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Abstract—The analysis, design, and motion planning of robotic
systems, often relies on its forward and inverse dynamic models.
When executing a task involving interaction with the environ-
ment, both the task and the environment impose constraints
on the robot’s motion. For modeling such systems, we need to
incorporate these constraints in the robot’s dynamic model. In
this paper, we define the class of Task-based Constraints (TbC)
to prove that the forward dynamic models of a constrained
system obtained through the Projection-based Dynamics (PbD),
and the Operational Space Formulation (OSF) are equivalent.
In order to establish such equivalence, we first generalize the
OSF to a rank deficient Jacobian. This generalization allow
us to numerically handle redundant constraints and singular
configurations, without having to use different controllers in the
vicinity of such configurations. We then reformulate the PbD
constraint inertia matrix, generalizing all its previous distinct
algebraic variations. We also analyse the condition number of
different constraint inertia matrices, which affects the numerical
stability of its inversion. Furthermore, we show that we can
recover the operational space control with constraints from a
multiple Task-based Constraint abstraction.

I. INTRODUCTION

Motion planning, control, learning, and state estimation,
often rely on modelling a robot as a dynamical system. In
the absence of interaction with the environment, we refer
to the robot’s motion as unconstrained, given that its state
evolves solely according to its dynamics. The interaction
with the environment imposes constraints on the dynamical
system, in the form of contacts, rigid connections, tasks and
behaviours. For example, consider a floating base robot, such
as a humanoid (Fig. 1), carrying a jar of water. This robot
needs to exploit the contact constraints for locomotion while
maintaining balance without spilling the water. The latter
are tasks that also constrain its dynamic motions. Another
example is a robot with structural constraints, such as closed
kinematic loops (Fig. 1). The same robot, might require a
compliant behaviour towards safe human robot interaction,
which also constrains the dynamical motion of the robot. Our
motivation is to model dynamical systems with a generic class
of constraints that are useful in developing motion planning
and control algorithms. However, even for identical multi-
body systems, there are distinct motion representations in the
literature. These formulations differ both in terms of their
algebraic form and some key properties. The goal of this paper
is to present a common derivation for the forward dynamics
model of a constrained system, based on known analytical
dynamics’ principles [32], and relate this result with the two
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Fig. 1. Illustration of different constraints imposed by the robot’s sur-
roundings or required behaviour. Examples are: (a) using contacts for bipedal
locomotion; (b) keeping the balance while executing a critical task such as
holding a jar of water; (c) having a compliant behaviour while following a
given trajectory; (d) and robots with closed kinematic loops.

main approaches found in the robotics literature.
Based on these two motion representations, various au-

thors propose numerous control structures designed to achieve
particular desired behaviours, by optimizing different crite-
ria. Khatib [20] proposes the Operational Space Formulation
(OSF) as a methodology for the description of the end-
effector/tool constrained motion task. This work relies on the
definition of a dynamically consistent inverse Jacobian, as
a way of controlling redundant robots without affecting the
specified end-effector task motion. Numerous studies follow
and extend this formulation. For instance: Sentis and Khatib
[29, 30] propose a task prioritization framework for control
of humanoid robots, achieving complex behaviours by the
activation or deactivation of different tasks and constraints,
and their ordering in the pool of control primitives; Park
and Khatib [26] address multiple contacts and the transition
between those contacts in the control of humanoid robots;
Nakanishi et al. [24] compare it with velocity and acceleration
based controllers, concluding that this formulation is quite
sensitive to modeling errors when compared to the other
kinematic-based approaches; and De Sapio and Khatib [9]
incorporate time independent equality constraints (scleronomic
constraints) into the operational space formulation, highlight-
ing the symmetry between constraints and tasks.

Aghili [1, 2] proposes a Projection-based Dynamics (PbD)
approach for the derivation of the rigid multi-body dynamic
equations of motion, subject to scleronomic equality con-
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Fig. 2. Diagram illustrating the categorization of the two forward dynamic
approaches discussed in this paper, regarding their underlying equality holo-
nomic constraint. A rheonomic constraing is a time dependent constraint, a
scleronomic constraint is a time independent constraint, and a Task-based
Constraint is a time dependent constraint with decoupled dependence on
the configuration q and time t. Note that despite the PbD being mostly
applied to scleronomic constraints, in an earlier work Aghili and Piedbœuf
[4] demonstrate its application to rheonomic constraint. The categorization
in this diagram corresponds to the context of explicitly considering a task
component in the constraint formulation.

straints. This work relies on the definition of a constraint
inertia matrix, in order to represent the constrained forward
dynamics in the configuration space. Numerous studies follow
and extend this approach. For instance: Mistry and Righetti
[23] derive operational space controllers for constrained sys-
tems with passive joints; Ortenzi et al. [25] integrate the
Projected Inverse Dynamics in an optimal control framework
for robots in contact; Lin et al. [22] propose a control frame-
work for multi-arm Cartesian impedance control; Dehio et al.
[11] model and control multi-arm and multi-legged robots,
while compensating for object dynamics, enabling human-
robot interaction.

