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Game Theoretic Planning for Self-Driving Cars
in Competitive Scenarios

Mingyu Wang1, Zijian Wang2, John Talbot1, J. Christian Gerdes1 and Mac Schwager2

Abstract—We propose a nonlinear receding horizon game-
theoretic planner for autonomous cars in competitive scenarios
with other cars. The online planner is specifically formulated for
a two car autonomous racing game in which each car tries to
advance along a given track as far as possible with respect to
the other car. The algorithm extends previous work on game-
theoretic planning for single integrator agents to be suitable for
autonomous cars in the following ways: (i) by representing the
trajectory as a piecewise-polynomial, (ii) incorporating bicycle
kinematics into the trajectory, (iii) enforcing constraints on path
curvature and acceleration. The game theoretic planner iteratively
plans a trajectory for the ego vehicle, then the other vehicle
until convergence. Crucially, the trajectory optimization includes
a sensitivity term that allows the ego vehicle to reason about
how much the other vehicle will yield to the ego vehicle to avoid
collisions. The resulting trajectories for the ego vehicle exhibit
rich game strategies such as blocking, faking, and opportunistic
overtaking. The game-theoretic planner is shown to significantly
out-perform a baseline planner using Model Predictive Control
which does not take interaction into account. The performance
is validated in high-fidelity numerical simulations, in experiments
with two scale autonomous cars, and in experiments with a full-
scale autonomous car racing against a simulated vehicle.

I. INTRODUCTION

In this work we seek to enable an autonomous car to interact
with other vehicles, both human-driven and autonomous, while
reasoning about the other vehicle’s intentions and responses.
Interactions among multiple cars are complicated because there
is no centralized coordination, and there exist both elements
of cooperation and competition during the process. On the
one hand, all agents must cooperate to avoid collisions. On
the other hand, competition is found in numerous scenarios
such as merging, lane changing, overtaking, and so on. In
these situations, the action of one agent is dependent on the
intentions of other agents, and vice versa, thus exhibiting rich
dynamic behaviors that are seldom characterized in the existing
literature.

We propose a game theoretic planning algorithm that explic-
itly handles such complex phenomena. In particular, we exploit
the concept of Nash equilibria from game theory, which are
characterized by a set of actions such that no single agent can
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(a) Indoor experiments using RC car experimental platform.
Motion capture system is used for odometry information of
both cars.

(b) Outdoor experiments using X1 — a drive-by-wire research
vehicle at Thunderhill Raceway Park, CA

Fig. 1: We demonstrate the performance of our algorithm in
experiments using both RC cars indoors and a full-size research
vehicle, X1, outdoors.

do better by changing its action unilaterally. We develop our
algorithm for a two car racing game in which the objective
of each car is to advance along the track as far beyond its
competitor as possible. The vehicles also share a common
collision avoidance constraint to formalize the intention that
both cars want to avoid collisions. Nevertheless, there is no
means of explicit communication between the vehicles. It is
through this collision avoidance constraint that one agent can
impose influence on the other, and also can acquire information
by observing or probing the opponent. We use an iterative
algorithm, called Sensitivity Enhanced Iterated Best Response
(SE-IBR), that seeks to converge to a Nash equilibrium in the
joint trajectory space of the two cars. The ego vehicle iteratively



solves several rounds of trajectory optimization, first for itself,
then for the opponent, then again for itself, etc. The fixed
point of this iteration represents a Nash equilibrium in the
trajectories of the two vehicles, hence the trajectory for the
ego vehicle accounts for the predicted response of the other
vehicle. The planned trajectories are specifically suited to cars
as we parameterize them by piecewise time polynomials which
take into account the vehicle kinematics and also can enforce
the bounded steering and acceleration constraints.

We verify our algorithm in both simulations and experiments.
The simulations use a high-fidelity model of vehicle dynamics
and show that our game theoretic planner significantly out-
performs an opponent using a conservative MPC-based trajec-
tory planner which only avoids collisions passively. We also
perform experiments with scale model cars, and a full sized
autonomous car. For the model cars, we show again that the
car using our game theoretic planner significantly out-performs
its competitor with the aforementioned MPC based planner. A
snapshot from an experimental run is shown in Fig. 1a. For
the full-scale car (shown in Fig. 1b), we show that the game
theoretic planner outperforms a simulated competing vehicle
(simulated for safety reasons) using the aforementioned MPC-
based planner.

