controller for
a powered prosthesis that addresses the problem of trip avoidance.
The control estimates the pose of the leg during swing with an
extended Kalman filter, predicts future hip angles and hip heights
using sparse Gaussian Processes, and reactively plans updated
ankle and knee trajectories with a fast quadratic program solver
to avoid trips. In preliminary experiments with an able-bodied
user who purposefully lowered the hip to elicit trips on each
swing, the proposed control reduced the rate of tripping by 68%
when compared to a swing control that follows standard minimum-
jerk trajectories. In addition, the proposed control also reduced
the severity of toe-scu�ng. To the best of our knowledge, this
controller is the first to incorporate visual feedback in the real-
time planning and control of a lower limb prosthesis during gait.
The results demonstrate the potential of reactive and environment-
aware controls to improve amputee gait robustness and encourage
future development of leg prosthesis controls that can react in
real-time to the environment and user state.

I. I�����������
Lower limb amputees using state-of-the-art commercial

prostheses face a number of gait deficiencies that negatively
impact their quality of life [6]. Of acute significance among
these deficiencies are the increased risk of falling and the related
injuries, which can lead to amputees avoiding activity out of a
fear falling [16]. As falls and their avoidance are linked to swing
leg placement in locomotion, active swing control strategies
could help to substantially reduce the risk of falling. However,
current swing controllers of transfemoral prostheses do little to
proactively minimize this risk.

Existing swing phase control approaches for powered prosthe-
ses predominantly seek to reproduce the average swing phase
behavior of the human leg. Whether the approach is based
on trajectory planning [12], impedance control [24], or phase-
based control [18], they all treat the swing phase motion as an
“open loop” problem with respect to trip hazards, as none of the
approaches take the location of the heel and toe of the prosthetic
foot with respect to the ground explicitly into account. Therefore,
current swing control strategies neglect a clear advantage that
robotic prostheses can have over their passive counterparts: the
ability to sense and act upon environmental information.

In this work, we develop a swing control strategy to reactively
avoid trips with powered transfemoral prostheses that uses
visual information about the environment and an estimate of the
prosthesis configuration. Some previous studies have explored
incorporating visual feedback into the control of leg prostheses.
For example, Scandaroli et al. [21] developed a state estimator

and controller that allowed the ankle joint of a prosthesis to
conform to the slope of the ground under the foot. To address
the problem of terrain recognition, Zhang et al. [27] developed
a classifier using a LIDAR and an IMU to discriminate between
terrains such as flat ground and steps. More recently, Liu
et al. [13] combined this terrain classifier with a Bayesian
intent classifier (based on [3]) to develop an environment-aware
locomotion mode recognition system. In addition, RGBD sensors
have been explored as a source of rich environmental information
for legged assistance, including gait recognition [15] and stair
detection [4, 10]. However, none of these previous studies have
implemented a control strategy that uses information about
the state of the prosthesis with respect to its environment to
reactively govern the motion of a powered prosthesis in real-time.
Hayashi and Kiguchi [8] do propose such a control strategy for
a powered exoskeleton that assists with obstacle avoidance. This
work used a terrain map generated by a scanning LIDAR and
sensors on both the stance and swing legs to provide assistive
torques that prevent trips.

Here, we present an approach for real-time, reactive trip-
avoidance control of a powered prosthesis that does not require
stance leg sensing and uses a simple 1-D LIDAR distance
sensor. The approach combines three building blocks. First, we
use an extended Kalman filter (EKF) that fuses measurements
from an IMU, a 1-D LIDAR, and the prosthesis’ encoders to
estimate the current pose of the prosthetic leg with respect
to the ground. Second, during swing we predict likely future
leg trajectories with sparse Gaussian process models. Finally,
we use the leg pose estimate and trajectory predictions in a
fast quadratic-program planner to reactively generate in real
time leg joint trajectories that avoid premature toe and heel
contact with the ground. To evaluate the proposed control, we
compare our method for trip avoidance to a standard non-reactive
minimum-jerk trajectory planning approach in a prosthesis
walking experiment designed to elicit trips.

II. M������

The trip avoidance control we propose involves (1) estimating
the position and orientation of the leg (section II-A), (2)
predicting the future hip angles and heights (section II-B), and
(3) planning corresponding knee and ankle trajectories such
that the heel and toe will not contact the ground prematurely
(section II-C).
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Fig. 1: Kinematic model of the user and prosthesis used for state
estimation and motion planning. The model includes the hip (H),
knee (K), ankle (A), heel (L) and toe points (T). Additionally,
the start (Lid0) and end (Lidf ) points of the LIDAR beam (with
length `) are indicated. The IMU is located at point I. Both
the LIDAR and IMU are mounted to the thigh portion of the
powered knee-and-ankle prosthesis.