When contrasting these two main approaches, we need to
analyse both their domain of application and key properties.
Regarding the domain of application, the OSF is a framework
for describing and controlling task space motions, whereas the
PbD is an approach for describing and controlling constrained
multi-body systems. De Sapio and Khatib [9] extend the
OSF to include constrained systems, and Mistry and Righetti
[23] extend the PbD to include task motions, in which case
the domain of application is the same. Regarding their key
properties: the OSF requires a full rank robot Jacobian while
the PbD handles a rank deficient constraint Jacobian; and the
OSF uses an oblique projection (based on the dynamically
consistent inverse) whereas the PbD relies on an orthogonal
projection.

Despite these differences, we show that these approaches are
equivalent. Our work takes inspiration from the more general
treatment of equality constraints from Udwadia and Kalaba
[32], and the parallels between task space and constraint
formulations drawn by De Sapio et al. [10]. We start by
defining a class of constraints called Task-based Constraint
(TbC), with the aim of unifying both OSF and PbD in terms
of their domain of application. This class of constraints is in
itself a sub-class of a general type of holonomic equality time

dependent constraint (rheonomic constraints). Fig. 2 illustrates
the relationship between the different types of equality con-
straints mentioned, and their relation to OSF and PbD.

An immediate repercussion of proving the equivalence
between OSF and PbD is that we can use either for computing
the forward dynamics of a constrained system, with both
leading to the same dynamically consistent result. From this
point of view, regarding the simulation of a multi-body system,
the only reason for choosing one method over the other
is seeking some numerical advantage, as reduced numerical
errors or reduced speed of computation. There are studies
that demonstrate efficient computation of the dynamically
consistent inverse Jacobian, as [33] for a 6 × n end-effector
Jacobian, and [17] for branched kinematic trees, that might
grant the OSF some computational speed gains for these
particular cases. On the other hand, given the flexibility of
PbD approach in choosing different algebraic expressions for
the constraint inertia matrix, theoretically we could find a
matrix that might grant us some ease in its inversion, both
from a computational speed and numerical errors perspective.
However, so far we have found no evidence of the numerical
superiority of either method for a general case. There are
also some works on the stability analysis [17] and asymptotic
stability for the regulation case of a passivity-based OSF [12],
that should readily apply to PbD.

The contributions of this paper are:
• We prove the equivalence between the OSF and PbD,

regarding the forward constrained dynamics:
– We show that OSF generalizes to a rank deficient

Jacobian, and prove that its solution is still dynamically
consistent;

– This generalization allow us to numerically handle
linearly dependent constraints, without requiring the
use of other methods, such as SVD, to find a reduced
number of independent constraints.

– We reformulate the PbD constraint inertia matrix, such
that it generalizes the multiple algebraic solutions
proposed by Aghili [2].

– This reformulation provides us with a mechanism of
generating other algebraic expressions for the con-
straint inertia matrix.

• We present a multiple TbC abstraction that generalizes the
operational space equations of motion with constraints.

• We show that the operational space equations of motion
with constraints independently developed by De Sapio
and Khatib [9] and Mistry and Righetti [23] are also
equivalent.

II. RELATED WORK AND PRELIMINARIES

We first define a generic kinematic constraints. We then
extend this formulation to a general forward constrained
dynamical solution which we use to derive our proof.

A. Task-based Constraint Kinematics

Let q ∈ Dq ⊂ Rn be the vector of generalized coordinates
or configuration of a rigid multi-body system. We define a



Task-based Constraint as any constraint written in the form

Φ(q) = x(t), (1)

where x ∈ Dx ⊂ Rm is the vector of the task space
coordinates1, with m ≤ n, and t represents time. The function
Φ : Dq 7→ Dx - that maps the configuration space to task
space - is, in general, a non linear function that captures the
geometric model of the given constraint.

From a robotics perspective, the task x might be: nonexis-
tent, i.e. x = 0, corresponding to some rigid link connection;
externally enforced but still time varying, which might be
through connection to a moving rail or caused by another
agent (human or robotic); or enforced by the robot itself by an
appropriate task controller. Regardless of task enforcing mech-
anism, it’s effect is always the reduction of the configuration
space domain q ∈ Dq = {q ∈ Rn, x ∈ Dx | Φ(q) = x}.

Differentiating Eq. (1) leads to

A(q)q̇ = ẋ(t), (2)

where the matrix A = (δΦ/δq) ∈ Rm×n corresponds to the
constraint Jacobian, q̇ ∈ Q ⊂ Rn is the generalized velocity,
and ẋ ∈ Rm is the task velocity. The second time derivative
of Eq. (1) becomes

A(q)q̈ = ẍ(t)− Ȧ(q, q̇)q̇, (3)

where q̈ ∈ A ⊂ Rn is the generalized acceleration, and
ẍ ∈ Rm is the task acceleration. We will use the differential
constraint for formulating the inverse kinematics and forward
dynamic equations.

