
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Planning with State Abstractions for

Non-Markovian Task Specifications

Yoonseon Oh, Roma Patel, Thao Nguyen, Baichuan Huang, Ellie Pavlick, and Stefanie Tellex

Abstract—Often times, we specify tasks for a robot using tem-
poral language that can also span different levels of abstraction.
The example command “go to the kitchen before going to the
second floor” contains spatial abstraction, given that “floor”
consists of individual rooms that can also be referred to in
isolation (“kitchen”, for example). There is also a temporal
ordering of events, defined by the word “before”. Previous works
have used Linear Temporal Logic (LTL) to interpret temporal
language (such as “before”), and Abstract Markov Decision
Processes (AMDPs) to interpret hierarchical abstractions (such
as “kitchen” and “second floor”), separately. To handle both
types of commands at once, we introduce the Abstract Product
Markov Decision Process (AP-MDP), a novel approach capable of
representing non-Markovian reward functions at different levels
of abstractions. The AP-MDP framework translates LTL into
its corresponding automata, creates a product Markov Decision
Process (MDP) of the LTL specification and the environment
MDP, and decomposes the problem into subproblems to enable
efficient planning with abstractions. AP-MDP performs faster
than a non-hierarchical method of solving LTL problems in over
95% of tasks, and this number only increases as the size of the en-
vironment domain increases. We also present a neural sequence-
to-sequence model trained to translate language commands into
LTL expression, and a new corpus of non-Markovian language
commands spanning different levels of abstraction. We test our
framework with the collected language commands on a drone,
demonstrating that our approach enables a robot to efficiently
solve temporal commands at different levels of abstraction.

I. INTRODUCTION

In an ideal human-robot interaction scenario, humans would

give robots tasks in the form of natural language utterances and

gestures. The variation in language used allows for specifying

tasks at varying levels of spatial abstractions, while specifying

temporal constraints. Meaning can be conveyed with language

at different levels of spatial abstraction, in terms of high-

level goals (such as “fly to the end of the first floor”), lower-

level specifications (such as “fly east, go south, go south and

fly east again”), or mixed-level (such as “go to the yellow

room and the second floor”). Language can also express

explicit constraints on the path taken to reach the goal (for

example, “fly to the red room first, without going through the

green room.”). The former category of commands requires an

agent to fluidly move within an abstraction hierarchy (that

is, knowing that a floor is at a higher level than individual

rooms and directions), while the latter command restricts the

space of possible paths that can be taken and sometimes

The authors are with the Brown University Department of Computer
Science, 115 Waterman Street, Providence, RI 02912. Email: {yoonseon oh,
romapatel, thao nguyen3, baichuan huang, ellie pavlick}@brown.edu, ste-
fie10@cs.brown.edu

Fig. 1. Our environment is a gridworld with three floors, each consisting of
rooms that consist of grid cells. The white arrow shows an example path the
drone can take in the environment. We also include sample natural language
commands (and their LTL formulae) that the drone successfully executed.

induces temporal constraints on the order in which goals can

be visited. It is crucial for robot systems to portray an adequate

understanding of such commands, coupled with the ability to

efficiently execute the underlying task.

Given an environment, a goal condition and constraints,

robots can use planning to reach goal conditions while sat-

isfying constraints. Existing approaches interpret language by

mapping to a reward function in a Markov Decision Process

(MDP) [1]. However, these models very quickly become

intractable as the state space of the world grows larger

[2, 3]. Planning with abstractions in a hierarchical structure

[2, 3, 4, 5], either by using an Abstract Markov Decision

Process (AMDP) [2] or with options [3, 4, 5] can allow

reduction of the state space. There has been previous work

in interpreting natural language task specifications at differ-

ent levels of spatial abstraction and planning using AMDPs

[6]. Separately, as shown in Fig. 1, non-Markovian natural

language commands can be mapped to linear temporal logic

(LTL) formulae [7, 8, 9, 10] to allow efficient planning with

an MDP, given the corresponding LTL task specifications

[11, 12, 13, 14, 15, 16, 17]. Combining the interpretation

of language using a hierarchical structure and the mapping

of commands to LTL expressions is non-trivial, as the non-

Markovian constraints might span different levels of abstrac-

tion. Plans in a more abstract state space could therefore lead

to failure of constraints specified in a less abstract space (that

is, plans at a lower level in the abstraction hierarchy).

In this paper, we introduce the Abstract Product MDP

(AP-MDP) framework to combine the benefits of LTL and

Fig. 2. Complete pipeline for the translation of a natural language instruction
to an LTL formula, then to a Büchi automaton, and to a plan that gives us
action sequences to correctly reach the goal location specified by the task.

AMDP, thus enabling a robot to interpret non-Markovian

commands at different levels of abstraction. There is previous

work in planning for LTL tasks using options [18]. However,

the AMDP approach suits our task better, as its hierarchical

structure closely resembles the hierarchies formed by humans

when planning to solve complex tasks that can be decomposed

into subtasks [2]. In our approach, task specifications are first

given as natural language utterances that are then translated

into LTL expressions by a supervised neural sequence-to-

sequence model. This LTL expression φ is converted into

a finite state representation that accepts infinite inputs, or

a Büchi automaton [19]. This representation allows us to

decompose the problem into sub-problems (organized around

sub-parts of the input LTL expression). Edges of the Büchi

automaton consist of atomic propositions in expression φ and

a sub-problem induces a state transition of the automaton.