II. RELATED WORK

Our work builds upon the results in [1], in which the Sensitiv-
ity Enhanced Iterated Best Response (SE-IBR) algorithm was
proposed for drone racing, assuming single integrator dynamics
for the drones, and representing the planned trajectories as
discrete waypoints. Recently in [2], [3], Wang et al. extended
this algorithm to multiple drones (more than two) in 3d environ-
ments, again with single integrator dynamics. The main innova-
tion in our work beyond these is (i) to represent the trajectory
as a continuous-time piecewise polynomial, (ii) to incorporate
bicycle kinematic constraints, (iii) and to include turning angle
and acceleration constraints. All of these advancements are for
the purpose of making this algorithm suitable for car racing.
We also provide new simulation results with a high fidelity
car dynamics simulator, experimental results with small-scale
autonomous race cars in the lab, and experimental results with
a full-scale autonomous car on a test track.

Some other recent works have proposed Iterative Best Re-
sponse (IBR) algorithms to reach Nash equilibria in multi-
vehicle interaction scenarios. In [4], Williams et al. propose an
IBR algorithm together with an information theoretic planner
for controlling two ground vehicles in close proximity. That
work considers problems in which the objective function of
each vehicle depends explicitly on the states of both vehicles.
In contrast, in our problem, the only coupling between the
two vehicles is through a collision avoidance constraint, which
is handled by our SE-IBR algorithm by adding a sensitivity
term to the best response iterations. Secondly, the scenario in
[4] is collaborative: the vehicles try to maintain a prescribed
distance from one another. Our scenario is competitive: the
vehicles are competing to win a race. Finally, the algorithm

in [4] uses an information theoretic planner in each iteration,
which accommodates stochasticity, while ours uses a nonlinear
MPC approach with continuous-time vehicle trajectories, which
allows us to incorporate realistic kinematic constraints. In a
similar vein [5] proposes a game theoretic approach for an
autonomous car to interact with a human driven car. That
work proposes a Stackelberg solution (as opposed to a Nash
solution) with potential field models to account for human
driver behavior. It also does not consider constraints (e.g. road
or collision constraints) for the vehicles.

Aside from the above examples, the existing literature in
game-theoretic motion planning and modeling for multiple
competing agents typically are either for discrete state or action
spaces [6]–[8], or are specifically for pursuit-evasion style
games. In [9], a hierarchical reasoning game theory approach
is used for interactive driver modeling; [10] predicts the motion
of vehicles in a model-based, intention-aware framework using
an extensive-form game formulation; [11], [12] considers Nash
and Stackelberg equilibria in a two-car racing game where
the action space of both players are finite and the game is
formulated in bimatrix form. A similar approach is also used to
model human collision avoidance behavior in an extensive form
game [13]. In contrast to these previous works, we consider
a continuous trajectory space which can capture the complex
interactions and realistic dynamics of cars. Differential games
are studied in [14]–[17] in the context of a pursuit-evasion game
where pursuers and evaders are antagonistic towards each other.
This antagonistic assumption is unrealistic in real-world driving
and leads to over conservative behaviors for the ego vehicle.

There is also a vast body of work on collision avoidance
in a non-game-theoretic framework. To name just a few, [18],
[19] present a provable distributed collision avoidance frame-
work for multiple robots using Voronoi diagrams, under the
assumption that agents are reciprocal. Control barrier functions
are used in [20] for adaptive cruise control. [21] presents a
control structure for cars in emergency scenarios where cars
have to maneuver at their limits to achieve stability and avoid
collisions with static obstacles. [22] introduces a minimally-
interventional controller for closed-loop collision avoidance
using backward reachability analysis. By contrast, we focus on
motion planning in a competitive two-car racing game, where
agents are adversarial and have influence on each other through
shared collision avoidance constraints.

III. PRELIMINARIES

In this section, the game theoretic planner from [1] is
concisely summarized for two simplified discrete-time single-
integrator robots in a racing scenario. Our work in this paper
builds upon this previously proposed framework.