B. Task-based Constraint Inverse Kinematics

If we have direct control authority over the configuration
velocity q̇ and wish to track a desired task trajectory/path
x(t) and ẋ(t), we can solve Eq. (2) for q̇. However, for a
redundant robotic system (m < n), there is an infinite number
of solutions. The general solution is

q̇ = Gẋ+ (In −GA)q̇ε, (4)

where G is any generalized inverse (or G-inverse) of A, q̇ε ∈
Rn is an arbitrary configuration velocity, and In is n × n
identity matrix. A G-inverse of A is a matrix that satisfies the
condition AGA = A [6, 32].

The most widely applied type of G-inverse in the robotics
literature is the Moore-Penrose inverse (MP-inverse), often
called pseudo-inverse [31, 14]. The MP-inverse of A is
the unique matrix G = A† that satisfies the 4 conditions:
(i) AGA = A (ii) GAG = G (iii) AG = (AG)

>

(iv) GA = (GA)
>, and it emerges from the solution q̇ = A†ẋ

to Eq. (2) of minimum-norm ‖q̇‖2 = 〈q, q〉 that minimizes
the least-square error ‖Aq̇ − ẋ‖2 [13, 32], where 〈 , 〉 repre-
sents an Euclidean inner product. For full row rank A, the
MP-inverse assumes the widely used closed form solution
A† = A>

(
AA>

)−1
, known as right inverse.

1Here we dropped the time dependency on x. For readability purposes,
we shall drop input dependencies after introducing dependent variables.

Another widely used unique G-inverse is the inertia-
weighted generalized inverse G = A [10], that arises from the
solution q̇ = Aẋ to Eq. (2) that minimizes the instantaneous
kinetic energy 1

2‖q̇‖
2
M = 1

2 〈q̇, q̇〉M = 1
2 〈q̇,Mq̇〉 of a multi-

body system, with inertia matrix M(q), while minimizing
the least-square error ‖Aq̇ − ẋ‖2. This G-inverse satisfies the
first 3 MP-inverse conditions, with the additional condition
MGA = (MGA)> [6]. For full row rank A we get the closed
form solution A = M−1A>(AM−1A>)−1 [20].

The second term of the sum in Eq. (4) is a projection matrix
(In − GA), that projects any arbitrary configuration velocity
q̇ε to the null space of A, i.e. (In − GA)q̇ε ∈ N (A). This
projection operator can be defined for both A, where P ,
(In − AA) is an oblique inertia-weighted projection matrix
[10], and for A†, where P , (In − A†A) is an orthogonal
projection, i.e. P = P>.

This constraint formulation can be further extended to a
dynamical system by combining it with the dynamics of the
unconstrained dynamical system.

C. Configuration Space Dynamics

The equation of motion of an unconstrained system in the
configuration space is

M(q?)q̈? + h(q?, q̇?) = τ (5)

where h ∈ Rn contains the Coriolis, centrifugal, and gravita-
tional contributions, M(q?) is the unconstrained inertia matrix,
τ ∈ Rn is the generalized force vector in the configuration
space, and q?, q̇?, q̈? ∈ Rn are, respectively, the unconstrained
generalized position, velocity, and acceleration. For an uncon-
strained system where M is a symmetric positive definite, we
can compute the forward dynamics by simply inverting M as

q̈? = M−1(τ − h). (6)

There are of course more efficient methods for computing q̈?
[16], we shall use this expression just for constrained system
derivation purposes.

D. Task Space Dynamics

One way of taking into account the contribution of a Task-
based Constraint in the dynamics equation of motion of a
multi-body system is to simply add that extra force component
to the equation of motion as,

Mq̈ + h−A>λ = τ, (7)

where λ ∈ Rm is the force coming from the task space.
We obtain the task space dynamics equation of motion by

applying the operational space formulation from [20], resulting
in

Mxẍ+ hx − λ = f, (8)

where
Mx ,

(
AM−1A>

)−1
= A

>
MA (9)

is the task space inertia matrix [18], and with hx , A
>
h −

MxȦq̇, and f , A
>
τ , for A full row rank.