To further deal with different levels of abstraction, if atomic

propositions in the same edge are from different levels, we

solve the sub-problem using the lower level AMDP. The robot

must then forgo the computational benefits of the AMDP to

guarantee that the policy satisfies all the constraints present

in the LTL expression. This entire pipeline (shown in Fig. 2)

therefore fluidly allows complex task specifications with non-

Markovian constraints to be specified using natural language

and solved at different levels of the goal hierarchy.

We evaluate our approach by reporting the performance of

AP-MDP in simulation and on a drone platform. We also

present a new corpus of non-Markovian natural language

commands at different levels of abstraction, a neural sequence-

to-sequence model that translates human-uttered natural lan-

guage commands to their corresponding LTL counterparts, and

demonstrates the solving of complex natural language task

specifications using AP-MDP on a drone.

II. RELATED WORK

LTL has been used to model agent behavior in planning

problems with non-Markovian task specifications. Consider a

task that requires an agent to visit regions of interest in a

specific order (for example, “visit the red room first, then

the blue room, and the green room last”). These kinds of

expressions have intrinsic temporal information that must be

taken into account when determining the kind of path that

has to be taken to achieve the goal. LTL allows us to formally

describe these kinds of task specifications as logical functions,

thus allowing robots to then execute these behaviors.

When the goal for a task is defined as an LTL expression,

previous works have often formulated the problem as a product

of an MDP and an automaton of the LTL formula [11, 12,

13, 15, 16]. Some previous works model dynamic systems of

agents as MDPs and developed methods to generate a control

policy that satisfies LTL constraints [11, 12]. The LTL formula

is converted into a Deterministic Rabin Automaton (DRA), and

the dynamic system is formulated as a product of a DRA and

MDP. The goal is then to search for a policy that satisfies

the acceptance condition. Along the same lines, Kasenberg

and Scheutz [14] show that the reverse is also true, that is,

the product of a DRA and an MDP can be considered to

infer an LTL specification from demonstrations. However, this

approach does not scale well for large MDPs.

Decision making with an MDP often becomes intractable

as the size of the state space increases. In order to over-

come intractability, hierarchical frameworks [2, 3, 4, 20] are

commonly used. The options framework [3, 4], for example,

models temporally abstract macro-actions as options that can

be adopted to build abstraction hierarchies. Similarly, AMDPs

[2] can be used for abstraction by decomposing tasks into

series of subtasks, thus allowing planning to take place more

efficiently. However, these methods do not address the problem

of solving LTL specifications with abstractions.

Hierarchical frameworks are powerful when an agent is

faced with the task of planning a sequence of actions for

complex LTL tasks. Several works [21, 22, 23, 24] propose

incorporating both the robot dynamics and the given LTL

constraints in a continuous space. A continuous state space can

be abstracted into a discrete state space and a continuous path

is derived by sampling guided by the high-level discrete plan

[22, 23, 24]. Other works have focused on grounding natural

language to LTL expressions [9, 10, 17] to further allow a

robot to make use of these LTL specifications. Previous work

in hierarchical planning using options can accelerate planning

for LTL tasks [18]. However, the AMDP framework [2] is

better suited for our task than options, by virtue of encoding

a goal hierarchy rather than learning a policy over goals.

To the best of our knowledge, this work is the first to pro-

pose a hierarchical framework for planning for LTL tasks using

the structure of an AMDP. An AMDP provides abstract states,

actions, and transition dynamics in multiple layers above a

base-level MDP, thus decomposing problems into subtasks

with local rewards and local transition functions for policy

generation. Moreover, as shown in our robot demonstrations,

we start from human input given in the form of speech that

is then converted to text. This textual input of the natural

language command is translated to its LTL representation, and

atomic propositions are directly mapped into propositions in

each layer of a multi-level AMDP. We can then plan at levels

higher than the lowest level whenever possible, and find a

policy in a more efficient way than previous approaches.

III. PROBLEM FORMULATION

We consider a planning problem for a robot, when the task

that the robot is required to interpret and solve is given through

a natural language command. Our environment is a 3D grid

world consisting of three floors as shown in Fig. 1. Each floor

is composed of colored rooms, a room is composed of a set

of grid cells, a landmark (such as a charging station) indicates

a cell at position (x,y,z). Landmarks (or cells) are therefore

the lowest level of abstraction, rooms are abstract expressions

of landmarks, and floors are abstract expressions of rooms

and form the highest level of abstraction. A natural language

command (such as “first go to the red room through landmark

1 and then go to the blue room.”) is given to the robot by

virtue of observable visual elements in our abstraction hier-

archy (landmarks, rooms, and floors). This natural language

utterance is grounded to its LTL counterpart (F (landmark 1

∧ F (red room ∧ F (blue room)))) which forms the task

specification. The agent is required to accomplish the task by

correctly finding a path to the correct location and following

the determined path by executing a sequence of actions from

the action set (north, south, east, west, up, down).