A. Discrete Time Single Integrator Racing Game
Consider two single integrator agents competing in a racing

scenario. To simplify the control strategy, we assume they move
in R2 with the following discrete time dynamics:

pn
i = pn−1

i + un
i ,



where pn
i ∈ R2 and un

i ∈ R2 are robot i’s position and velocity
at time step n, respectively. We assume we have direct control
over velocity so un

i is also our control input. The racing track
is characterized by its center line:

τ : [0, lτ ] 7→ R2,

where lτ is total track length. Track tangent and normal vectors
are denoted as: t = τ ′ and n = τ ′′. Track width is wτ . These
track parameters are known by all racing agents beforehand.
The progress of one player along the track is defined as the arc
length s of the closest point to the robot’s current position pi

on the track center line:

si(pi) = arg min
s

1

2
||τ (s)− pi||2. (1)

The objective of a player is to travel along the track as far as
possible ahead of its opponent, which can be formulated by the
following optimization problem

max
θi

si(p
N
i )− sj(pN

j ) (2a)

s.t. pn
i = pn−1

i + un
i (2b)∥∥pn

j − pn
i

∥∥ ≥ di (2c)∣∣∣n(pn
i )

T
[pn

i − τ (pn
i )]
∣∣∣ ≤ wτ (2d)

‖un
i ‖ ≤ ui, (2e)

where the decision variable is θi = [p1
i , . . . ,p

N
i ,u

1
i , . . . ,u

N
i ].

The optimization will be solved and used in a receding horizon
planning fashion with N steps. (2a) represents the objective
of one player to travel further than its opponent at the end
of planning horizon. Constraint (2b) enforces the integrator
dynamics, (2c) is the collision avoidance constraint for the
two players which we denote by i and j, di is the minimum
clearance distance for agent i to avoid collision (may be
different or the same for different agents, and can be used
to represent risk tolerance for collisions). The constraint (2d)
keep the player inside the track boundaries, and (2e) is the
actuation limit constraint with maximum velocity ui, which
may be different for different agents.

In this optimization problem, note that player i only has
access to its own planned trajectory θi. The opponent’s planned
trajectory θj is not available. However, because of the collision
avoidance constraints (2c), the ego player needs pjs to calculate
its optimal solution. In other words, the feasible trajectory set
of player i depends on the unknown trajectory of player j.

To deal with the competitive nature of this problem, we
model it as a zero-sum game, which could be seen explicitly by
writing the objective of player j as sj(pN

j )− si(pN
i ). We use

the concept of Nash equilibria [23]. Unlike in [5], where the
robot car is assumed to take action first and the human driven
car responds, in our work, no player has information advantage
over its opponent. Thus, Nash equilibria better suit the problem.
A Nash equilibrium is a strategy profile (a trajectory pair, in our
case) where no player can do better by unilaterally changing its
strategy. Formally, Θ = Θi ×Θj is the set of feasible strategy
pairs for both players. Θi(θj) is the set of feasible strategies

of player i given the strategy of player j. fi(θ) and fj(θ) are
the payoff functions for player i and j evaluated at θ ∈ Θ. A
strategy profile θ∗ = θ∗i × θ

∗
j is a Nash equilibrium if

θ∗i = arg max
θi∈Θi(θ∗

j )
fi(θi), (3a)

θ∗j = arg max
θj∈Θj(θ∗

i )
fj(θj). (3b)

Computing Nash equilibria in general can be computationally
intractable and there can be multiple Nash equilibria in a game.
Instead, an iterative algorithm can be used to approach a Nash
equilibrium online at each time step, as explained below.

B. Sensitivity Enhanced Objective Function

To simplify the notation, (2) can be rewritten as:

max
θi

si(θi)− sj(θj), (4a)

s.t. hi(θi) = 0, (4b)
gi(θi) ≤ 0, (4c)
γi(θi,θj) ≤ 0, (4d)

where hi(·) represents equality constraint (2b); gi(·) represents
inequality constraints (2e), (2d) and γi(·, ·) is the inequality
constraint (2c) involving both players which provides the only
coupling between the ego player and its opponent. As we
pointed out, although player i does not have control authority
of the strategy of player j, it could still pose influence on the
calculation of the opponent’s optimal strategy through the cou-
pled collision avoidance constraint (2c). In other words, player
i’s strategy does affect the payoff of player j at Nash equilibria.
Thus, the optimal payoff of player j can be represented as a
function of θ∗i , i.e., s∗j (θ∗i ). To incorporate the influence of
one player on its opponent’s optimal payoff, we propose to
substitute the objective in problem (4) by:

si(θi)− αs∗j (θi). (5)

