
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Leveraging Experience in Lazy Search
Mohak Bhardwaj ∗, Sanjiban Choudhury †, Byron Boots ∗ and Siddhartha Srinivasa †

∗Georgia Institute of Technology †University of Washington

Abstract—Lazy graph search algorithms are efficient at solving
motion planning problems where edge evaluation is the compu-
tational bottleneck. These algorithms work by lazily computing
the shortest potentially feasible path, evaluating edges along that
path, and repeating until a feasible path is found. The order in
which edges are selected is critical to minimizing the total number
of edge evaluations: a good edge selector chooses edges that are
not only likely to be invalid, but also eliminates future paths from
consideration. We wish to learn such a selector by leveraging
prior experience. We formulate this problem as a Markov
Decision Process (MDP) on the state of the search problem. While
solving this large MDP is generally intractable, we show that we
can compute oracular selectors that can solve the MDP during
training. With access to such oracles, we use imitation learning
to find effective policies. If new search problems are sufficiently
similar to problems solved during training, the learned policy
will choose a good edge evaluation ordering and solve the motion
planning problem quickly. We evaluate our algorithms on a wide
range of 2D and 7D problems and show that the learned selector
outperforms baseline commonly used heuristics.

I. INTRODUCTION

In this paper, we explore algorithms that leverage past
experience to find the shortest path on a graph while min-
imizing planning time. We focus on the domain of robot
motion planning where the planning time is dominated by
edge evaluation [1]. Here the goal is to check the minimal
number of edges, invalidating potential shortest paths along
the way, until we discover the shortest feasible path – this is
the central tenet of lazy search [2, 3]. We propose to learn
within this framework which edges to evaluate (Fig. 1).

How should we leverage experience? Consider the “Piano
Mover’s Problem” [4] where the goal is to plan a path for a
piano from one room in a house to another. Collision checking
all possible motions of the piano can be quite time-consuming.
Instead, what can we infer if we were given a database of
houses and edge evaluations results?

1) Check doors first - these edges serve as bottlenecks for
many paths which can be eliminated early if invalid.

2) Prioritize narrow doors - these edges are more likely to
be invalid and can save checking other edges.

3) Similar doors, similar outcomes - these edges are cor-
related, checking one reveals information about others.

Intuitively, we need to consider all past discoveries about
edges to make a decision. While this has been explored in
the Bayesian setting [5, 6], we show that more generally the
problem can be mapped to a Markov Decision Process (MDP).
However, the size of the MDP grows exponentially with the
size of the graph. Even if we were to use approximate dynamic
programming, we still need to explore an inordinate number
of states to learn a reasonable policy.

Interestingly, if we were to reveal the status of all the edges
during training, we can conceive of a clairvoyant oracle [7]
that can select the optimal sequence of edges to invalidate.
In fact, we show that the oracular selector is equivalent to
set cover, for which greedy approximations exist. By imitat-
ing clairvoyant oracles [7], we can drastically cut down on
exploration and focus learning on a small, relevant portion of
the state space [8]. This leads to a key insight: use imitation
learning to quickly bootstrap the selector to match oracular
performance. We propose a new algorithm, STROLL, that
deploys an interactive imitation learning framework [9] to train
the edge selector (Fig. 2). At every iteration, it samples a world
(validity status for all edges) and executes the learner. At every
timestep, it queries the clairvoyant oracle associated with the
world to select an edge to evaluate. This can be viewed as
a classification problem where the goal is to map features
extracted from edges to the edge selected by the oracle. This
datapoint is aggregated with past data, which is then used to
update the learner.

In summary, our main contributions are:
1) We map edge selection in lazy search to an MDP

(Section II) and solve it for small graphs (Section III).
2) We show that larger MDPs, can be efficiently solved by

imitating clairvoyant oracles (Section IV).
3) We show that the learned policy can outperform compet-

itive baselines on a wide range of datasets (Section V).

II. PROBLEM FORMULATION

The overall objective is to design an algorithm that can solve
the Shortest Path (SP) problem while minimizing the number
of edges evaluated.

A. The Shortest Path (SP) Problem

Let G = (V,E) be an explicit graph where V denotes the set
of vertices and E the set of edges. Given a start and goal vertex
(vs, vg) ∈ V , a path ξ is represented as a sequence of vertices
(v1, v2, . . . , vl) such that v1 = vs, vl = vg,∀i, (vi, vi+1) ∈ E.
We define a world φ : E → {0, 1} as a mapping from edges
to valid (1) or invalid (0). A path is said to be feasible if all
edges are valid, i.e. ∀e ∈ ξ, φ(e) = 1. Let ` : E → R+ be
the length of an edge. The length of a path is the sum of
edge lengths, i.e. `(ξ) =

∑
e∈ξ `(e). The objective of the SP

problem is the find the shortest feasible path:

min
ξ

`(ξ) s.t. ∀e ∈ ξ, φ(e) = 1 (1)

We now define a family of shortest path algorithms. Given a
SP problem, the algorithms evaluate a set of edges Eeval ⊂ E



Evaluate an edge 
on the path

Update 
Graph

Start

SELECTOR
Graph,  
Path

Edge

Is path to  
goal feasible?