We formulate this problem as an MDP that gets a high

reward when the task is accomplished. Crucially, we make

use of abstractions over the MDP state space for more efficient

planning in large environments, and for the robot to efficiently

find policies for commands at different levels of abstraction.

Consider the example task above of “first go to the red room

through landmark 1 and then go to the blue room.” This is

an expression that spans different levels in the abstraction

hierarchy (that is, rooms and landmarks) and can be translated

into its equivalent LTL formula φ over atomic proposition

sets APL for each level L in the hierarchy. For example,

“landmark 1” occupies one grid cell in the environment and

corresponds to an atomic proposition (denoted by α0
0) in

AP 0 and “red room” and “blue room” correspond to atomic

propositions (denoted by α1
0 and α1

1, respectively) in AP 1. The

expression can be translated into φ = F(α0
0 ∧ F(α

1
0 ∧ Fα

1
1))

using the LTL operator F or “finally”, converted to a Büchi

automaton [7, 19], and then an AMDP [2] to decompose the

problem into a series of smaller, and hence easier to solve,

subproblems. Section IV defines LTL and the variants of

MDPs that our model relies on, while section V goes over

how they are composed together to produce a more efficient

solution, while describing the end-to-end pipeline with the

natural language grounding components.

IV. PRELIMINARIES

This section defines the components used in our formulation

and how they are transformed into one another to form state

abstractions for complex, non-Markovian task specifications

uttered by humans through natural language. We briefly in-

troduce LTL and its syntax, explain the transformation of an

LTL expression to a Büchi automaton and further to an MDP.

A. Linear temporal logic

Temporal logic was first introduced as a formalism for

clarifying issues of time and defining the semantics of tem-

poral expressions. LTL is a temporal logic whose syntax

contains path formulae — the logical expression describes a

specification that can be validated over a trajectory of any

robot (discrete) system. LTL has the following grammatical

syntax: φ ::= π | ¬φ | φ ∧ ϕ | φ ∨ ϕ | Gφ | Fφ | φ Uϕ,

where φ is the task specification or path formula, φ and ϕ

are both LTL formulae, π ∈ Π is an atomic proposition, F
denotes “finally”, G denotes “globally” or “always”, U denotes

“until”, and ¬,∧,∨ denote logical “negation”, “and” and “or”.

B. Linear temporal logic to Büchi automaton

An LTL formula intuitively expresses properties over tra-

jectories or traces (a sequence of sets of atomic propositions)

in the environment. This can be translated into an equivalent

Büchi automaton [19] — a deterministic automaton, that

differs from the general notion of automata in that it accepts

infinite traces represented by the input LTL formula. This

handling of infinite traces is specifically necessary in cases

of complex non-Markovian task specifications that can map

to potentially unbounded action sequences.

Definition 1: (Büchi automaton): A deterministic Büchi au-

tomaton (DBA) is a tuple B = (Q,Σ, δ, q0,F) where Q is a

finite set of states, Σ is the input alphabet, δ : Q × Σ → Q

is the transition function, q0 ∈ Q is the initial state, and F is

the acceptance condition.

For the LTL formula φ, the input alphabet of the automaton

B is Σ = 2AP . A word w over an alphabet can be any infinite

sequence of atomic propositions, and the run of the automaton

on w = a0a1 · · · with ai ∈ Σ is a sequence of states ρ =
q0q1 · · · for qi ∈ Q, where q0 is an initial state and qi+1 =
δ(qi, ai). A word is accepted by the automaton iff its run r

satisfies the relationship lim(r)∩F 6= ∅, that is, the language

L(B) is non-empty if at least one final state is reached.

C. Labeled Markov Decision Processes

In order to combine an MDP with the LTL formula to

make an expanded MDP, we need to annotate each state with

propositions so that we can evaluate the LTL expression. A

labeled MDP [13] is essentially an MDP where transitions are

annotated with labels. These labels are provided by a labeling

function that maps states to valid propositions for each state.

Definition 2: (Labeled MDP): A labeled MDP is a tuple

M = (S,A, T, s0, AP, L,R), where S and A are finite state

and action sets, T : S × A × S → [0, 1] is a transition

probability function, s0 ∈ S is the initial state, AP is a set

of atomic propositions, L : S → 2AP is a labeling function

which maps a state s ∈ S into a set of atomic propositions

valid at state s, and R : S → R is a reward function.

D. Product Markov Decision Processes

We now need to combine the labeled MDP M with the

LTL expression in order to make an expanded MDP which

keeps track of the relevant parts of the LTL state. A product

automaton is one that derives from the product of the finite

transition system of M and the automaton B that represents

the LTL specification. Labeled MDPs have previously been

used for planning over an MDP to satisfy an LTL formula

[15, 16], where the states ofM and B encode the desired LTL

specification. We can therefore design a state based reward

function that relies on acceptance conditions of B.