A closed-form solution of s∗j (θi) is not easily available.
However, we could apply sensitivity analysis [24] and get a
linear approximation of s∗j (θi) around an available solution
of θi. A sensitivity enhanced Iterated Best Response (IBR)
algorithm is used in our algorithm. The algorithm starts from
an initial guess of opponent’s trajectory; solves the optimization
problem (4) with sensitivity-enhanced objective (5) for both the
ego and opponent player iteratively. When solving the problem
for one player, we freeze and use the solution of the other
player’s strategy from the previous iteration.

Specifically, assume that in the lth iteration, the solution of
ego player’s optimization problem from last iteration is θl−1

i .
Then, θl−1

i is treated as fixed when the ego robot solves the
optimization for the opponent to obtain the opponent’s optimal
value s∗j (θl−1

i ). If we linearize s∗j (θi) around θl−1
i :

s∗j (θi) = s∗j (θl−1
i ) +

ds∗j
dθi

∣∣∣∣
θi=θ

l−1
i

(θi − θl−1
i ). (6)



It is derived in [1] that:

ds∗j
dθi

∣∣∣∣
θl−1
i

= −µl
j

∂γj
∂θi

∣∣∣∣
(θl−1

i ,θl
j)

, (7)

where µl
j is a row vector representing the Lagrange multiplier

associated with the inequality constraints. Combine (5), (6), (7)
and neglect the constant terms, the optimization problem that
each player should solve is:

max
θi∈Θl

i

si(θi) + αµl
j

∂γj
∂θi

∣∣∣∣
(θl−1

i ,θl
j)

θi.

Note that the computation of si(θi) also requires an opti-
mization problem as given in (1). Again, a linear approximation
of this term by sensitivity analysis is obtained. The final explicit
form of the optimization problem is as follows:

max
θi∈Θl

i

tTpN
i + αµl

j

∂γj
∂θi

∣∣∣∣
(θl−1

i ,θl
j)

θi. (8)

Using this sensitivity-enhanced objective function, it is
proved in [1] that if the Sensitivity Enhanced Iterated Best
Response iteration converges, then the resulting strategy pair
satisfies the necessary conditions for a Nash equilibrium. For
a detailed derivation of the results, the readers are referred to
[1].

IV. CAR GAME THEORETIC PLANNER

The goal of this work is to extend the previously proposed
game-theoretic planner to handle car dynamics to accommodate
more realistic scenarios. Firstly, the original game planner
uses single-integrator dynamics for players. While this model
works well with quadrotors, it is unrealistic for cars with
non-holonomic constraints and limited acceleration and turning
radius. We deal with bicycle model with acceleration and
steering constraints in this paper. Secondly, we leverage the
fact that bicycle model is differentially flat and use piecewise
polynomial trajectory representation. The previous formulation
is modified so that admissible solution to our optimization
problems reflects the actuation limitations of cars.

A. Bicycle model of cars

To plan a feasible trajectory for cars, our planner requires
a more realistic kinematic motion model. For this purpose, we
use the following kinematic bicycle model,

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t),

θ̇(t) =
v(t)

L
tanφ(t), v̇(t) = a(t),

(9)

where x, y, v, θ are 2D position, speed and heading of the
car; a and φ are acceleration and steering angle commands.
L is the distance between front and rear axles. The bicycle
model above can be shown to be differentially flat [25], [26]
with the flat output σ = [σ1, σ2]

T
= [x, y]

T . Hence we can
analytically compute the control inputs and all state variables
given trajectories of σ1(t) and σ2(t) and their derivatives

!"
!#

!$

Fig. 2: Piecewise polynomial trajectory over an N -step plan-
ning horizon. Position of the nth waypoint is pn. Each trajec-
tory section between two consecutive waypoints is represented
using a second-order time polynomial.

up to second order. Such relationship is called endogenous
transformation. For bicycle model, this transformation is given
as:

x = σ1, y = σ2,

θ = arctan 2(σ̇2, σ̇1), v =

√
σ̇1

2 + σ̇2
2,

a =
σ̇1σ̈1 + σ̇2σ̈2√

σ̇2
1 + σ̇2

2

, φ = arctan(
σ̇1σ̈2 − σ̇2σ̈1

(σ̇2
1 + σ̇2

2)
3
2

L).