A. Extended Kalman Filter for estimating Leg
Position/Orientation

To estimate the position and orientation of the leg, we employ
an EKF that fuses information from a LIDAR distance sensor
(SICK OD1000), an IMU (YEI Technologies 3-Space sensor),
and encoders on the prosthesis (Renishaw Resolute, Netzer DS-
25). The EKF filters the nonlinear, discrete-time dynamics given
by
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where q is the quaternion orientation, ROI and p are the rotation
matrix and position of the IMU in inertial coordinates, ! is the
bias-corrected angular rate measured by the gyroscope, fgyro
integrates the gyroscope rate to update the orientation (for
more details see [14]), a is the accelerometer measurement,
ut = [!t, at ]T , and �t is the integration time step (1 ms).

The dynamics are corrupted by process noise wt ⇠ N(0,Qt )
due to the inaccuracy of the IMU’s measurement of the true
acceleration and angular velocity. Consequently, Qt is given by
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where �2
! and �2

a
are the gyroscope and accelerometer mea-

surement variances, respectively.
To estimate the pose given our sensor measurements, we

follow a standard EKF procedure [1], reviewed here for com-
pleteness. The EKF state estimation process has two steps: First,
we predict the next state distribution by forward-propagating
the mean x̂t�1 |t�1 and covariance of the state estimate ⌃t�1 |t�1
using the dynamics given by eq. (1),

x̂t |t�1 = f (x̂t�1 |t�1, ut ) (3)
⌃t |t�1 = Ft⌃t�1 |t�1FT
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where Ft = @ f /@x | x̂t�1|t�1
.

Next, we incorporate information from noisy sensor obser-
vations to update the state estimate. To do this, we utilize a
observation model given by zt = h(xt )+vt , where vt ⇠ N (0, R),
and the following update equations:
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where zt are the actual sensor measurements and Ht =
@h/@x | x̂t�1|t .

The observations in our EKF formulation use the kinematic
model shown in fig. 1. We calibrate this model using ground
truth data from a VICON motion capture system. In our
application we incorporate three observations:

1) The expected measurement vector from the IMU’s ac-
celerometer is primarily due to gravity and thus points
up in the global coordinate frame. As ROI represents the
coordinate system rotation between the global frame O and
the IMU’s frame I, we expect the measured acceleration
ameas to align with the third row of ROI ,

h1(xt ) = {ROI(q)}row 3 (8)
z1 = ameas (9)

2) The expected LIDAR measurement given the position of
the IMU,

h2(xt ) =
�
` :

�
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row 3 = 0

 
(10)

z2 = `meas, (11)

where pOLIDf is the location of the laser beam endpoint rep-
resented in the global coordinate system, ` = k��������!LID0LIDf k
is the modeled laser beam length, and `meas is the actual
measured LIDAR distance.



3) During stance, the toe point coincides with the origin
(active 200 ms after stance begins until toe-o�)

h3(xt ) = pOT(xt, ✓k, ✓a) (12)
z3 = [0 0 0]T (13)

where pOT describes the location of the toe in the inertial
frame as a function of the EKF’s state estimate xt and
the knee ✓k and ankle ✓a angles, which are measured by
the prosthesis’ joint encoders. This observation is inspired
by previous work on pedestrian tracking across multiple
steps, in which a pseudomeasurement constrains the IMU
velocity to zero during stance [5].

The measurement noise for these observations is given by
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during stance. In these equations, �2
a

is the accelerometer
variance, �2

` is the LIDAR measurement variance, and �2
f

is
the foot position variance.