Definition 3: (Product MDP): Given a deterministic Büchi

automaton B = (Q,Σ, δ, q0,F) and a labeled finite MDP

M = (S,A, T, s0, AP, L,R) , with s ∈ S and q ∈ Q,

the product MDP (P-MDP) for the state (s, q) is given by

Mp = (Sp, A, Tp, s0p, Q, Lp) where:

(a) Sp = S ×Q is a product state,

(b) Tp((s, q), a, (s
′, q′)) =

{

T (s, a, s′), if q′ = δ(q, L(s′))
0, otherwise,

(c) s0p = (s0, q) such that q = δ(q0, L(s0)),
(d) Lp((s, q)) = q,

E. Abstract Markov Decision Processes

An Abstract Markov Decision Process [2] (AMDP) hier-

archy decomposes large planning problems into a series of

subproblems with local reward and transition functions using

state and action abstraction.

Definition 4: (Abstract MDP): An AMDP is a 6-tuple M̃ =
(S̃, Ã, T̃ , R̃, Ẽ, F). These are the usual MDP components,

with the addition of F : S → S̃, a state projection function

to map states from the original environment MDP into the

AMDP abstract state space S̃. Actions in the action set Ã

of the AMDP are either primitive actions, or are associated

with subgoals to solve in the environment MDP. The transition

function T̃ captures the dynamics of the effects of changes in

the AMDP state space once subgoals are completed. R̃ is the

reward function. Ẽ ⊂ S̃ is the set of terminal states.

V. TECHNICAL APPROACH

At a high level, we use a neural sequence-to-sequence model

to convert an English command to the corresponding LTL

expression, which is then translated to a Büchi automaton and

then levels of the component AMDP to enable the robot to

infer a policy based on the expression. We run a simulation that

shows the produced action sequence, executable by a drone in

a 3D environment.

A. Abstract Labeled Markov Decision Processes

We propose Abstract Labeled MDPs (AL-MDPs) that de-

composes an MDP M into multiple abstract labeled MDPs

which are based on abstract states, actions, and transitions in

multiple layers. The labeled MDPs in the lowest level, the ith

level, and the highest level are denoted by M̂0, M̂i, and M̂L,

respectively. The abstract labeled MDP M̂i is defined below:

Definition 5: (Abstract Labeled MDP): M̂i =
(Ŝi, Âi, T̂ i, ŝi0, AP,L

i, Ri), where Ŝi, Âi, T̂ i and Ri

are a set of states, a set of actions, a transition function,

and a reward function, respectively. States in M̂i correspond

to a combination of atomic propositions in AP by the

labeling functions Li : Ŝi → 2AP . The set of atomic

propositions AP is a union of L disjoint sets AP is, where

AP i = {αi
0, · · · , α

i
n} (that is, AP = ∪Li=1AP

i). The

proposition α ∈ AP belongs to AP i, where i is the largest

value which satisfies that there exists a state s ∈ Ŝi which

can determine the truth value of α.

B. Abstract Product Markov Decision Processes

We propose Abstract Product MDPs (AP-MDPs) which

combine AL-MDPs and DBAs to solve ordinary product

MDPs efficiently. We furthermore show how our approach

handles a combination of atomic propositions in multiple

levels. For example, if some of the atomic propositions are

defined at level 0, we cannot guarantee that a plan derived at

level 1 or level 2 will satisfy level 0 constraints. This would

require working at the lowest level of atomic propositions, thus

losing the computational benefit of abstraction and a reduced

state space. In all previous hierarchical approaches in this area,

when atomic propositions of different levels exist together,

the product MDP must be solved at the lowest level (level

0 in this case) to guarantee the satisfaction of the transition

constraint that directly affects it. This therefore does not

afford the computational benefit of planning at higher levels

using AL-MDPs. Our approach, however, employs different

depths of AL-MDPs by decomposing the product MDP into

subproblems to benefit from the hierarchical structure when

the LTL task includes atomic propositions at the lowest level.

AP-MDPs combine the automaton B of the LTL task

specification with AL-MDPs. This involves taking an LTL

formula in the form of an automaton, converting it to a labeled

MDP and decomposing this MDP into several subproblems,

each of which are individually solved at the required level of

abstraction. We use a running example, as shown in section

V-C to highlight the process of how decomposed subproblems

are solved for the task specification in question. Section V-D

then explains how any problem can be decomposed into com-

ponent subproblems and section V-E presents the pseudocode

for the algorithm for this process. The language grounding

component of the system is discussed in V-F and finally, V-G

describes the functioning of the end-to-end system.

C. Example Problem

Consider the example in Fig. 3. This figure shows the DBA

for the LTL task specification φ = F(α0
0 ∧ F(α

1
0 ∧ Fα

1
1))

and we can see that the atomic proposition α0
0 is in level

0 of the abstraction hierarchy, while α1
0 and α1

1 are in

level 1. To deal with these different levels in the abstraction

hierarchy, we decompose the entire problem into different

subproblems. The first subproblem M̂0 is defined by a tuple

M̂0 = (Ŝ0, Â0, T̂ 0, ŝ00, AP,L0, R0) and here the agent wants

to go to q1 while not visiting other states in the DBA. The

condition to reach the desired state, f(q0, q1, s, s
′) = true is

its goal condition and the condition to stay in the current state,

f(q0, q0, s, s
′) = true is its stay condition, where s and s′ are

the current state and the next state, respectively. The function

f returns true or false depending on whether the logical

expression on the edge is satisfied by the state. The reward

Fig. 3. Deterministic Büchi automaton. Atomic propositions in yellow
circles correspond to those in level 0 and atomic propositions in green circles
correspond to those in level 1. The transitions of the automaton refer to
constraints over the propositions that are satisfied on taking that path.

function ensures that the agent gets a large positive reward if

the goal condition is satisfied and gets a large negative reward

if the stay condition is violated and the goal condition is not

satisfied. In all other cases, it gets a small negative reward

as the time taken increases. Since this subproblem contains

atomic propositions at level 0, we can solve it at level 0, that

is, the lowest level of atomic propositions.