Stop
Y

N

Compute potential  
shortest path

Prior database

Fig. 1: The LAZYSP [2] framework. LAZYSP iteratively computes the shortest
path, queries a SELECTOR for an edge on the path, evaluates it and updates the
graph until a feasible path is found. The number of edges evaluated depends
on the choice of SELECTOR. We propose to train a SELECTOR from prior
data.

(verify if they are valid) and return a path ξ∗ upon halting.
Two conditions must be met:

1) The returned path ξ∗ is verified to be feasible, i.e. ∀e ∈
ξ∗, e ∈ Eeval, φ(e) = 1

2) All paths shorter than ξ∗ are verified to be infeasible,
i.e. ∀ξi, `(ξi) ≤ `(ξ∗), ∃e ∈ ξi, e ∈ Eeval, φ(e) = 0

B. The Lazy Shortest Path (LAZYSP) Framework

We are interested in shortest path algorithms that minimize
the number of evaluated edges |Eeval|.1 These are lazy algo-
rithms, i.e. they seek to defer the evaluation of an edge as much
as possible. When this laziness is taken to the limit, one arrives
at the Lazy Shortest Path (LAZYSP) class of algorithms. Under
a set of assumptions, this framework can be shown to contain
the optimally lazy algorithm [10].

Algorithm 1 describes the LAZYSP framework. The al-
gorithm maintains a set of evaluated edges that are valid
Eval and invalid Einv. At every iteration, the algorithm lazily
finds the shortest path ξ on the potentially valid graph G =
(V,E \ Einv) without evaluating any new edges (Line 4). It
then calls a function, SELECTOR, to select an edge e from
this path ξ (Line 5). Depending on the outcome, this edge
is added to either Eval or Einv. This process continues until
the conditions in Section II-A are satisfied, i.e. the shortest
feasible path is found.

The algorithm has one free parameter - the SELECTOR
function. The only requirement for a valid SELECTOR is to
select an edge on the path. As shown in [2], one can design
a range of selectors such as:

1) FORWARD: select the first unevaluated edge e ∈ ξ.
Effective if invalid edges are near the start.

1The framework can be extended to handle non-uniform evaluation cost as
well

Algorithm 1: LAZYSP
Input : Graph G, start vs, goal vg, world φ
Parameter: SELECTOR
Output : Path ξ∗, evaluated edges Eeval

1 Eval ← ∅ . Valid evaluated edges
2 Einv ← ∅ . Invaid evaluated edges
3 repeat
4 ξ ← SHORTESTPATH(E \ Einv)
5 e← SELECTOR(ξ, Eval, Einv) . Select edge on ξ
6 if φ(e) 6= 0 then
7 Eval ← Eval ∪ {e}
8 else
9 Einv ← Einv ∪ {e}

10 end
11 until feasible path found s.t. ∀e ∈ ξ, e ∈ Eval;
12 return {ξ∗ ← ξ, Eeval ← Eval ∪ Einv};

2) BACKWARD: select the last unevaluated edge e ∈ ξ.
Effective if invalid edges are near the goal.

3) ALTERNATE: alternates between first and last edge. This
approach hedges its bets between start and goal.

4) FAILFAST: selects the least likely edge e ∈ ξ to be valid
based on prior data.

5) POSTFAILFAST: selects the least likely edge e ∈ ξ to be
valid using a Bayesian posterior based on edges checked
so far.

While these baseline selectors are very effective in practice,
their performance, i.e. the number of edges evaluated |Eeval|
depends on the underlying world φ which dictates which edges
are invalid. Hence the goal is to compute a good SELECTOR
that is effective given a distribution of worlds, P (φ). We
formalize this as follows

Problem 1 (Optimal Selector Problem). Let the edges
evaluated by SELECTOR on world φ be denoted by
Eeval(φ, SELECTOR). Given a distribution of worlds, P (φ),
find a SELECTOR that minimizes the expected number of
evaluated edges, i.e. minEφ∼P (φ) [|Eeval(φ, SELECTOR)|]

Problem 1 is a sequential decision making problem, i.e.
decisions made by the selector in one iteration (edge selected)
affects the input to the selector in the next iteration (shortest
path). We show how to formally handle this in the next section.
It’s interesting to note that Problem 1 can be solved optimally
under certain strong assumptions (See supplementary for de-
tails2).

C. Mapping the Optimal Selector Problem to an MDP

We map Problem 1 to a Markov Decision Process (MDP)
〈S,A,T,R〉 as follows:

State Space: The state s = (Eval, Einv) is the set of
evaluated valid edges Eval and evaluated invalid edges Einv.
This can be represented by a vector of size |E|, each element

2Supplementary material can be found at: http://bit.ly/2Em6Meu



Sample a world 
from database.

Execute learner (evaluate 
edges) to a get a state.

Query clairvoyant oracle for  
edge (action) to evaluate. 

Continue aggregating data 
till the end, update learner.

Fig. 2: Overview of STROLL- a training procedure for a SELECTOR to select edges to evaluate in the LAZYSP framework. In each training iteration, a world
map φ is sampled. The learner is executed upto a time step to get a state st which is the set of edges evaluated and their outcomes. The learner has to
decide which edge to evaluate on the current shortest path. It extracts features from every edge - we use a set of baseline heuristic values as features. The
SELECTOR asks a clairvoyant oracle selector (which has full knowledge of the world) which edge to evaluate. This is then added to a classification dataset
and the learner is updated. This process is repeated over several iterations.

being one of {−1, 0, 1} - unevaluated, evaluated invalid, and
evaluated valid respectively. For simplicity, we assume that the
explicit graph G = (V,E) is fixed.3

Since each e ∈ E can be in one of 3 sets, the cardinality
of the state space is |S| = 3|E|.