To further improve the EKF’s state estimate, we enforce a
number of constraints using the methods provided by Gupta and
Hauser [7]. Specifically, we enforce three equality constraints:

1) First, we require that the quaternion has unit norm

1 = q2
1 + q2

2 + q2
3 + q2

4 . (16)

2) Second, we prevent the yaw component of the orientation
q from drifting. To do this, we convert the q to ZYX Euler
angles and enforce �z = 0,
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⇣
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⌘
. (17)

3) Finally, during stance we further constrain the toe’s x and
y-coordinates to 0,

0
0

�
= {pOT(xt, ✓k, ✓a)}rows 1 and 2. (18)

In addition, we use inequality constraints to ensure the toe and
heel do not penetrate the ground,

0  {pOT(xt, ✓k, ✓a)}row 3, (19)
0  {pOL(xt, ✓k, ✓a)}row 3. (20)

We enforce these constraints by solving the following quadratic
program after each update step,
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such that

Aeqx = beq, (22)
Aineqx = bineq, (23)

Ground Truth

EKF with Lidar

EKF without Lidar

Fig. 2: Trajectories of extended Kalman Filter (EKF) estimate
of the position of the leg during swing (blue). Ground truth
positions given by motion capture (yellow). EKF estimate
without LIDAR information shown in red. Thick lines show
the leg configuration at peak toe height during swing. Dotted
lines indicate heel trajectories while dashed lines show the toe
trajectories. Knee and ankle trajectories given by solid lines.

where Aeq, beq, Aineq, and bineq are derived from linearizing
the equality and inequality constraints. We found in practice
that solving this QP a single time resulted in a state estimate
that was su�ciently close to the constraints and that iteratively
linearizing the constraints and solving the QP was unnecessary.

To identify the appropriate parameters for the EKF, we
collected ground truth training and testing kinematic data
using a Vicon motion capture system. We optimized the
parameters of the EKF by simulating the state estimator with
di�erent parameters and evaluating the resulting error between
the estimated trajectory and the ground truth trajectory. The
parameters we optimized were the rotation of the LIDAR with
respect to the hip, the translation between the LIDAR and the
IMU, and �! , �a, �` , and �f .

Figure 2 shows an example of the resulting EKF estimates
of the hip, knee, ankle, heel, and toe positions during swing
(blue stick figure and traces) compared to the ground truth
obtained from the motion capture system (yellow) and an EKF
estimate without the LIDAR sensor information integrated (red).
Over the entire test data set, the root mean squared error of the
estimated heel and toe positions during swing is 18.6 mm for
the EKF with LIDAR information. In contrast, the EKF without
LIDAR information has an error of 46.7 mm. Thus, including



the LIDAR sensor data reduces the error by 60%.

B. Gaussian Process Hip Trajectory Prediction

To predict the future hip trajectory, we learn Gaussian process
models that describe the user’s hip height and angle versus
time during the swing phase. We train these models with data
obtained from the specific user of the prosthesis during an
initial data collection period in which a standard minimum-jerk
approach generates the swing phase joint angle trajectories. We
specifically train sparse Gaussian process models using the FITC
approximation [23] which ensures the computational complexity
at test time is independent of the training data set size, thereby
providing consistent real-time performance. Throughout the
swing phase, the learned hip angle and height distributions are
conditioned on the swing trajectories completed so far to predict
the distribution of the future trajectories for the rest of the swing
(example shown in fig. 3). Our algorithm then uses the means
of these conditional distributions in the motion planning phase
(compare section II-C).

For example, to calculate the conditional mean of future hip
angles, we first compute the joint distribution of completed (✓c

h
)

and future (✓f
h
) hip angles,
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where µfitc and ⌃fitc are obtained from equation 11 in [23] and
K
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is an additional noise term given by a rational

quadratic kernel [19] that correlates the predicted angles across
time, which results in smooth predicted trajectories. The mean
of the conditional distribution P
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As the inversion of ⌃c,c is the most computationally expensive
component of eq. (26), we use at most the last 10 hip angles and
heights (sampled at 100 Hz) when calculating the conditional
mean (compare fig. 3).

C. Trajectory Planning Quadratic Program Formulation

To obtain reactive control of the prosthesis swing leg motion
inside of the prosthesis’ existing Simulink Real-Time environ-
ment, we plan future swing trajectories with a fast quadratic
program (QP) operating at 100 Hz. The QP includes equality
constraints, which ensure the trajectories progress smoothly from
the current position to the desired end position, and inequality
constraints, which avoid premature ground contact of the toe
and heel of the prosthesis. Because in our formulation the QP
can only solve for one joint at a time, we first solve for the ankle
trajectory assuming the knee trajectory found in the previous
time step and then use this updated ankle trajectory to solve for
the new knee trajectory.