(10)

Using this endogenous transformation, a trajectory could be
planned in the flat output space instead of directly handling the
nonlinear dynamic constraints. Control inputs could be derived
from flat outputs afterwards using (10).

B. Piecewise polynomial trajectory representation

We use piecewise time polynomial trajectories to represent
the planned flat outputs, i.e. x(t) and y(t). The advantage of us-
ing polynomials is that we can explicitly impose the constraints
on vehicle states as functions of polynomial coefficients.

In 2D space, let N be the number of polynomials for each
dimension. Each polynomial has a fixed time length ∆t. tn =
n∆t denotes the starting time of the nth polynomial. The n-th
polynomials in two dimensions are given as follows.

xn(t) =

2∑
p=0

An,pt
p,

yn(t) =

2∑
p=0

Bn,pt
p, t ∈ [tn, tn+1]

(11)

for n = 0, 1, . . . , N − 1. An = [An,0, An,1, An,2] and
Bn = [Bn,0, Bn,1, Bn,2] are the coefficients for the nth
polynomial in x and y direction, respectively. Similar to the
previous formulation, we also define N + 1 waypoints with
positions pn ∈ R2 and velocities un ∈ R2, n = 0, 1, 2, . . . , N .
An illustration of the waypoints and piecewise polynomial
trajectories is given in Fig. 2.

The following constraints are imposed regarding trajectory
continuity and control inputs.



1) Continuity constraints: We enforce the position and veloc-
ity to be continuous at the waypoints;

[xn(tn), yn(tn)] =pn,

[xn(tn+1), yn(tn+1)] =pn+1,

[ẋn(tn), ẏn(tn)] =un,

[ẋn(tn+1), ẏn(tn+1)] =un+1,

(12)

for n = 0, 1, . . . , N −1. Substitute (11) into the equations
above, we obtain a set of equality constraints in An and
Bn.

The following constraints on speed, acceleration, and curva-
ture should be enforced on each piece of the polynomial. For
clarity of notations, we omit subscript n for the nth piece of
polynomials, unless there is possible confusion.

2) Speed constraints: From (10), we have:

v2(t) = ẋ2(t) + ẏ2(t),

which is a second-order polynomial in t. Plug in (11), we
obtain coefficients which are functions of A·,·s and B·,·s.
Notice that the maximum value of speed in the interval
t ∈ [tn, tn+1] is attained at its end points. Thus, we have
vn,max(t) = max{||un||, ||un+1||}. Velocity constraints
are:

||un|| ≤ ū, ∀n, (13)

which are quadratic constraints.
3) Acceleration constraints: For acceleration input, instead of

using the nonlinear transform as shown in (10), we obtain
a upper bound for it from bicycle model.

a2(t) = ẍ2 + ÿ2 − v2(t)θ̇2 (14a)

≤ ẍ2 + ÿ2. (14b)

The intuition is that a is the acceleration in speed instead
of velocity. Thus, the change in velocity direction does not
contribute to acceleration in our model. The term v2(t)θ̇2,
which involves heading, is non-negative. We neglect this
term and relax the maximum acceleration constraint as:

ẍ2 + ÿ2 = A2
·,1 +B2

·,1 ≤ ā2, (15)

where ā represents maximum acceleration.
4) Curvature constraints: For bicycle model, steering angle

is directly related to the geometry of the path and is
completely decided by its curvature. Curvature for a plane
curve is:

κ(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

(ẋ2 + ẏ2)
3
2

.

From (10), we have φ = arctan(κL). Hence, constraints
on steering angle can be transformed to constraints on path
curvature. Simplify the above equation and the maximum
value is:

κmax =
2(An,2Bn,1 −An,1Bn,2)

mint∈[tn,tn+1] [f(t)]
3
2

, (16)

where f(t) is a second-order polynomial in t. These con-
straints are nonlinear, therefore we impose the constraint

κmax ≤ κ̄max (17)

using Sequential Quadratic Programming (SQP) [27].