E. Projected Dynamics

Aghili [1, 2] defines the Projected Inverse Dynamics of
a multibody system by pre-multiplying Eq. (7) with the
orthogonal projector P , obtaining

PMq̈ = P (τ − h). (10)

For computing the forward dynamics equation of motion, as
PM is singular, we pre-multiply Eq. (3) with A†, obtaining

(In − P )q̈ = A†(ẍ− Ȧq̇), (11)

and combine it with Eq. (10), obtaining

Mcq̈ = P (τ − h) + Cc(ẍ− Ȧq̇) (12)

where Mc is called the constraint inertia matrix. As Mc is
invertible, we get

q̈ = M−1c P (τ − h) +M−1c Cc(ẍ− Ȧq̇), (13)

which Aghili [2] calls equation of motion of a constrained
system in a compact form.2

Depending on different ways of combining Eq. (10) and
Eq. (11), both Mc and Cc take different expressions. Aghili
[1, 2] derives and discusses the numerical properties of the
following different combinations of Mc and Cc:

1) M (1)
c = PM + (In − P ), C(1)

c = −A†,
2) M (2)

c = M + PM + (PM)>, C(2)
c = −MA†,

3) M (3)
c = PMP + (In − P )M(In − P ),

C
(3)
c = −(In − 2P )MA†,

4) M (4)
c = PM + γ(In − P ), C(4)

c = −γA†,
where γ is a non-negative scalar.

F. General Forward Constrained Dynamics Solution

Analogously to what was done for the general solution of an
constrained inverse kinematics problem, the general solution
for the Task-based Constrained configuration acceleration from
Eq. (3) is

q̈ = G(ẍ− Ȧq̇) + (In −GA)q̈ε, (14)

with q̈ε ∈ Rn being an arbitrary configuration acceleration.
We can then argue that any forward dynamics solution, i.e.
expression for computing a q̈, is a particular case of the general
solution (14), corresponding to particular choices of G and
q̈ε, and resulting from optimizing different cost functions. For
instance: q̈ = A†(ẍ− Ȧq̇) minimizes ‖q̈‖2, being a particular
case of Eq. (14) for which G = A† and q̈ε = 0; q̈ = A(ẍ−Ȧq̇)
minimizes 1

2‖q̇‖
2
M and corresponds to the case where G = A

and q̈ε = 0.

2Note that here we followed the same derivation process as in [1] but
adding as task acceleration ẍ. By making ẍ = 0, we recover the original
results. Therefore, to accommodate ẍ we removed Ȧ from Cc.

G. Forward Constraint Dynamics: Gauss’ Principle

One can obtain another particular case of Eq. (14), by using
a fundamental principle of mechanics - the Gauss’ Principle
of Least Constraint - which states that if a given configura-
tion acceleration q̈ simultaneously satisfies the constraint and
minimizes the Gauss function

G(q̈) = 〈q̈? − q̈, q̈? − q̈〉M , (15)

where q̈? is the unconstrained acceleration, then q̈ is the correct
acceleration the constrained system will acquire, i.e. that is the
acceleration that actually materializes [32, 7, 10]. The result
of that minimization is

q̈ = A(ẍ− Ȧq̇) + P q̈? (16)

= A(ẍ− Ȧq̇) + PM−1(τ − h),

where we can see that is a particular solution of Eq. (14) for
which G = A and q̈ε = q̈?.

Udwadia and Kalaba [32] derives the Fundamental Equation

q̈ = q̈? +A (b−Aq̈?) , (17)

which is a equivalent way of writing Eq. (16), but covers a
much more general class of non-holonomic equality constraint
written in the Pfaffian form A(q, q̇, t)q̈ = b(q, q̇, t). Therefore,
Eq. (16) is a sub-case of the Fundamental Equation for which
b = ẍ− Ȧq̇. Furthermore, Udwadia and Kalaba [32] consider
the case of a rank deficient A, by using the following inertia-
weighted generalized inverse,3

A = M−1A>
(
AM−1A>

)†
. (18)

In the following sections we will relate this remarkably simple
result with the constraint forward dynamic solutions from the
OSF and PbD.

III. OPERATIONAL/TASK SPACE FORMULATION
GENERALIZATION

A. The Dynamically Consistent Generalized Inverse

The same way that in Eq. (4) we decompose q̇ into a
task component and null-space component using a G-inverse,
Khatib [20] decomposes τ in its task and null-space compo-
nents using A> as

τ = A>f + (In −A>G>)τε, (19)

where τε ∈ Rn is an arbitrary generalized force vector.
Khatib [21] defines the Dynamically Consistent Inverse of

a robot Jacobian A as the matrix G that satisfies the condition

AM−1
(
In −A>G>

)
τε = 0, (20)

which corresponds to the solution that decouples the gen-
eralized force τ into a component A>f only acting in the
robot’s end-effector, and a component (In − A>G>)τε that

3Udwadia and Kalaba [32] discuss other expressions for the inertia-
weighted generalize inverse that still comply with the Gauss’ Principle of
Least Constraint.



only affects the internal motion of the robot, i.e. the task space
motion is unaffected by τε. Furthermore, Khatib [21] proves
that for full rank A, the only G-inverse that satisfies such
condition is the inertia-weighted generalized inverse [18].