Figure 4 provides more details of the actions of the trajectory
planner algorithm. For example, at a time of about 150 ms into
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Fig. 3: Example of hip angle and height trajectory predictions
0.15 s into swing. The prediction algorithm uses the previous 10
measured hip angles and heights (sampled at 100 Hz, black dots)
along with the learned joint distributions of hip angles/heights
versus time (red) to obtain the conditional distributions of future
hip angles/heights (blue). The planning algorithm uses the means
of the conditional distributions to generate knee and ankle
trajectories. The actual hip height and angle trajectories are
shown in black.

the swing phase, the algorithm generates bounds for the knee
through inverse kinematics (IK) by solving
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✓k : {pOT(✓h, zh, ✓k, ✓a)}row 3 = 0

 
(27)
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at a set of sample times spanning the remaining swing trajectory.
The QP then uses these bounds to plan the knee trajectory
(red trace in fig. 4B). The ankle trajectory is found through
a similar procedure. Figures 4C and E show the IK solutions
at characteristic points in the swing for the knee and ankle
respectively, with solutions leading to toe contact shown in
purple and solutions leading to heel contact shown in yellow.
For each contact point, there are typically two solutions, one
lower bound, for which the joint angle cannot cross from above,
and one upper bound, for which the joint angle cannot cross
from below.

Often, the valid leg configurations span disjointed regions in
the configuration space (green and red regions in fig. 4B and
D). Therefore, the planner next identifies a valid sequence of
regions for the trajectory to traverse in a four step procedure.
First, the planner identifies critical points along the predicted
trajectory at which any bound activates or deactivates. Second,
at each critical point, the planner sorts the bound angles from
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Fig. 4: Planning Algorithm Steps: Panels B and D show the generated knee and ankle trajectories respectively. The planned
trajectory (red) lies within the computed bounds (dashed gray). In contrast, standard minimum jerk trajectories (blue) do not
respect the bounds, thereby increasing the tripping hazard. Panels C and E show examples of inverse kinematics (IK) solutions
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(green) that allow a path from the start point to the desired final point. Bounded regions that do not lie on the path are shown in
red. Panel A shows the corresponding prosthesis motion.



largest to smallest and iterates through them to define regions
between successive upper and lower bounds. Third, the planner
defines a graph over the regions with edge weights equal to the
average squared angle minus the volume of the child region.
This cost favors a sequence of regions that are large and thus
safe to travel trough and avoids regions that require excessive
joint flexion or extension. Dijkstra’s algorithm is then used to
find a valid sequence of regions that minimizes this cost [2].
Finally, so that the generated trajectories do not get too close
to the identified bounds, a bu�er is added to the bounds. This
bu�er takes the form

✓buf = ✓
0
buf sin

✓
⇡

t � t0
t f � t0

◆
, (29)

where ✓0buf is either 5 � for lower bounds or -5 � upper bounds,
t is the future swing time, and t0 and t f are the current and
final swing times.

After identifying the bounded regions, the planner generates
the trajectory for a specific joint by solving a quadratic program.
The trajectory of each joint is represented by three, fifth-order
polynomial splines,

✓1(t) = a01 + a11t + · · · + a51t5 = [1 t · · · t5]a1 (30)
T0  t < T1 (31)
...

✓3(t) = a03 + a13t + · · · + a53t5 = [1 t · · · t5]a3 (32)
T2  t < TF, (33)

and solved for by the following QP,

a⇤ = argmin
a

1
2

aT (H✓ + wH›✓ )a, (34)

where a = [aT1 aT2 aT3 ]T , H✓ and H›✓ encode quadratic costs on
angle and jerk respectively, and w is a weight parameter. The
solution is subject to the inequality constraints

✓(t)  ✓max(t), 8t (35)
✓(t) � ✓min(t), 8t (36)
€✓(t)  €✓max, 8t (37)
€✓(t) � €✓min, 8t, (38)

which ensure the trajectory lies within the identified bounds and
respects velocity limits, and to the equality constraints

✓(T0) = ✓0 (39)
€✓(T0) = €✓0 (40)
‹✓(T0) = ‹✓0 (41)
✓(TF ) = ✓F (42)
€✓(TF ) = 0 (43)
‹✓(TF ) = 0 (44)
✓1(T1) = ✓2(T1) (45)
€✓1(T1) = €✓2(T1) (46)
‹✓1(T1) = ‹✓2(T1) (47)

...

which ensure the trajectory starts at the current and terminates
at the desired positions, velocities, and accelerations and that
the splines join together smoothly. If the QP fails to find a
trajectory that can satisfy the constraints, the last found valid
trajectory is reused for the next time step. In addition, at the
first iteration, the ankle trajectory planner uses the output of the
minimum jerk trajectory planner to solve the inverse kinematics
for the bounds.