C. Sensitivity Enhanced Iterated Best Response

To summarize, the optimization problem each player should
solve is described in the following. For player i, the de-
cision variables are: Ai ∈ R3N , Bi ∈ R3N which are
the coefficients vectors of N second-order polynomials and
θi = [p0

i , . . . ,p
N
i ,u

0
i , . . . ,u

N
i ], which is consistent with the

previous notation. Note that this approach is also known as
collocation method [28]. For clarity, rewrite the optimization
problem in the following form.

max
θi,Ai,Bi

si(p
N
i )− sj(pN

j ) (18a)

s.t. hi(θi,Ai,Bi) = 0, (18b)
gi(θi,Ai,Bi) ≤ 0, (18c)
γi(θi,θj) ≤ 0, (18d)

where
• hi(·) are the equality constraints involving only player i.

This includes position and velocity continuity constraints
(12).

• gi(·) are the inequality constraints involving only player i.
This include track constrains (2d), speed constrains (13),
acceleration constraints (15), and curvature constrains
(17).

• γi(·, ·) are the inequality constraints involving both play-
ers. This include the collision avoidance constraints as in
(2c).

As in (5), we substitute the objective with the term that involves
ego player and a sensitivity term that reflects the influence on
opponent’s optimal payoff. The only constraint that involves
both players remains the same. And the derivation of the
sensitivity analysis to obtain an explicit linear approximation of
the objective function is the same as presented in Section III.

max
θi,Ai,Bi

si(p
N
i ) + αµj

∂γj
∂θi

∣∣∣∣
(θi,θj)

θi. (19)

where θi,Ai,Bi are subject to constraints (18b-18d). Note that
α is a tunable parameter in the objective function. α = 0 means
the optimization function does not care about influencing the
other player; while larger α leads to more aggressive behavior.

The algorithm is summarized in Algorithm 1. It is worth
noting that the algorithm is solved by one player and always
ends with the ego player’s optimization problem.

V. SIMULATION RESULTS

The performance of the proposed approach is first validated
in simulated two-car competition scenarios. Note that although
we use the kinematic bicycle model in the planner, our high-
fidelity simulator employs full dynamics of the car with Fiala



Algorithm 1 Sensitivity Enhanced Iterated Best Response

1: L: maximum number of iterations in IBR
2: observe opponent’s current states p0,u0

3: initialize opponent trajectory: θ1
j = [p1, . . . ,pN+1]

4: for l = 1, 2, . . . , L do
5: ego: solve (19) using SQP with θj = θlj
6: obtain ego optimal strategy θli
7: opponent: solve (19) using SQP with θi = θli
8: obtain opponent optimal strategy θlj
9: end for

10: ego: solve (19) with θj = θLj

tire model [29], [30] and carefully calibrated system parameters
of our experiment vehicle.

The proposed algorithm is implemented using Gurobi 1

solver with C++ interface. The non-convex constraints and
objective function are imposed through linearization. Lineariza-
tion is applied based on solution from the previous iteration.
For the highly-nonlinear curvature constraints (17), we choose
only to enforce the constraints on first half of the trajectory.
We found this significantly improves the stability of solution.
Since the algorithm is implemented in receding horizon fashion,
only the first several steps are executed so the second half
of the trajectory will not be executed during the process.
Moreover, to achieve online and real-time planning, we solve
the optimization problem outlined in Algorithm 1 for two game
iterations (L = 2) and do not wait until convergence. For both
simulation and experiments, we use Robot Operating System
(ROS) framework which handles message-passing.

The two players use the proposed game theoretic planner
(GTP) and a naive Model Predictive Control (MPC) planner
respectively. The naive MPC controller serves as a baseline
strategy and only optimizes its own objective (4) using a initial
guess of the opponent’s behavior. In other words, the baseline
planner does not exploit its influence on the other player.

We use the following parameters. The racing track is oval-
shaped with total length lτ = 216 m and half-width wτ =
6.5 m. The planning horizon is 5 sec and the planner updates
at 2 Hz. The maximum acceleration for both cars is 5 m/s2

and the maximum curvature is 0.11 m−1, corresponding to a
maximum steering angle of 18◦.

We demonstrate the performance of the proposed planner in
two settings: overtaking and blocking. In simulations, the two
cars start from randomly selected positions, one always in front
of the other. The maximum speed of the leading car is always
set to a lower speed limit (5 m/s) than its competitor (6 m/s).
The GTP car starts in the leading position in blocking tests and
the secondary position in overtaking tests.