The MDP has an absorbing goal state set G ⊂ S which is
a set of states where all the edges on the current shortest path
are evaluated to be valid, i.e.

G = {(Eval, Einv) | ∀e ∈ SHORTESTPATH(E \ Einv), e ∈ Eval}
(2)

Action Set: The action set A(s) is the set of unevaluated
edges on the current shortest path, i.e.

A(s) = {e ∈ SHORTESTPATH(E \ Einv), e /∈ {Eval ∪ Einv}}
(3)

Transition Function: Given a world φ, the transition func-
tion is deterministic s′ = Γ(s, a, φ):

Γ(s, a, φ) =

{
(Eval ∪ {e}, Einv) if φ(e) = 1

(Eval, Einv ∪ {e}) if φ(e) = 0
(4)

Since φ is latent and distributed according to P (φ), we have
a stochastic transition function T(s, a, s′) =

∑
φ P (φ)I(s =

Γ(s, a, φ)).
Reward Function: The reward function penalizes every state

other than the absorbing goal state G, i.e.

R(s, a) =

{
0 if s ∈ G
−1 otherwise

(5)

III. CHALLENGES IN SOLVING THE MDP
In this section, we examine tiny graphs and show that even

for such problems, a choice of world distributions where edges
are correlated can affect SELECTOR choices. However, by
solving the MDP using tabular Q-learning we can automat-
ically recover the optimal SELECTOR.

A. Experimental setup
We train selectors on two different graphs and correspond-

ing distribution of worlds P (φ).

3We can handle a varying graph by adding it to the state space.

50% prob 
of being 

valid

70% 30%

(a)
60% 40%

(b)

Fig. 3: Distribution over worlds for (a) Environment 1 and (b) Environment
2. The goal is to find a path from left to right. Edges are valid (green) or
invalid (red)

Environment 1: Fig. 3(a) illustrates the distribution of
Environment 1. The graph has 6 edges. With 70% probabil-
ity, top left edge is invalid. If top left is invalid, then
middle right is always invalid. If top left is valid, then
with 50% probability, top right is invalid plus any one of
remaining four are invalid.

The optimal policy is to check top left edge first.

– If invalid, check middle right (which is necessarily
invalid) and check bottom two edges which are feasible.
This amounts to 4 evaluated edges.

– If valid, check other edges in order as they all have 50%
probability of being valid.

Environment 2: Fig. 3(b) illustrates the distribution of
Environment 2. The graph has 8 edges. With 60% of the time
top left, middle right and bottom left are invalid.
Else, top right and middle right are invalid. Intuitively,
60% of the time, SELECTALTERNATE is optimal and 40% of
the time, SELECTBACKWARD is the best.



TABLE I: Q-learning parameters.

Parameter Environment 1 Environment 2

Number of episodes 3000 3500
Exploration episodes 100 150
ε0 1 1
Discount factor 1 1
Learning rate 0.5 0.5

TABLE II: Average reward after 1000 test episodes.

Method Environment 1 Environment 2

Tabular Q-learning −3.85 −5.24
FORWARD −4.54 −6.00
BACKWARD −4.42 −5.79
ALTERNATE −3.86 −6.00
RANDOM −4.48 −5.90

(a) Environment 1 (3000 train episodes)

(b) Environment 2 (3500 train episodes)

Fig. 4: Average reward per epsiode of Tabular Q-learning.

B. Solving the MDP via Q-learning

We apply tabular Q-learning [11] to compute the optimal
value Q∗(s, a). Broadly speaking, the algorithm uses an
ε−greedy algorithm to visit states, gather rewards, and perform
Bellman backups to update the value function. Environment 1
has 729 states, Environment 2 has 6561 states. The learning
parameters are shown in Table I.

Fig. 4 shows the average reward during training for Q-
learning. Environment 1 converges after ≈ 1000 episodes,
environment 2 after ≈ 3000 episodes. Table II shows a com-
parison of Q-learning with other heuristic baselines in terms
of average reward on a validation dataset of 1000 problems.
In Environment 1, the learner discovers the optimal policy.
Interestingly, ALTERNATE also achieves this result since the
correlated edges are alternating. In Environment 2, the learner
has a clear margin as compared to heuristic baselines, all of
which are vulnerable to one of the modes.

This shows that, even on such small graphs, it is possible to
create an environment where heuristic baselines fail. The fact
that the learner can recover optimal policies is promising.

C. Challenges on scaling to larger graphs

While we can solve the MDP for tiny graphs, we run into
a number of problems as we try to scale to larger graphs:

a) Exponentially large state space: The size of the state
space is |S| = 3|E|. This leads to exponentially slower
convergence rates as the size of the graph increases. Even
if we could manage to visit only the relevant portion of this
space, this approach would not generalize across graphs.

b) Convergence issues with approximate value iteration:
We can scale to large graphs if we use a function approximator.
In this case, we have to featurize (s, a) as a vector f , i.e. we
are trying to approximate Q(s, a) ≈ Q(f). Fortunately, we
have a set of baseline heuristics II-B that can be used as a
feature vector. This choice allows us to potentially improve
upon baselines and easily switch between problem domains.