D. Experimental Procedure

We tested the ability of the proposed trip avoidance control to
reduce the incidence and severity of trips while walking with the
powered transfemoral prosthesis shown in fig. 1 [25]. To evaluate
the performance of the system, an able-bodied user walked with
the prosthesis while attempting to elicit trips by lowering the
hip in swing. During the stance phase, the prosthesis randomly
decided to either use the proposed swing control or to use
standard minimum jerk trajectories that do not consider the
tripping hazard. The user was not aware of which controller
would be used in the upcoming swing. The user completed a
total of ten one minute walking trials.

We examined several outcomes for evaluating control perfor-
mance. First, we examined the distribution of knee angles at
the beginning of stance. Large knee angles at the beginning
of stance indicate premature landing due to toe-strike instead
of heel strike. Ideally, the landing angle is close to the desired
final angle of 2 degrees. Second, we checked the integral of the
ground reaction force during swing. If this quantity is large, it
indicates scu�ng of the toe on the ground. Finally, we examined
the relationship between the hip and toe heights during swing.
If our controller is working as intended, the toe height during
swing should have a decreased sensitivity to the hip height.

III. R������

Figure 5 shows the knee and ankle swing trajectories
generated by the proposed control (blue) and by a standard
jerk minimization control (red) during normal walking and trip
elicitation. During undisturbed walking, the trajectories produced
by both control strategies are similar. However, the proposed
control strategy has a tendency to keep the knee flexed for
longer and then extends it faster towards the end of swing. In
addition, in a few steps, the proposed controller flexed the ankle
significantly more than did the standard minimum jerk control.
These trends are exaggerated during trip elicitation. There are
more knee trajectories in which the knee stays flexed for longer,
thereby creating more ground clearance. In addition, the ankle
flexes earlier, which will help to create more foot clearance
when the hip is suddenly lowered in early swing.

We used video and audio recordings of the trials, as well
as data from the prosthesis, to manually classify trips as those
swing trajectories that end with toe strike or during which the
foot scu�ed on the ground. We find that over the ten minutes
of walking, the minimum jerk control produced 109 trips while
the proposed approach produced 35 trips, reducing the trip rate
by 68%.
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landing knee flexion angles with the proposed swing control
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knee angles indicate premature toe contact during swing.

To further examine the performance of the two control
strategies, we used kernel density estimates of the landing
knee flexion angle, a measure of the propensity for tripping,
and integrated ground reaction force (GRF) during swing, a
measure of the propensity for foot scu�ng. Figure 6 shows
the distributions of the landing angle of the prosthesis at the
end of swing for the proposed swing control (blue) and for
the standard minimum jerk swing control (red) during the trip
elicitation condition. We observe the minimum jerk control
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Fig. 7: Kernel density estimate of the probability of various
integrated ground reaction force values for the proposed swing
control (blue) and standard min-jerk swing control (red). Large
integrated GRF during the swing phase is indicative of the toe
scu�ng on the ground.

is much more likely to generate a swing trajectory that ends
prematurely with a large knee flexion angle, which is indicative
of toe contact instead of heel contact at the end of swing. The
distributions of the integrated GRFs suggests the minimum
jerk control produced a larger percentage of swings with high
ground reaction forces than the proposed control, indicating an
increased frequency and severity of toe scu�ng during swing
(fig. 7).

We can also ask the question, “For steps during which the
prosthesis used trajectories generated by the proposed control,
would the user have tripped had the prosthesis used a minimum
jerk trajectory?” To answer this question, we can use the
kinematics model shown in fig. 1 along with ground truth
hip height and hip angle data captured via a motion capture
system, to estimate the location of the toe had the knee and
ankle perfectly followed the desired trajectories produced by
each control scheme. This analysis predicts that the prosthesis
would have tripped or scu�ed the toe on the ground during 22%
of the steps if we had used the minimum jerk trajectory. In
contrast, it predicts a trip or scu� rate of 5% had we perfectly
followed the trajectories generated by the proposed control.

Finally, fig. 8 shows the relationship between the average toe
and hip heights during swing for both control schemes. The
toe height of the prosthesis, when controlled by the proposed
control, is less sensitive to decreases in the hip height than it is
when using the standard minimum jerk control.