1) In blocking scenarios, the GTP car has the lower max-
imum speed and thus is in a disadvantageous situation.
Naturally, we would expect the slower car to be over-
taken. However, in most cases, it is able to block the

1http://www.gurobi.com/

Fig. 3: Snapshots during a simulation in the blocking scenario.
The GTP car (red trajectories) starts in the first position
with lower speed limit with respect to the MPC car (green
trajectories). The top right figure shows that the two cars
entering a corner choose the short course. The other three
figures show that the leading vehicle is actively blocking the
following vehicle by moving intentionally in front of it. This
may appear to be suboptimal but it ensures its leading position
in the game.

(a) Overtaking scenario 1.

(b) Overtaking scenario 2.

Fig. 4: Snapshots during simulations in the overtaking scenario.
The GTP car (red trajectories) starts in the secondary position
with a higher speed limit behind the MPC car (green trajec-
tories). Only key snapshots during overtaking are shown here.
In 4a, the MPC car passively avoids collision and steers away
from its optimal trajectory. In 4b, the GTP car overtakes the
MPC car from the left.

(higher maximum speed) MPC car and maintain a leading
position in the game. Snapshots during a simulation are
shown in Fig. 3. Red trajectories are GTP planner trajec-
tories and green trajectories are MPC planner trajectories.
Since we adopt a receding horizon planning approach,
the illustrated trajectories are planned trajectories instead
of true path. We could observe that on the first-half of
the straight segment, the GTP car tends to steer in front
of its competitor instead of going straight forward. Even
though going straight would achieve more progress along
the track for itself, blocking is a better strategy to win the
race. When the two cars are entering corners, however,



(a) Blocking scenario (b) Overtaking scenario

Fig. 5: Histogram plots for blocking and overtaking scenarios.
The normalized arc-length distance difference is recorded at the
end of each simulation. The bins are colored green if the GTP
car finishes first and red otherwise. In both plots, we can tell
that the GTP car wins most of the time.

they mostly choose the short course as optimal.
2) In the overtaking scenario, the GTP car uses the higher

speed limit and starts slightly behind the MPC car. Note
that this is exactly the same configuration as in blocking
scenarios except that we flip the planning strategies of
the two cars. Snapshots during simulations are shown in
Fig. 4. Since the MPC car conservatively avoids collision
with its opponent, we could observe that it may steer out
of its optimal path and give way to the other car (Fig. 4a).
In Fig.4b, the GTP car overtakes the MPC car on the left.
As opposed to the blocking behavior of the GTP car in
blocking scenarios, the MPC car continues on its own
line and loses the game.

We conducted 100 simulations for each scenario. The starting
positions of the two cars are uniformly distributed in two square
regions one in front of the other. Each race consists of two
laps around the track and ends when either of the two players
reaches the finish line. We recorded the arc-length difference
along the track at the end and normalize the arc-length with
respect to the total length of the track. The histogram results
are given in Fig. 5. The bins are colored green if the GTP
car finishes the race first and red otherwise. We can see from
Fig. 5a that when the GTP car has a lower speed limit, it still
wins the race 98% of the time since it intentionally plans its
trajectory in front of the MPC car and thus blocks its way. The
MPC car finishes the race right behind it. In Fig. 5b, when the
GTP car starts behind the MPC car, it is able to overtake and
finish the race well before its opponent since it has a higher
speed.

VI. EXPERIMENTAL RESULTS

A. RC car experiments

We first conducted experiments using scale RC car platform
with Optitrack motion capture system. For indoor experiments,
we use two 1/10 scale RC cars equipped with Pixfalcon
flight controllers for low-level control, such as steering and
motor control. The RC cars also have Odroid-XU4 computers
and Electronic Speed Controllers (ESC) onboard. The system

Odroid
Computer

Pixfalcon
Controller

ESC, motor, servo

Fig. 6: 1/10 scale RC car experimental platform

(a) RC car blocking scenario visualization

(b) RC car overtaking scenario visualization

Fig. 7: Snapshots during RC car experiments. The red trajec-
tories are for the GTP car and the green trajectories are for the
MPC car. In 7a, the blocking scenario is shown where the GTP
car adopts a trajectory in front of its opponent instead of going
straight. In 7b, the GTP car aggressively drives pass the MPC
car to overtake, knowing that the MPC car would slow down
to avoid a collision.