We run into another problem - approximate value iteration
is not guaranteed to converge [12]. This is exaggerated in our
case where f is a set of baseline heuristics that may not retain
the same information content as the state s. Hence multiple
states map to the same feature f , which leads to oscillations
and local minima.

c) Sparse rewards: Every state gets a penalization except
the absorbing state, i.e. rewards are sparse. Because we are us-
ing a function approximator, updates to Q(f) for reaching the
goal state are overridden by updates due to −1 penalization.

IV. APPROACH

Our approach, STROLL (Search through Oracle Learning
and Laziness ), is to imitate clairvoyant oracles that can show
how to evaluate edges optimally given full knowledge of the
MDP at training time. To deal with distribution mismatch
between oracle and learner, we use established techniques for
iterative supervised learning.

A. Optimistic Value Estimate using a Clairvoyant Oracle

Consider the situation where the world φ is fully known to
the selector, i.e. the 0/1 status of all edges are known. The
selector can then judiciously select edges that are not only
invalid, but eliminate paths quickly. We call such a selector
a clairvoyant oracle. We show that the optimal clairvoyant
oracle, that evaluates the minimal number of edges, is the
solution to a set cover problem.

Theorem 1 (Clairvoyant Oracle as Set Cover). Let s =
(Eval, Einv) be a state. Let V ∗(s, φ) be the optimal state action
value when the world φ is known. Then V ∗(s, φ) is the solution
to the following set cover problem

− min
Eeval⊂{e∈E | φ(e)=0}

|Eeval|

s.t. ∀ξ, `(ξ) ≤ `(ξ∗), ξ ∩ Einv = ∅,
ξ ∩ Eeval 6= ∅

(6)

where ξ∗ is the shortest feasible path for world φ.
Proof: (Sketch) Let Ξ = {ξ1, . . . , ξn} be the set of paths

that satisfy the constraints of (6)
1) Shorter than ξ∗, i.e. `(ξi) ≤ `(ξ∗)
2) Paths are not yet invalidated i.e. ξ ∩ Einv = ∅
Let {e ∈ E | φ(e) = 0} be the set of invalid edges. Each

edge e covers a path ξi ∈ Ξ if e ∈ ξi. We define a cover as a
set of edges Eeval that covers all paths in Ξ, i.e. ξi∩Eeval 6= ∅.



Algorithm 2: APPROXIMATE CLAIRVOYANT ORACLE

Input : State s = (Eval, Einv), world φ
Output: Action a

1 Compute shortest path ξ̂ = SHORTESTPATH(E \ Einv)
2 ∆← 0|E|×1

3 for e ∈ ξ̂, φ(e) = 0 do
4 ∆(e)← `(SHORTESTPATH(E \ {Einv ∪{e}}))− `(ξ̂)
5 return Action a = arg max

e∈ξ̂
∆(e);

If we select a min cover, i.e. min |Eeval| then all shorter
paths will be eliminated. Hence this is equal to the optimal
value −V ∗(s, φ).

Theorem 1 says that given a world and a state of the search,
the clairvoyant oracle selects the minimum set of invalid edges
to eliminate paths shorter than the shortest feasible path.

Let πOR(s, φ) be the corresponding oracle policy. We note
that the optimal clairvoyant oracle can be used to derive an
upper bound for the optimal value

Q∗(s, a) ≤ QπOR(s, a) =
∑
φ

P (φ|s)QπOR(s, a, φ) (7)

where P (φ|s) is the posterior distribution over worlds given
state and QπOR(s, a, φ) is the value of executing action a in
state s and subsequently rolling-out the oracle. Hence this
upper bound can be used for learning.

B. Approximating the Clairvoyant Oracle

Since set cover is NP-Hard, we have to approximately solve
(6). Fortunately, a greedy approximation exists which is near-
optimal. The greedy algorithm iterates over the following rule:

ei = arg max
e∈E,φ(e)=0

|{ξ | `(ξ) ≤ `(ξ∗), ξ ∩ Einv = ∅, e ∈ ξ}|

Eeval ← Eeval ∪ {ei}
(8)

The approach greedily selects an invalid edge that covers the
maximum number of shorter paths, which have not yet been
eliminated. This greedy process is repeated until all paths are
eliminated.

There are two practical problems with computing such an
oracle. First, enumerating all shorter paths {ξ | `(ξ) ≤ `(ξ∗)}
is expensive, even at train time. Second, if we simply wish to
query the oracle for which edge to select on the current shortest
path ξ̂ = SHORTESTPATH(E \ Einv), it has to execute (8)
potentially multiple times before such an edge is discovered
- which also can be expensive. Hence we perform a double
approximation.

The first approximation to (8) is to constrain the oracle
to only select an edge on the current shortest path ξ̂ =
SHORTESTPATH(E \ Einv)

≈ arg max
e∈ξ̂, φ(e)=0

|{ξ | `(ξ) ≤ `(ξ∗), ξ ∩ Einv = ∅, e ∈ ξ}| (9)

The second approximation to (9) is to replace the number
of paths covered with the marginal gain in path length on

invalidating an edge.

≈ arg max
e∈ξ̂, φ(e)=0

`(SHORTESTPATH(E \ {Einv ∪ {e}}))− `(ξ̂)

(10)
Alg. 2 summarizes this approximate clairvoyant oracle.