IV. D���������

We presented initial work toward a real-time reactive control
of powered prostheses to help amputees avoid tripping in
the swing phase of gait. At any time during swing, the
proposed control uses a laser range finder and an inertial
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Fig. 8: Average toe height vs average hip height for the proposed
swing control (blue) and standard min-jerk swing control (red).
The toe height during swing is less sensitive to the hip height
when using the proposed swing control than when using the
min-jerk swing control.

measurement unit to estimate the current pose of the prosthetic
leg, predict the future hip angle and height based on trained
Gaussian process models, and plan new knee and ankle joint
trajectories that ensure neither the toe nor heel contact the
ground prematurely. Our results indicate the proposed control
approach can substantially reduce the incidence of trips and
reduce the severity and frequency of toe scu�ng.

To the best of our knowledge, this work is the first demonstra-
tion of lower limb prosthetic control that integrates perception
feedback in real-time and that proactively ameliorates the falling
hazard amputees face. Previous research in this area has largely
focused on detecting stumbles after they have occurred. For
example, Lawson et al. [11] and Shirota et al. [22] have proposed
classifiers that can detect trips during swing and predict whether
a lower or raising strategy should be used in response. Similarly,
Zhang et al. [26] have proposed a method that can detect
stumbles and classify them as trips during swing or slips
during stance. However, these previous studies have not proposed
concrete control actions to preempt stumbles or to properly react
in the event that a stumble is detected. Our results motivate
further research into such proactive and reactive approaches,
closing the perception-action loop for improving gait robustness
with robotic prostheses.

Several avenues for future work exist. First, in our current
study, only one able-bodied user tested the proposed control.
Further experiments with amputee subjects are needed to verify
the system provides benefits to this population. For instance,
amputees accustomed to walking with passive prostheses show
significantly altered hip kinematics [9], which could a�ect the
control behavior. However, the proposed control should be able
to properly adapt to these behavior di�erences, as the Gaussian
process models are trained for specific users. Second, although
trips during swing are one of the most common failure modes

we encounter with our powered prostheses, these events are still
rare and many hours of normal walking are required to observe
a su�cient number of trips to compare controllers. As a result,
we actively induced trips by sudden drops in hip height during
swing, which does not exactly reflect the situations in which
trips occur. Specifically, trips can happen due to subtle changes
in leg kinematics, and it remains to be seen in experiments if
our approach can avoid trips in these more subtle situations.

At the implementation level, there is also room for further
exploration. To keep the computational costs low and to facilitate
implementation in Simulink Real-time, we used quadratic
programs that iterate between finding solutions for the ankle and
knee joints. While this iterative approach is fast when compared
to trajectory optimization methods that deal with multiple joints
simultaneously, the iterations occasionally get stuck when the
planner for one joint trajectory cannot find a solution based on
the assumed fixed trajectory of the other joint. Moreover, if a
solution cannot be found, the current approach simply reuses
the last identified trajectory, rather than moving the trajectory
to be more safe, even if it cannot fully satisfy the bounds. It
seems worthwhile to investigate whether non-convex trajectory
optimization methods such as CHOMP [20], in which the bounds
are represented as soft rather than hard constraints, can help
solve for the knee and ankle trajectories simultaneously without
sacrificing computational speed.

In addition, several technical simplifications can be considered
to bring this technology closer to commercialization. We used
an accurate and relatively expensive laser distance sensor,
eyeing future research toward obstacle scanning and avoidance
capabilities. However, for simple ground plane avoidance,
inexpensive infrared distance sensors such as those used by
Scandaroli et al. [21] are likely su�cient. It may also be
possible to simplify the trajectory planning phase by, for example,
forgoing formal guarantees on satisfying bounds and instead
relying on heuristics to increase knee and ankle flexion and
adjust timing in response to decreased hip height during swing.

Our immediate goal, however, is to generalize the presented
approach to incorporating perception in control beyond the
avoidance of flat ground. We are currently investigating how to
extend the approach to plan trajectories around obstacles that
are scanned by the laser range finder. Previous studies such as
Mohagheghi et al. [17] with able-bodied subjects have shown
that vision plays a crucial role in both planning and control
of the lower limb motion over obstacles. We also envision
using the approach to target objects instead of avoiding them.
For example, a prosthetic leg could scan, recognize, and target
secure footholds and stair treads, or provide enhanced sports
capabilities by targeting and kicking a ball.
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