We now consider the latter part of the decomposition, that

is, the second subproblem M̂1. This has atomic proposi-

tions related to level 1, therefore M̂1 can be formulated

at a higher level of abstraction, that is, level 1 (M̂1 =
(Ŝ1, Â1, T̂ 1, ŝ10, AP, L1, R1)), allowing for more efficient

planning over a smaller state space. In this way, all subprob-

lems M̂i can be solved at the desired level to allow for full

use of the benefits of abstraction where possible.

D. Subproblem Decomposition

In general, there are nρ paths in a Büchi automaton from

the initial state to the accepting state. AP-MDPs decompose

the problem into nρ subproblems each denoted by Pρi
, which

accomplish the LTL task while following the path ρi.

Each problem Pρi
can be decomposed into ni subproblems,

each formulated by an AL-MDP. Each Pj
ρi

s aims to change the

DBA state of the agent from q̂ij to q̂ij+1 and the goal condition

and the stay condition of Pj
ρi

are f(q̂ij , q̂
i
j+1, s, s

′) = true and

f(q̂ij , q̂
i
j , s, s

′) = true, respectively. The reward function for

the AL-MDP is defined by:

Rj =







γgoal, if f(q̂ij , q̂
i
j+1, s, s

′) = true,

γstay, else if f(q̂ij , q̂
i
j , s, s

′) = false,

γ, otherwise,

(1)

where γgoal ≫ 1, γstay ≪ 0, and γ is a small negative value.

In this way, AP-MDPs can consist of (
∑nρ

i=1
ni) AL-MDPs.

When we denote the plan for Pρi
as (sseq, aseq)

ρi , the plan

for the LTL task is the shortest sequence (sseq, aseq)
∗, where

sseq is the state sequence and aseq the is action sequence.

E. Algorithm

The entire algorithm is presented as pseudocode in Algo-

rithm 1. The input task is specified as an LTL expression

composed of atomic propositions in the environment and the

logical operators defined previously. We translate the LTL

Algorithm 1 Solve AP-MDPs

1: LTL task φ and s0 are given

2: Initialize the optimal plan, (sseq, aseq)
∗.

3: Initialize the length of the optimal plan, l∗.

4: A← LTL2DBA(φ)
5: A.RemoveContradiction()
6: Paths = A.F indPaths()
7: for ρi ∈ Paths do

8: Initialize s0
9: Initialize the plan (sseq, aseq)

ρi

10: for j in {0, · · · , ni − 1} do

11: goal condition ← f(q̂ij , q̂
i
j+1, s, s

′) = true

12: stay condition← f(q̂ij , q̂
i
j , s, s

′) = true

13: ℓj ← the lowest level of atomic propositions in goal

and stay conditions.

14: M̂j ← (Ŝℓj , Âℓj , T̂ ℓj , ŝ
ℓj
0 , AP, Lℓj , Rℓj).

15: π ← M̂j .Solve()
16: ss, aa← M̂j .P lan(π, s0)
17: (sseq, aseq)

ρi ← (sseq, aseq)
ρi ∪ (ss, aa)

18: s0 ← sseq(end)
19: end for

20: if length(sseq) < l∗ then

21: (sseq, aseq)
∗ ← (sseq, aseq)

ρi

22: end if

23: end for

formula into a DBA using an existing package called Spot2

(line 4) [25]. Note that the DBA may contain infeasible edges

because the translator does not consider the real environment

(for example, if the red room does not exist on the first floor

in a particular gridworld, red_room ∧ floor_1 cannot

be true). We handle this by eliminating edges which have

contradictions consisting of a logical incompatibility between

two or more propositions (line 5), based on specifications of

the environment in question. We check the contradiction by

looking at the truth table of the formula. We then find all

possible paths from the initial state to the accepting state in

line 6. The AL-MDPs goal and stay conditions are defined

through lines 11 to 14, and we then obtain the optimal policy

and plan of AL-MDPs with a solver of the AMDP (lines 15-

16). We then select the best plan which has the minimum

number of actions (lines 20-22).

F. Grounding language to LTL formulae

We train a neural sequence-to-sequence model to translate

natural language commands to LTL expressions. We discuss

our language corpus and the model architecture below.