C. Bootstrapping with Imitation Learning

Imitation learning is a principled way to use the clairvoyant
oracle πOR(s, φ) to assist in training the learner π(s). In our
case, we can use the oracle action value QπOR(s, a) as a target
for our learner as follows:

arg max
π∈Π

Es∼dπ(s) [QπOR(s, π(s))] (11)

where dπ(s) is the distribution of states. Note that this is now
a classification problem since the labels are provided by the
oracle. However the distribution dπ depends on the learner’s π.
Ross and Bagnell [13] show that this type of imitation learning
problem can be reduced to interactive supervised learning.

We simplify further. Computing the oracle value requires
rolling out the oracle until termination. We empirically found
this to significantly slow down training time. Instead, we train
the policy to directly predict the action that is selected by the
oracle. This is the same as (11) but with a 0/1 loss [9] -

arg max
π∈Π

Es∼dπ(s) [I(π(s) = πOR(s, φ))] (12)

We justify this simplification by first showing that max-
imizing action value is same as maximizing the advantage
QπOR(s, a)− V πOR(s). Since all the rewards are −1, the ad-
vantage can be lower bounded by the 0/1 loss. We summarize
this as follows:

max
π∈Π

Es∼dπ(s) [QπOR(s, π(s))]

= max
π∈Π

Es∼dπ(s) [QπOR(s, π(s))− V πOR(s)]

≥ max
π∈Π

Es∼dπ(s) [I(π(s) = πOR(s, φ))− 1]

(13)

Finally, we do not use the exact clairvoyant oracle but rather
an approximation (Section IV-B). In other words, there can
exist policies π ∈ Π that outperform the oracle. In such a case,
one can potentially apply policy improvement after imitation
learning. However, we leave the exploration of this direction
to future work.

D. Algorithm

The problem in (12) is a non-i.i.d classification problem -
the goal is to select the same action the oracle would select on
the on policy distribution of learner. Ross et al. [9] proposed
an algorithm, DAGGER, to exactly solve such problems.

Alg. 3, describes the STROLL framework which iteratively
trains a sequence of policies (π̂1, π̂2, . . . , π̂N ). At every it-
eration i, we collect a dataset Di by executing m different
episodes. In every episode, we sample a world φ which already
has every edge evaluated. We then roll-in a policy (execute
a selector) which is a mixture πmix that blends the learner’s
current policy, π̂i and a base roll-in policy πroll using blending
parameter βi. At every time step t, we query the clairvoyant



Algorithm 3: STROLL
Input : World distribution P (φ), oracle πOR

Parameter: Iter N, roll-in policy πroll, mixing {βi}Ni=1

Output : Policy π̂
1 Initialize D ← ∅, π̂1 to any policy in Π
2 for i = 1, . . . , N do
3 Initialize sub-dataset Di ← ∅
4 Let mixture policy be πmix = βiπroll + (1 − βi)π̂i
5 for j = 1, . . . ,m do
6 Sample φ ∼ P (φ);
7 Rollin πmix to get state trajectory {st}Tt=1

8 Invoke oracle to get at = πOR(st, φ)
9 Di ← Di ∪ {(st, at)}Tt=1 ;

10 Aggregate data D ← D ∪Di;
11 Train classifier π̂i+1 on D;

12 return Best π̂ on validation;

oracle with state st to receive an action at. We use the
approximate oracle in Alg. 2. We then extract a feature vector
f from all (st, a) tuples and create a classification datapoint.
We add this datapoint to the dataset Di. At the end of m
episodes, this data is then aggregated with the existing dataset
D. A new classifier π̂i+1 is trained on the aggregated data.
At the end of N iterations, the algorithm returns the best
performing policy on a set of held-out validation environments.

We have two algorithms based on the choice of πroll:

1) STROLL: We set πroll = πOR. This is the default mode
of DAGGER. This uses the oracle state distribution to
stabilize learning initially.

2) STROLL-R: We set πroll to be the best performing
heuristic on training as defined in Section II-B. This
uses a heuristic state distribution to stabilize learning.
Since the heuristic is realizable, it can have a stabilizing
effect on datasets where the oracle is far from realizable.

We inherit the performance guarantees of DAGGER [9],
which bounds the performance gap with respect to the best
policy in the policy class.

V. EXPERIMENTS

A. Experimental Setup

We use datasets from [5] in our experiments. The 2D
datasets contain graphs with approximately 1600-5000 edges
and varied obstacle distributions. The two 7D datasets involve
a robot arm planning for a reaching task in clutter with large
graphs containing 33286 edges.

Learning Details: We only consider policies that are a linear
combination of a minimal set of features, where each feature is
a different motion planning heuristic. The features we consider
are:

1) PRIOR- the prior probability of an edge being invalid
calculated over the training dataset.

2) POSTERIOR- the posterior probability of an edge being
invalid given collision checks done thus far (See supple-
mentary for details).

3) LOCATION- score ranging from 1 (first unchecked edge)
to 0 (last unchecked edge).

4) ∆-LENGTH- hallucinate that an edge is invalid, then
calculate the difference in length of new shortest path
compared with the current shortest path.

5) ∆-EVAL- hallucinate that an edge is invalid, the calcu-
late the fraction of unevaluated edges on the new shortest
path.