The first straightforward generalization of the original OSF
is its application to any Task-based Constraint by replacing
the end-effector robot Jacobian by any constraint Jacobian A,
that splits the space of motion into a task space of interest and
it’s null space. The second generalization is to extend it to the
case where A is rank deficient, which allow us to numerically
handle redundant constraints and singular configurations. For
that we simply use the inertia-weighted generalized inverse of
Eq. (18) and redefine the task space inertia matrix from Eq.
(9) as

Mx ,
(
AM−1A>

)†
= A

>
MA. (21)

Note that for A full rank, then Eq. (21) is equivalent to Eq.
(9). Furthermore, we can prove that any inertia-weighted gen-
eralized inverse is still dynamically consistent, one important
principle in the OSF to guarantee that task space controllers
remain unaffected by null space controllers.

Lemma 1: Let G = A be the unique inertia-weighted
generalized inverse of a rank deficient Jacobian A, then this
generalized inverse satisfies the condition from Eq. (20) being,
therefore, a dynamically consistent inverse of the Jacobian A.
The proof of this lemma can be found in Appendix A.

B. Equivalence with the Least Constraint Solution

Peters et al. [27] and Bruyninckx and Khatib [7] already
discuss the equivalence of the operational space control ex-
pressions with the results obtained using the Gauss’ Principle
of Least Constraint. We can easily show that by rearranging
Eq. (8) with respect to the constraint force λ and substituting
it in Eq. (7) and then inverting the inertia matrix M , we obtain
the same solution of Eq. (16). Furthermore, by generalizing
the Operational Space equations of motion to A rank deficient,
then this equivalence is also valid for any A.

IV. PROJECTED DYNAMICS REFORMULATION

We reformulate the constraint inertia matrix Mc as

Mc , PM +R(In − P ), (22)

and Cc as
Cc , −RA†. (23)

It is straight forward to show, through simple algebraic manip-
ulations, that all choices of Mc and Cc presented by Aghili
[2] are particular instances of Eq. (22) and Eq. (23), where
the matrix R respectively takes the following expressions:
1) R(1) = In, 2) R(2) = M , 3) R(3) = (In − 2P )M ,
4) R(4) = γIn. We can then re-write Eq. (13) as

q̈ = M−1c P (τ − h) +M−1c RA†(ẍ− Ȧq̇). (24)

In fact, we will show later that R can be any square matrix
such that Mc is full rank. We can even use a matrix R(r) whose
elements are randomly generated, as long as we check the rank

of Mc, and the solution of Eq. (24) will remain the same. This
happens, because the combination of Eq. (10) and Eq. (11) sole
purpose is to invert the projected inverse dynamics (10) and,
therefore, we have to add some component to Eq. (10) in order
to make PM full rank. We can even look at this solution as a
special type of regularization, where the regularization term R
only affects the complement space of the motion of interest.

Two important benefits of this reformulation are: firstly, any
proof done for these generalized Mc and Cc is directly valid
for all the other ones presented in the literature; and secondly,
we have now a mechanism of obtaining new Mc and Cc

based on finding R such that Mc and Cc satisfy some desired
property. For example, we can find R that leads to the Mc with
the smallest condition number among all possible constrained
inertia matrices, which is a desirable numerical property [2].

Lemma 2: The R(∗) that minimizes κ(Mc), where κ(.)
represents the condition number, is given by

R(∗) = µIn − PM, (25)

yielding M
(∗)
c = PMP + (µIn − P ), for some µ ∈ R such

that {σmin(PMP ) 6= 0} ≤ µ ≤ σmax(PMP ), where σ(.)

represents singular values. Furthermore, κ(M
(∗)
c ) is equivalent

to κ(Z>2 MZ2), where Z2 is a basis for N (A) such that P =
Z2Z

>
2 .

The proof of this lemma can be found in Appendix B.

A. Case Study for the Inertia Matrix’s Condition Number

Aghili [2] provides a detailed analysis on the symmetry
and positive definiteness properties of each Mc proposed, key
properties for its inversion. Another key property to consider
for the inversion of Mc is its condition number. For illustration
purposes, we simulated a free fall motion of a three link planar
serial robot arm with its end-effector constrained to a vertical
slider, as shown in Fig. 3. We then computed the condition
number for M and for the different Mc’s discussed in this
paper, as shown in Fig. 4.

The robot arm used consists of a planar serial robot arm
(Fig. 3a), composed of three identical links with equidistant
center of mass from the joints, and with length, mass, and
inertia of 1m, 1kg, and 0.1m kg2, respectively. We used Corke
[8]’s MatLab® toolbox for computing M , h, q̈?, and the
robot’s Jacobian. For the forward simulation of the motion we
integrated Eq. (24) using a non-adaptive (fixed step) Dormand-
Prince solver of order 5, obtaining 200 samples corresponding
to 2s. We set τ = 0 and ẍ = 0, meaning the robot is non-
actuated (free fall) and there is no task space (scleronomic
constrait). Fig. 3b shows the resulting joint angles.