1) Corpus: We use Amazon Mechanical Turk (AMT) to

collect non-Markovian natural language commands that also

refer to elements in the environment at different levels of

abstraction1. AMT workers were shown images representing

correct and incorrect ways for the robot to complete a task,

and asked to give commands that accurately capture the

1The corpus can be found at https://github.com/h2r/ltl-amdp

Fig. 4. Examples, left and right, tested in simulation. In each example, a natural language instruction is converted to an LTL expression, then to a corresponding
AP-MDP to find a policy. An agent then executes the policy in the specified environment to reach the correct goal state through the desired path.

robot’s correct behavior. 810 natural language commands were

collected from 120 AMT workers for 27 LTL formulae. We

augment these 810 commands to obtain 6185 commands for

343 LTL expressions. Augmentation is done by mapping

one training sample (for example, “go to the red room”

accompanied by F(red room)) to similar commands and

corresponding LTL expressions for every other possible goal

locations. We held aside 20% of the data as the test set to

evaluate model performance and trained on all remaining data

and perform 5 fold cross-validation in this manner.

2) Sequence-to-sequence model: As in Gopalan et al. [17],

we use a neural sequence-to-sequence model composed of

a recurrent neural network (RNN) encoder and decoder to

translate each natural language instruction to an LTL formula.

It is implemented in PyTorch [26] and trained for 10 epochs

over our corpus, with a learning rate of 0.001 using the Adam

optimizer [27]. We used a dropout of 0.8 as a regularizer [28].

G. Planning for an LTL task

Once a natural language command is translated into an LTL

formula, it is then converted into a Büchi automaton with

multiple paths from the initial state to the accepting state. Each

path is represented and solved with an AL-MDP.

VI. EXPERIMENTS

In this section, we show that our method efficiently gen-

erates plans for complex LTL tasks. We evaluate efficiency

with the number of backups and the computation time over

100 tasks. We successfully applied the proposed method on a

drone.

A. Environment Setup

For simulations, we consider two 3D grid worlds (E1 and

E2) of size 6×4×3 and 30×20×6, respectively. The smaller

world E1 has three floors, each comprised of six rooms, each

the size of 2 × 2 grid cells. The larger world E2 has six

floors, each comprised of six rooms of size 10 × 10. The

visually observable elements (grid cells, rooms and floors)

form the atomic propositions of the LTL task specifications.

Importantly, these elements span different levels of abstraction:

landmarks (grid cells) are at level 0, rooms are at level 1, and

floors are at level 2. While our simulation environments consist

of at least three floors, our robot demonstration is performed

in a gridworld with only two floors for compatibility with the

maximum height our PiDrone can reach.

B. Examples in simulation

We consider the tasks below to demonstrate example sim-

ulations of our proposed method. We show the language

command with the corresponding LTL task specification, the

automaton of the LTL expression, and the path found by

our proposed approach for each example. This highlights

how our method solves a given task while satisfying the

constraints of the task. The tasks in question exhibit the com-

plex constraints with non-Markovian nature and varying levels

of abstraction as outlined above. They contain propositions

at different levels in the abstraction hierarchy, and contain

temporal order constraints by specifying certain subtasks that

should be performed before others. The two tasks are:

1) φ1=F ((floor_2 ∨ red_room) ∧ F(floor_1))
(“First either go to the second floor or the red room, and

then go to the first floor”)

2) φ2 = F(floor_2 ∧ F(green_room))
(“Go to the green room after entering the second floor”)

The execution of both tasks is shown in Fig. 4. The process

to solve task φ1 for the given LTL task specification is outlined

in the left side of the figure. Upon decomposing this task

specification as in our proposed method, there are two paths

of automaton states. Consider the path ρ0 = q0q2 corre-

sponding to the AL-MDP M̂0. This has a goal condition of

((red_room ∧ floor_1)∨(floor_2 ∧ floor_1)) and a

stay condition of (¬floor_2 ∧ ¬red_room). For the path

ρ1 = q0q1q2, there are two AL-MDPs M̂0 and M̂1, where

M̂0 has a goal condition of ((red_room ∧ ¬floor_1)∨
(floor_2 ∧ ¬floor_1)) and a stay condition of

(¬floor_2 ∧ ¬red_room), and M̂1 has a goal condition

of (floor_1) and a stay condition of (¬floor_1). Since

(a) (b)

Fig. 5. Cumulative histograms of computing time and the number of backups
of AP-MDP and P-MDP in the environment (a) E1 and (b) E2. We execute
AP-MDP and P-MDP with 100 random LTL tasks in two environments, E1
and E2. The y-axis shows the cumulative number of cases evaluated.

we can satisfy φ1 with only two actions with ρ0, the final

solution is a plan for ρ0.

For task φ2, there exists an infeasible path among paths

in the automaton. The first AL-MDP in ρ0 = q0q2 has goal

and stay conditions of (floor_2 ∧ green_room) and

(¬floor_2), respectively. This problem does not have a

solution because the green room is on the second floor, and

thus our algorithm does not return a plan. There is, however,

a solution for the path ρ1 = q0q1q2. The first AL-MDP has

a goal condition of (floor_2 ∧ ¬green_room) and a

stay condition of (¬floor_2). The second AL-MDP has a

goal condition of (green_room) with a stay condition of

(¬green_room). The planned path is shown in Fig. 4.

C. Efficiency

In this section, we evaluate the efficiency of the proposed

algorithm by measuring the computing time and the num-

ber of backups of the algorithm. The measured computing

time includes pre-processing time like translating the LTL

expression to a DBA and searching for a path in the DBA,

along with the final planning time. The hierarchical structure

allows for more efficient planning when unnecessary backup

across multiple levels of the hierarchy is limited. We also

evaluate the ability of different models to plan without this

unnecessary computation. For each problem, the number of

backups depends on the number and size of subproblems.