6) P∆-LENGTH- calculated as POSTERIOR × ∆-LENGTH,
it weighs the ∆-LENGTH of an edge with the probability
of it being invalid and is effective in practice (Table III).

B. Baselines
We compare our approach to common heuristics used in

LAZYSP as described in Section II-B. We also analyze the
improvement in performance as compared to vanilla behavior
cloning of the oracle and reinforcement learning from scratch.

C. Analysis of Overall Performance
O 1. STROLL has consistently strong performance across
different datasets.

Table III shows that STROLL is able to learn policies
competitive with other motion planning heuristics. No other
heuristic has as consistent a performance across datasets.
O 2. The learner focuses collision checking on edges that
are highly likely to be invalid and have a high measure of
centrality.

Fig. 8 shows the activation of different features across
datasets. The learner places high importance on POSTERIOR,
∆-LENGTH and P∆-LENGTH. POSTERIOR is an approximate
likelihood of an edge being invalid and ∆-LENGTH is an
approximate measure of centrality i.e. edges with large ∆-
LENGTH have large number of paths passing through them
(Note that the converse may not always apply).
O 3. On datasets with strong correlations among edges,
heuristics that take obstacle distribution into account outper-
form uninformed heuristics, and STROLL is able to learn
significantly better policies than uninformed heuristics.

Examples of such datasets are GATE, BAFFLE, BUGTRAP
and BLOB. Here, STROLL and STROLL-R eliminate a large
number of paths by only evaluating edges which are highly
likely to be in collision and have several paths passing through
them (Fig. 5). In the 7D datasets, obstacles are highly concen-
trated near the goal region, which explains the strong per-
formance of the uninformed BACKWARD selector. However,
due to a very large number of edges and limited training sets,
POSTERIOR and ∆-LENGTH are inaccurate causing the learner
to fail to outperform BACKWARD.
O 4. On datasets with uniformly spread obstacles, uninformed
heuristics can perform better than STROLL.

Examples of such datasets are TWOWALL and FOREST
where the lack of structures makes features such as posterior



(a) Alternate |Eeval| = 292 (b) StrOLL |Eeval| = 180

Fig. 5: Edges evaluated ( green valid, red invalid) on an environment from
BAFFLE. (a) ALTERNATE evaluates several valid edges (b) STROLL evaluates
many fewer edges, all of which are invalid and eliminate a large number of
paths.

(a) (b)

0 0 0.80.8

1.0 1.0

PRIORPRIOR

LO
CA

TI
O

N

LO
CA

TI
O

N

STROLL Iteration 1 STROLL Iteration 4
oracle action non-oracle action

Fig. 6: (a) STROLL-R (green) vs STROLL (orange) (b) Densification of data.

(a) (b)

0 25 50 75 100 125 150 175

Training Episodes

-20

-40

-60

-80

-100

-120

-140

-160

Av
er

ag
e 

Re
wa

rd
s

0 20 40 60 80 100

-40

-50

-60

-70

-80

-90

-100

-110

-120

Re
wa

rd
s

Percentage Mixing

StrOLL

Q-Learning

StrOLL
Alternate

Fig. 7: (a) Running average reward for 200 episodes of training. Q learning
suffers due to large state space and sparse rewards. (b) Performance on
validation set of 200 worlds with contamination from different distribution.

uninformative. This combined with the non-realizability of the
oracle makes it difficult for STROLL to learn a strong policy.

D. Case Studies

Q 1. How does performance vary with training data?

Fig. 6(a) shows the improvement in median validation
reward with an increasing number of training iterations. Also,
Fig. 6(b) shows that with more iterations, the learner visits
diverse parts of the state-space on x-axis not visited by the
oracle.
Q 2. How significant is the impact of heuristic roll-in on
stabilizing learning in high-dimensional problems?

Fig. 6 shows a comparison of the median validation return
per iteration using STROLL versus STROLL-R on CLUTTER1
and CLUTTER2 datasets. Heuristic roll-in helps converge to
a better policy in lesser number of iterations. Interestingly,
the policy learned in the first iteration of STROLL-R is sig-
nificantly better than STROLL, demonstrating the stabilizing

effects of heuristic roll-in.

Q 3. How does performance compare to reinforcement learn-
ing with function approximation?

Fig. 7(a) shows training curves for STROLL and Q-
LEARNING with linear function approximation and experience
replay. STROLL is more sample efficient and converges to a
competitive policy faster.

Q 4. How does performance vary with train-test mismatch?

Fig. 7(b) shows a stress-test of a policy learned on ONE
WALL by running it on a validation set which is increasingly
contaminated by environments from FOREST. The learned
policy performs better than the best uninformed heuristic on
FOREST for up to 60% contamination.

VI. RELATED WORK

In domains where edge evaluations are expensive and dom-
inate planning time, a lazy approach is often employed [3]
wherein the graph is constructed without testing if edges are
collision-free. LAZYSP [2] extends the graph all the way to the
goal, before evaluating edges. LWA* [14] extends the graph
only a single step before evaluation. (LRA*) [15] is able to
trade-off between them by allowing the search to go to an
arbitrary lookahead. The principle of laziness is reflected in
similar techniques for randomized search [1, 16].