In Fig. 4 we can verify, as expected, that the condition
number curve corresponding to M (∗)

c is a lower bound for all
other condition number curves. However, for this illustrative
case study M is too well conditioned, i.e. κ(M) � round-
off error, to expect any significant impact in the numerical
errors resulting from using different Mc’s. For example, if we
compute the joint accelerations for the trajectory in Fig. 3b
using any two of the Mc’s discussed, the mean norm of their
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Fig. 3. Free fall (i.e. τ = 0) simulation of a two dimensional serial robot
arm with three links and with the end-effector constrained to a vertical slider:
(a) five samples of configurations taken during the free fall motion, with less
opaque configurations corresponding to further in the time of the simulation
(b) time evolution of the arm joint angles, with q1 being the angle of the
base joint and q3 the angle of the last joint, and with markers placed at time
instances corresponding to the samples in (a).

difference is in the order of magnitude of the MatLab’s round-
off error (10−14).

One could hypothesize that, for a badly conditioned M ,
using the method that requires a matrix inversion with lower
condition number would result in smaller simulation errors,
specially when using M

(∗)
c . However, in all our experiments

(other simulations involved serial arms with non-identical and
larger number of links) this hypothesis failed to hold, as
we always obtained the same constraint error propagation
regardless of the Mc employed or even when using Eq. (16).

Featherstone [15] discusses that the ill-conditioning of M
is more than a numerical artifact, but a phenomenon of the
underlying mechanism of the multi-body system itself. We
might reason that for systems and configurations where κ(M)
is large, i.e. κ(M) ≈ round-off error, the minimum condition
number κ(Z>2 MZ2) will also approach a large value due to
its dependence on M . Even though some of our experiments
confirm our reasoning, until proved or extensively tested, it
will remain an open question. Note that we found slight vari-
ations of the constraint error and simulation time when using
different variable step integration solvers, that somehow prefer
some Mc structures over the others, but without identifying a
distinct pattern.

B. Equivalence with the Least Constraint Solution

As noted in the previous case study, in all our experiments
we verified that using either the Principle of Least Constraint
or any of the PbD solutions always resulted in the same
constrained acceleration. Equipped with our reformulated PbD
Eq. (24) parameterized by R, we can now easily compare the
Least Constraint solution, given by Eq. (16), with the PbD.
We hypothesize that they are analytically equivalent, which by
inspection of expressions (16) and (24) leads to the following
Lemma.

Lemma 3: For any R ∈ Rn×n such that Mc is invertible,
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Fig. 4. Time evolution of the condition number for different constrained
inertia matrices and for the unconstrained inertia matrix. We compute M(∗)

c

using R(∗) from Eq. (25), and M(r)
c using a different R(r) for every time

iteration and with elements sampled from an uniform distribution in the
interval [0, 1].

we have that

A = M−1c RA†, (26)

PM−1 = M−1c P (27)

The proof of this lemma can be found in Appendix C.

V. MULTIPLE CONSTRAINTS

So far we treated A ∈ Rm×n as a single constraint,
but in reality it accommodates multiple constraints acting
simultaneously. In this section we consider the case where we
partition A into two and treat it as two separate constraints
acting simultaneously. This treatment readily generalizes to
any other number of partitions.

If we split the task space vector ẋ into two components ẋ1
and ẋ2, we can think each of these tasks as being associated
by a different constraint A1 and A2, respectively, such that the
constraint Jacobian is A =

[
A>1 A>2

]>
. Therefore, the task

space inertia matrix becomes [34]

Mx =

[
A1M

−1A>1 A1M
−1A>2

A2M
−1A>1 A2M

−1A>2

]†
=

[
M1 −A>1 A>2 M2

−A>2 A>1 M1 M2

]
,

(28)

where

M1 ,
(
A1P 2M

−1A>1
)†

and M2 ,
(
A2P 1M

−1A>2
)†
,

with A1 and A2 being, respectively, the dynamically consistent
inverse of A1 and A2. P 1 and P 2 are the respective projec-
tion matrices. The dynamically consistent inverse of the two
constraints combined is given by

A
>

=

[(
A1P 2M

−1A>1
)†
A1P 2M

−1(
A2P 1M

−1A>2
)†
A2P 1M

−1

]
,

[
A#

1

>

A#
2

>
,

]
(29)

where we define A#
1

>
and A#

2

>
to be the partial dynami-

cally consistent inverses. By partitioning the task force f =[
f>1 f>2

]>
we can then obtain the separate sub task dynamic



equations, potentially allowing us to apply different control
schemes to each task space. For example, we have

f2 = M2(ẍ2−Ȧ2q̇)−A2A
>
1 M1(ẍ1−Ȧ1q̇)+A

#
2

>
h−λ2 (30)

for the task 2, and the force of the task 1 takes an analogous
expression.