structure of a RC car is shown in Fig. 6. The physical dimension
of the cars are 20 cm wide and 40 cm long. An Optitrack motion
capture system broadcasts pose information of both cars at
100 Hz, which is further used by a low-pass filter to estimate
velocity. State information of both cars is passed to a DELL
XPS laptop with dual-core, 2.7GHz Intel i7-7500U processor.
The laptop runs two planner for the two cars separately and
publishes desired trajectory information to two cars. Pure-
pursuit controllers are used to generate control commands for
trajectory tracking. The racing track is oval-shaped and has two
straight sections at 6 m and curved sections with radius 1.5 m.
Track half-width is 0.5 m. The high and low speed limits are
2.5 m/s and 1.8 m/s. The planning horizon is 2 sec and the
planners update at 2 Hz. The relative position at the start of
the race is set to be the same as in simulations. We did 10
experiments of blocking and the GTP car won the races in all
tests. We also conducted 10 experiments of overtaking, out of
which 9 were successful. Each experiment consists of 2 laps in
the blocking scenario or 1 successful overtaking. Snapshots of
blocking and overtaking experiments are given in Fig. 7.



B. Full-sized car experiments

We also conducted experiments on X1, a student-built re-
search vehicle. ¡ X1 is a student-built research vehicle as
shown in Fig. 1b. X1 is a 4-wheel steer-by-wire, brake-by-wire,
electrically driven vehicle. It is equipped with differential GPS
and INS for precise position measurements. A low level RTP
(real time processor) takes steering and acceleration commands
at 100 Hz and sends low level commands to the steering actu-
ators and electric motor. X1 makes use of the MPC algorithm
developed in [31] to ensure safe handling while tracking a
reference path. Using the ROS framework, the game-theoretic
controller sends a reference path to the low-level path tracking
controller and receives vehicle state information in return. Due
to safety considerations, we opt for running X1 along with a
simulated car, rather than with real cars. To simulate the sensor
measurements of the position of the other car, we send the
GPS or simulated GPS measurement to the opponent through
ROS. Other than this, the game theoretic planner of the test
vehicle and the simulated car run independently without any
communication. The test cases and parameters are the same
as depicted in Section V. The test vehicle is always using the
game theoretic planner and the simulated car is using a MPC
planner.

Snapshots plotted using recorded GPS data during the experi-
ments are shown in Fig. 8. In the blocking scenario (Fig. 8a), we
did 10 experiments (20 laps) with GTP successfully blocking
the other car. During the corners, both cars will go close to
the inner boundary since it is more advantageous to take the
shorter course. In the overtaking scenarios (Fig. 8b), we did
7 experiments of successful overtaking. We can see that the
MPC car does not actively block its opponent as compared to
the behavior of the GTP car in the previous scenario. In fact,
the MPC car give way to the GTP car in some experiments. The
reason is that when the opponent’s predicted future trajectory
interferes with its own trajectory, it passively avoids the other
car and get out of their way.

VII. CONCLUSION AND FUTURE WORK

We present an online game-theoretic trajectory planner based
on the concept of Nash equilibria. A modified Sensitivity
Enhanced Iterated Best Response (SE-IBR) algorithm is used
to solve for the approximate Nash equilibrium in the space of
feasible trajectories for car-like robot kinematics. We leverage
the differential flatness property of the bicycle model in or-
der to satisfy the car’s acceleration and curvature constraints
when solving for the competitive trajectories. The planner is
shown to be suitable for online planning and exhibits complex
competitive behaviors in racing scenarios. The performance
of the proposed planner is demonstrated in a two car racing
game in both simulation and experiments with different vehicle
hardware platforms with different scales.

In the future, we plan to benchmark our planner with human
participants and study new methods to characterize the inter-
action with human drivers. Moreover, we plan to incorporate
the full dynamics of the vehicle including the tire model in

(a) X1 blocking scenario visualization.

(b) X1 overtaking scenario visualization.

Fig. 8: Snapshots of X1 vs. a simulated car experiments. As
before, the red trajectories are for the GTP car and the green
trajectories are for the MPC car. 8a shows blocking behavior
by the proposed planner and 8b shows overtaking while the
MPC car gives way.

addition to kinematics to enable precise modeling and planning
for highly dynamic and aggressive driving situations.
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