Several previous works investigated leveraging priors in
search. FuzzyPRM [17] evaluates paths that minimize the
probability of collision. The Anytime Edge Evaluation (AEE*)
framework [18] uses an anytime strategy for edge evaluation
informed by priors. BISECT [5] and DIRECT [6] casts
search as Bayesian active learning to derive edge evaluation.
However, these methods make specific assumptions about the
graph or about the priors. Our approach is more general.

Efficient collision checking has its own history in the
context of motion planning. Other approaches model belief
over the configuration space to speed-up collision checking
[19, 20], sample vertices in promising regions [21] or grow
the search tree to explore the configuration space [22–24].
However, these approaches make geometric assumptions and
rely on domain knowledge. We work directly with graphs and
are agnostic with respect to the domain.

Several recent works use imitation learning [8, 9, 13]
to bootstrap reinforcement learning. THOR [25] performs a
multi-step search to gain advantage over the reference policy.
LOKI [26] switches from IL to RL. Imitation of clairvoyant
oracles has been used in multiple domains like information
gathering [7], heuristic search [27], and MPC [28, 29].

VII. DISCUSSION

We examined the problem of minimizing edge evaluations
in lazy search on a distribution of worlds. We first formulated
the problem of deciding which edge to evaluate as an MDP
and presented an algorithm to learn policies by imitating clair-
voyant oracles, which, if the world is known, can optimally
evaluate edges. While imitation learning of clairvoyant oracles
is effective, the approach may be further improved through



TABLE III: Edges evaluated by different algorithms across different datasets (median, upper and lower C.I on 200 held-out environments). Highlighted is the
best performing selector in terms of median score not counting the oracle.

ORA-
CLE

BACK-
WARD

ALTER-
NATE

FAIL-
FAST

POSTFAIL-
FAST

P∆-
LENGTH

SUPER-
VISED

STROLL STROLL-
R

2D Geometric Planning

ONEWALL 80.0+6.0
−48.0 87.0+8.4

−41 112.0+12.8
−60.0 82.0+3.0

−47.0 81.0+3.0
−49.0 85.0+6.8

−52.6.0 79.0+3.0
−45.0 79.0+5.0

−44.8 79.0+5.0
−44.8

TWOWALL 107.0+23.0
−0.0 199.0+8.0

−19.0 138.0+7.0
−2.0 178.0+0.0

−6.0 177.0+0.0
−7.0 120.0+19.0

−0.0 177.0+0.0
−6.0 177.0+0.0

−6.0 170.0+12.2
−0.0

FOREST 90+14.4
−10.0 128.0+15.0

−16.4 115.0+12.0
−13.2 135.0+13.0

−16.0 116.0+13.2
−16.4 102.0+15.0

−12.0 117.0+19.2
−17.0 115.0+20.0

−15.0 115.0+21.2
−13.4

GATE 50.0+6.0
−9.0 74.0+8.0

−9.0 75.0+14.2
−6.2 60.0+8.0

−6.2 50.0+7.0
−8.2 53.0+7.0

−9.2 50.0+7.0
−7.2 48.0+10.0

−7.2 48.0+9.2
−9.2

MAZE 537.0+37.0
−24.6 668.5+40.3

−56.1 613.0+39.6
−33 512+52.2

−34.0 516.5+33.70
−36.50 529.0+40.0

−37.2 502.5+58.7
−28.2 512.0+42.0

−31.0 554.0+52.2
−59.0

BAFFLE 219.0+18.0
−12.0 244.0+14.6

−6.0 311.0+8.0
−15.6 232.0+6.0

−12.0 211.0+7.8
−6.0 230.0+18.0

−17.0 206.0+6.8
−3.0 205.0+6.0

−3.0 207.0+7.0
−2.0

BUG-
TRAP

77.0+12.0
−9.4 104.0+6.0

−14.0 112.5+16.9
−11.5 90.5+10.9

−13.5 75.5+16.5
−6.5 84.5+12.9

−10.5 75.0+15.4
−6.4 75.0+15.4

−6.4 75.0+15.4
−6.4

BLOB 72.0+12.0
−4.0 92.0+5.4

−3.4 109.0+5.0
−7.0 70.0+6.0

−6.0 70.0+6.0
−6.0 80.0+9.0

−3.0 72.0+5.8
8.0 70.0+6.0

−6.0 70.0+6.0
−6.0

7D Manipulation Planning

CLUT-
TER1

35.5+1.5
−1.5 38.0+12.0

−10.0 44.0+14.2
−4.0 92.0+5.0

−0.0 88.0+9.6
−0.0 37.5+2.1

−1.5 95.5+17.7
−11.1 50.0+3.0

−6.0 45.0+2.0
−1.6

CLUT-
TER2

34.0+1.0
−2.0 32.0+3.0

−4.0 41.0+2.0
−2.2 85.0+0.0

−3.0 84.0+0.0
−2.0 37.0+0.0

−5.0 104.0+6.2
−6.8 47.0+2.0

−11.2 44.0+5.0
−7.2

ONEWALL TWOWALL FOREST

GATE MAZE BAFFLE

BUGTRAP BLOB CLUTTER1

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

�-Length

Location
Prior

Posterior

�-Eval

P�-Length

Fig. 8: Weight bins depicting relative importance of each feature learned by the learner. STROLL focuses on edges that are highly likely to be invalid and
have high measure of centrality.

reinforcement learning [25, 26]. There are two arguments for
this. First, in practice we do not use the exact oracle but a
sub-optimal approximation. Second, even if we could use the
exact oracle, it may not be realizable by the policy.