A. Operational Space Control with Constraints

As we showed, the forward projected dynamics is equivalent
to the dynamically consistent solution, therefore, we must also
draw an equivalence between different methods for operational
space control with constraints.

If we call A1 the Jacobian of the constraint and A2 the
Jacobian of the robot, and set ẍ1 = 0, then the partition in
(28) coincides exactly with the partition from [9]. Therefore,
for λ2 = 0 and ẍ1 = 0, Eq. (30) corresponds to the task
motion control, and its homologous for f1 corresponds to the
constraint forces.

Regarding the approach based on the projected inverse
dynamics, knowing that PM−1 = M−1c P , we see that the
partial dynamically consistent inverse takes the form

A#
2

>
,
(
A2P 1M

−1A>2
)−1

A2P 1M
−1

=
(
A2M

−1
c P1A

>
2

)−1
A2M

−1
c P1,

which is the same used in [23]. Furthermore, by performing
some algebraic operations on Eq. (30) and by making R = In,
λ2 = 0, and ẍ1 = 0, we recover

f2 = M2

[
ẍ2 +A2M

−1
c P1h− (Ȧ2 −A2M

−1
c RA†1Ȧ1)q̇

]
which is again exactly the same as the operational space
dynamics presented with constraints found in [23]. This result
shows that a framework of multiple Task-based Constraints
generalizes the task space plus constraint formulations from
De Sapio and Khatib [9] and Mistry and Righetti [23] and,
furthermore, allow us to reason about them as equivalent.

VI. SUMMARY AND DISCUSSION

In this paper, we define a class of Task-based Constraints
(TbC) and derive the equations of motion of a multi-body
system subject to that type of constraint. By contrasting our
solution with the ones from the Operational Space Formulation
(OSF) and Projection-based Dynamics (PbD), we prove that
those approaches are equivalent regarding the computation of
the forward dynamics of a constrained multi-body system.
In order to enable such equivalence, we generalize the OSF
to a rank deficient Jacobian and reformulate the PbD to
generalize all previous alternative algebraic expressions of the
constraint inertia matrix. Moreover, we present a multiple TbC
abstraction that generalizes the operational space equation of
motion with constraints.

Some practical benefit of this Task-based Constraint ab-
straction is the convenience in expressing constraints using
a task space formalization. For example, when Escande et al.
[14] propose the Hierarchical Inverse Kinematics, applying it
in the control of a humanoid robot, the task of reaching an

object with the end-effector is in the null space of the task
of keeping the balance of the humanoid. Similarly, Armesto
et al. [5] propose a method for learning null space policies
and applies it to learning a wiping motion, that when used
to wipe a curved surface requires a task space controller for
keeping contact with the surface. Sentis and Khatib [29, 30]
also propose a task prioritization framework using dynamically
consistent projections for the control of a humanoid, applying
the different motion primitives in the null-space of the higher
priority tasks. In all these works, the task motion with higher
priority works as a constraint for the subsequent null space
motion.

We now need to contrast our main finding with the one
from Righetti et al. [28], who also discuss the equivalence
between the OSF and the PbD, but regarding the inverse
dynamics computation (controller). They find that the output
of the controller is independent of the projection operator used
in that computation, assuming a desired constraint consistent
configuration and a control signal that guarantees perfect
tracking. Finally, they advocate for the use of an orthogonal
projection (instead of an oblique) due to its computational
simplicity, free from the inertia parameters. According to our
finding, when computing that configuration acceleration (the
forward dynamics) given a desired task motion, then both the
OSF and the PbD approaches are also equivalent. However,
in this case it is unclear which one is preferable, given that
both of them use kinematic and inertia parameters, only with
a different combination.

Going forward, finding what are the particular cases or nu-
merical procedures that might give a significant advantage of
one approach over the other, both in terms of the computational
speed and numerical errors, can lead to some impactful practi-
cal benefits, resulting from our new theoretical understanding
of Task-based Constrained multi-body dynamical systems.

APPENDIX A

Proof 1 (Lemma 1): Let A be the inertia-weighted gener-
alized inverse of the rank deficient matrix A. Then MAA =
(MAA)>, which is equivalent to AAM−1 = (AAM−1)> [6],
given M symmetric positive definite. By replacing G = A in
the condition from Eq. (20), we obtain

AM−1(In −A>A
>

)τε = (AM−1 −A(AAM−1)>)τε

= (AM−1 − (AAA)M−1)τε = (AM−1 −AM−1)τε = 0,

for any τε ∈ Rn, proving that A is a dynamically consistent
inverse of the Jacobian matrix A. �

APPENDIX B

Proof 2 (Lemma 2): The goal here is to find a matrix R(∗)

such that the condition number κ of Mc = PM +R(In−P )
is minimal. By definition the condition number of a square
matrix C is