Since planning for an LTL task can be formulated as

the product of an automaton B and MDP M as de-

scribed in section IV-D, our baseline algorithm (called P-

MDP) is one that solves the product MDP at level 0 us-

ing value iteration. We ran 100 random tasks in the afore-

mentioned environments (E1 and E2). The example tasks

here are LTL specifications randomly sampled from the set

{Fa, F(a ∧ Fb), F(a ∧ F(b ∧ Fc)), Fa ∧ Fb, ¬a U b} ,

where a, b, and c are atomic propositions that can be visu-

ally observed in our environment (such as landmark_1,

green_room, first_floor). We ensure that atomic

propositions are sampled from all possible landmarks, rooms,

and floors to get a full variety of commands, and ensure

that environment constraints are satisfied. For example, if

level 1 is sampled, we sample the index of rooms among

(a) Computing time ratio (b) The number of backups ratio

Fig. 6. Cumulative histograms of (a) computing time ratio (lower is better)
and (b) the number of backups ratio (lower is better) of AP-MDP to P-MDP.

all possible rooms in that level. The lowest level of sampled

atomic propositions is denoted by 0.

We display the results as histograms plotted in Fig. 5 and

Fig. 6. In Fig. 5, the y-axis denotes the cumulative number

of cases evaluated, while the x-axis denotes the computing

time and the number of backups. We plot results for both

environments E1 (on the left) and E2 (on the right). The red

line shows computing time taken, while the blue line shows

the number of backups, and the dotted line refers to the P-

MDP (our baseline) while the bold line refers to the AP-MDP

(our proposed model). For the corresponding number of cases

on the y-axis, we can see the time taken or the number of

backups, as plotted by the four lines. In both environments E1
and E2, the AP-MDP finds solutions with a shorter computing

time and a smaller number of backups in the majority of cases.

The size of environment E2 is much larger than E1, and it

therefore takes longer computing time and more backups. It

should be noted that AP-MDP perform significantly better than

P-MDP given the benefits of abstraction in large states spaces.

In Fig. 6, to compare the efficiency of the two algorithms

we plot the ratio (that is, AP-MDP to P-MDP) for the same

metrics. For both computing time and number of backups, a

ratio less than 1.0 indicates that AP-MDP is more efficient

than P-MDP. The y-axis shows the cumulative number of

cases, while the x-axis shows the ratio of the computing time

taken. For a corresponding ratio on the x-axis (r = 0.2, for

example) we can see the number of cases that had a ratio

< r). Therefore, a line that solves a larger number of cases

(out of 100) at a smaller ratio is a better solution. The four lines

refer to different environments when solved at different levels.

For example, (E1, l = 1) refers to the smaller environment

at level 1. In E1, AP-MDP is better in 72 among the 100
cases with respect to the computing time and for 71 cases with

respect to the number of backups. In E2, AP-MDP is better

in 86 among 100 cases with respect to the computing time

and for 89 cases with respect to the number of backups. The

AP-MDP decomposes the problem and therefore has to solve

more MDPs than the P-MDP. This means that in certain cases,

especially in the smaller environment where abstraction is

unnecessary, this approach is not faster. However, in the larger

environment, employing abstraction increases the efficiency by

reducing the size of each problem. To clearly show the effect

(a) First floor (b) Second floor

Fig. 7. Figures of the two-floor environment for our drone demonstrations
as viewed through the HoloLens, taken from our video.

of abstraction, we run simulations with atomic propositions in

higher levels (AP 1 and AP 2), to assess how much abstraction

helps when dealing with high-level commands. In E1, the

computing time ratio is less than 1.0 in 95 cases and the

number of backups ratio is less than 1.0 in 99 cases. In

the larger environment E2, the computing time ratio and the

number of backups ratio are less than 1.0 in all cases.

D. Language grounding results

We observe that the accuracy of the model drops on the

held-out LTL commands. This problem of zero-shot gener-

alization (specifically, the ability to generalize to samples

unseen during training) has been widely studied [17, 29, 30]

for neural sequence-to-sequence models that cannot handle

compositionality and the ability of models to learn meaning

representations for given natural language sentences [31].

We also observe cases where changes in word order af-

fect the translated LTL output of the model. Consider the

command “avoid the blue room until you go to landmark

1”, (¬blue room U landmark 1) for example. Variations

in our collected data include sentences like “until you go

to landmark 1, always avoid the blue room” that change

the ordering of referent words (blue room and landmark 1)

which are occasionally confused, and mapped to incorrect

expressions such as (¬landmark 1 U blue room). However,

in the drone demonstrations, the sequence-to-sequence model

correctly translate the given language commands (converted

from speech) into LTL task specifications that are then solved

using our proposed method.