ACKNOWLEDGMENTS

This work was (partially) funded by the National In-
stitute of Health R01 (#R01EB019335), National Science
Foundation CPS (#1544797), National Science Foundation
NRI (#1637748), National Science Foundation CAREER

(#1750483), the Office of Naval Research, the RCTA, Ama-
zon, and Honda Research Institute USA.

REFERENCES

[1] Kris Hauser. Lazy collision checking in asymptotically-
optimal motion planning. In ICRA, 2015.

[2] Christopher M Dellin and Siddhartha S Srinivasa. A
unifying formalism for shortest path problems with ex-
pensive edge evaluations via lazy best-first search over
paths with edge selectors. In ICAPS, 2016.



[3] Robert Bohlin and Lydia E Kavraki. Path planning using
lazy prm. In ICRA, 2000.

[4] Jacob T Schwartz and Micha Sharir. On the “piano
movers’” problem i. the case of a two-dimensional rigid
polygonal body moving amidst polygonal barriers. Com-
munications on pure and applied mathematics, 36(3):
345–398, 1983.

[5] Sanjiban Choudhury, Shervin JAvdani, Siddhartha Srini-
vasa, and Sebastian Scherer. Near-optimal edge evalu-
ation in explicit generalized binomial graphs. In NIPS,
2017.

[6] S. Choudhury, S.S. Srinivasa, and S. Scherer. Bayesian
active edge evaluation on expensive graphs. In IJCAI,
2018.

[7] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora,
Ashish Kapoor, Gireeja Ranade, Sebastian Scherer, and
Debadeepta Dey. Data-driven planning via imitation
learning. IJRR, 2017.

[8] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron
Boots, and J Andrew Bagnell. Deeply aggrevated: Dif-
ferentiable imitation learning for sequential prediction.
In International Conference on Machine Learning, pages
3309–3318, 2017.

[9] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In AISTATS, volume 1,
page 6, 2011.

[10] Nika Haghtalab, Simon Mackenzie, Ariel D. Procaccia,
Oren Salzman, and Siddhartha S. Srinivasa. The Provable
Virtue of Laziness in Motion Planning. pages 106–
113, 2018. URL https://aaai.org/ocs/index.php/ICAPS/
ICAPS18/paper/view/17726.

[11] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

[12] Geoffrey J Gordon. Stable function approximation in dy-
namic programming. In Machine Learning Proceedings
1995, pages 261–268. Elsevier, 1995.

[13] Stephane Ross and J Andrew Bagnell. Reinforcement
and imitation learning via interactive no-regret learning.
arXiv, 2014.

[14] Benjamin Cohen, Mike Phillips, and Maxim Likhachev.
Planning single-arm manipulations with n-arm robots.
In Eigth Annual Symposium on Combinatorial Search,
2015.

[15] Aditya Mandalika, Oren Salzman, and Siddhartha Srini-
vasa. Lazy Receding Horizon A* for Efficient Path
Planning in Graphs with Expensive-to-Evaluate Edges.
pages 476–484, 2018.

[16] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Tim-
othy D. Barfoot. Batch Informed Trees: Sampling-
based optimal planning via heuristically guided search
of random geometric graphs. In ICRA, 2015.

[17] Christian L Nielsen and Lydia E Kavraki. A 2 level fuzzy
prm for manipulation planning. In IROS, 2000.

[18] Venkatraman Narayanan and Maxim Likhachev. Heuris-
tic search on graphs with existence priors for expensive-

to-evaluate edges. In ICAPS, 2017.
[19] Jinwook Huh and Daniel D Lee. Learning high-

dimensional mixture models for fast collision detection
in rapidly-exploring random trees. In ICRA, 2016.

[20] Shushman Choudhury, Christopher M Dellin, and Sid-
dhartha S Srinivasa. Pareto-optimal search over config-
uration space beliefs for anytime motion planning. In
IROS, 2016.

[21] Joshua Bialkowski, Michael Otte, and Emilio Frazzoli.
Free-configuration biased sampling for motion planning.
In IROS, 2013.

[22] David Hsu, J-C Latombe, and Rajeev Motwani. Path
planning in expansive configuration spaces. In ICRA,
1997.

[23] Brendan Burns and Oliver Brock. Sampling-based mo-
tion planning using predictive models. In ICRA, 2005.

[24] Bakir Lacevic, Dinko Osmankovic, and Adnan Ade-
movic. Burs of free c-space: a novel structure for path
planning. In ICRA. IEEE, 2016.

[25] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated
horizon policy search: Combining reinforcement learning
& imitation learning. arXiv preprint arXiv:1805.11240,
2018.

[26] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and
Byron Boots. Fast policy learning through imitation and
reinforcement. arXiv preprint arXiv:1805.10413, 2018.

[27] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian
Scherer. Learning heuristic search via imitation. In
CoRL, 2017.

[28] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter
Abbeel. Plato: Policy learning using adaptive trajectory
optimization. In ICRA, 2017.

[29] Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey
Levine, and Pieter Abbeel. Learning from the hind-
sight plan–episodic mpc improvement. arXiv preprint
arXiv:1609.09001, 2016.