κ(C) , ‖C−1‖ · ‖C‖, (31)

for any consistent norm [19]. From definition (31), we can
verify that the minimum possible condition number is 1, that



only happens if C is a scalar multiple of a linear isometry,
i.e. a distance preserving transformation. In the Euclidean
space, such transformation is given by an orthogonal matrix
Q. Therefore, if we can find R such that Mc = µQ, where
µ ∈ R 6=0, then that is the minimum possible condition number
we can hope for. By equating Mc and µQ, we obtain

Mc = µQ⇔ R(In − P ) = µQ− PM. (32)

Given that (In−P ) is non invertible, it means the equality in
Eq. (32) is false. However, if we post-multiply (In − P ) by
both sides of Eq. (32), we get

R(In − P ) = (µQ− PM)(In − P ), (33)

which is true for R = (µQ − PM), and leads to the closest
result of the approximation Mc ≈ µQ. The resulting constraint
inertia matrix is Mc = µQ(I − P ) + PMP .

To keep generality, we can still consider Q to be any square
full rank matrix, thus all we have achieved so far is a rewritten
Mc in terms of Q and µ instead of R. We shall now find a
Q and µ that minimize κ(Mc). Given that (In − P ) is an
orthogonal projection matrix, we can always find a partial
isometry Z1 such that (In − P ) = Z1Z

>
1 , and analogously

P = Z2Z
>
2 , where Qp =

[
Z1 Z2

]
is an orthogonal matrix.

We can then rewrite Mc as

Mc = µQ(I − P ) + PMP = µQZ1Z
>
1 + Z2Z

>
2 MZ2Z

>
2

=
[
QZ1 Z2

]︸ ︷︷ ︸
B

[
µIn−m 0

0 Z>2 MZ2

]
︸ ︷︷ ︸

X

[
Z>1
Z>2

]
︸ ︷︷ ︸
Q>

p

. (34)

We have that for any suitable norm

‖Mc‖ = ‖BXQ>p ‖ = ‖BX‖,
‖M−1c ‖ = ‖QpX

−1B−1‖ = ‖X−1B−1‖,

and replacing the previous results in (31), we obtain

κ(Mc) = ‖M−1c ‖ · ‖Mc‖ = ‖X−1B−1‖ · ‖BX‖
≤ ‖X−1‖ · ‖X‖ · ‖B−1‖ · ‖B‖ (35)
= κ(X)κ(B).

As B only depends on Q and X only depends on µ, we
can independently find Q and µ that minimize the respective
κ(B) and κ(X). By inspection of Eq. (34) we see that B is
orthogonal if Q = In, in which case the inequality in Eq. (35)
becomes an equality. Therefore, we obtain that the result that
minimizes κ(Mc) is R(∗) = (µIn − PM), for which

M (∗)
c = µ(In − P ) + PMP. (36)

Aghili [3] more recently proposes an Mc in the form of Eq.
(36) and proves using a 2-norm that its condition number is
minimum for {σmin(PMP ) 6= 0} ≤ µ ≤ σmax(PMP ),
where σ represents the singular values of a given matrix.
We have that {σmin(PMP ) 6= 0} = σmin(Z>2 MZ2) and
σmax(PMP ) = σmax(Z>2 MZ2). If we use a 2-norm in (31),
then the condition number of a matrix is given by the ratio of
its singular values. Therefore, by inspection of Eq. (34), we
see that the minimium κ(M

(∗)
c ) is κ(Z>2 MZ2). �

APPENDIX C

Proof 3 (Lemma 3): The goal is to prove that A =
M−1c RA† and PM−1 = M−1c P for any R ∈ Rn×n such that
Mc ∈ Rn×n is full rank. Using the MP-conditions that apply
to A† and the inertia-weighted generalized inverse conditions
that apply to A (see Section II-B), we start by showing the
intermediary results

PMA = MA−A†AMA = MA−A†AM(AAA)

= MA− (A†A)>(MAA)>A

= MA− [A
>
MA(AA†A)]>

= MA− [A
>

(MAA)>]> = MA−M(AAA)

= MA−MA = 0,

and

(In − P )A = A†AA = (A†AA†)AA = A†(AA†)>(AA)>

= A†A†
>

(A>A
>
A>) = A†A†

>
A>

= A†(AA†)> = A†AA† = A†.

For Mc invertible A = M−1c RA† ⇔ McA = RA†, and then
we can show that

McA = [PM +R(In − P )]A = PMA+R(In − P )A

= RA†.

Analogously, for PM−1 = M−1c P ⇔ McPM
−1 = P , for

which we can show that

McPM
−1 = [PM +R(In − P )]

[
In −AA

]
M−1

=
[
PM − PMAA+R(In − P )

− R(In − P )AA
]
M−1

=
[
PM +RA†A−RA†A

]
M−1

= PMM−1 = P. �
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