E. Robot Experiments

In addition to the simulations described above, we also

test our proposed method on a drone. The PiDrone [32] is a

quadcopter drone that is equipped with one downward-facing

infrared sensor with a maximum range of 60cm to measure

the drone’s altitude, and one downward-facing camera for

localization over a textured surface. The drone’s flight space

is a 3m× 3m surface. We divide the space into a grid-based

environment, as shown in Fig. 7, consisting of 2 floors, each

with 9 rooms, and each room is a square made up of 4 cells

(each cell is 50cm × 50cm). The action space for the drone

in the grid-based environment is (north, south, east, west, up,

down), where each action changes the drone’s location by 1
cell. We visualize the environment through mixed reality using

a Microsoft HoloLens [33]. Colored rooms and landmarks

(boxes each with the size of 1 cell) to aid path planning

and specify goal positions were set up in a Unity3D virtual

environment running on the HoloLens.

In our demonstration, the drone is given a natural language

instruction through speech. This is converted using Google’s

speech-to-text, and then translated by our trained sequence-to-

sequence model into an LTL formula to be solved by the AP-

MDP framework in real time. The action sequence output by

AP-MDP for the LTL expression is then used for the drone’s

navigation. The natural language commands were: “Navigate

to the red room”, “Avoid landmark two until you have been

to the blue room”, “Move to the orange room then the purple

room”, “Go to landmark three then go to the yellow room”.

Video recordings of the drone demonstrations can be found at

https://youtu.be/zjtMEGUmkd8.

VII. CONCLUSION

This paper introduces a novel approach to combine the

handling of non-Markovian task specifications in large envi-

ronments by grounding complex language to LTL expressions

and then decomposing tasks within an abstraction hierarchy

to plan efficiently at higher levels where possible. We show

that planning with abstractions allows the robot to correctly

reach the goal location more efficiently, in terms of computing

time and backups required, in over 95% of tasks in a small

environment and over 99% of tasks in a larger environment.

We also show that this method of abstraction can handle

LTL task specifications. Moreover, we present the largest

existing dataset of natural language commands mapped to LTL

expressions at different levels of abstraction. We demonstrate

our approach with a PiDrone that navigates to the goal location

along a correct path when given a human-uttered command.

While the language grounding model works fairly well to

translate language to LTL formulae, it cannot fully handle

expressions unseen during training and cannot always deal

with simple changes in word-ordering and variations in the lan-

guage. Future work in this direction can explore compositional

models that can handle a wide range of expressions by learning

to compose subparts together and then execute the required

actions. Future work in the hierarchical setup can explore

models that go beyond fixed hierarchies and state abstractions.

If the AMDP transition hierarchies can be learned with model-

learning methods on the fly, this will enable generalization to

unseen environments and the ability to handle and properly

execute a plan for a wider range of commands.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Nakul Gopalan for his

insightful comments and edits. This work is supported by

the National Science Foundation under grant numbers IIS-

1637614 and IIS-1652561, and the National Aeronautics and

Space Administration under grant number NNX16AR61G.

REFERENCES

[1] J. MacGlashan, M. Babes-Vroman, M. desJardins, M. L.

Littman, S. Muresan, S. Squire, S. Tellex, D. Arumugam,

and L. Yang, “Grounding english commands to reward

functions.” in Robotics: Science and Systems, 2015.

[2] N. Gopalan, M. desJardins, M. L. Littman, J. Mac-

Glashan, S. Squire, S. Tellex, J. Winder, and L. L. Wong,

“Planning with abstract markov decision processes,” in

ICAPS, 2017.

[3] G. Konidaris, “Constructing abstraction hierarchies using

a skill-symbol loop,” in Proc. of the International Joint

Conference on Artificial Intelligence, 2016.

[4] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez,

“From skills to symbols: Learning symbolic represen-

tations for abstract high-level planning,” Journal of Arti-

ficial Intelligence Research, vol. 61, pp. 215–289, 2018.

[5] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs

and semi-MDPs: A framework for temporal abstraction

in reinforcement learning,” Artificial intelligence, vol.

112, no. 1-2, pp. 181–211, 1999.

[6] D. Arumugam, S. Karamcheti, N. Gopalan, L. L. Wong,

and S. Tellex, “Accurately and efficiently interpreting

human-robot instructions of varying granularities,” arXiv

preprint arXiv:1704.06616, 2017.

[7] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop:

Experimenting with language, temporal logic and robot

control,” in 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2010.

[8] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Trans-

lating structured english to robot controllers,” Advanced

Robotics, vol. 22, no. 12, pp. 1343–1359, 2008.

[9] C. Lignos, V. Raman, C. Finucane, M. Marcus, and

H. Kress-Gazit, “Provably correct reactive control from

natural language,” Autonomous Robots, vol. 38, no. 1,

pp. 89–105, 2015.

[10] A. Boteanu, T. Howard, J. Arkin, and H. Kress-Gazit, “A

model for verifiable grounding and execution of complex

natural language instructions,” in 2016 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems

(IROS), 2016.

[11] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “MDP

optimal control under temporal logic constraints,” in

Decision and Control and European Control Conference

(CDC-ECC), IEEE Conference on, 2011.

[12] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal

control of markov decision processes with linear tempo-

ral logic constraints,” IEEE Transactions on Automatic

Control, vol. 59, no. 5, pp. 1244–1257, 2014.

[13] J. Fu and U. Topcu, “Probably approximately correct

MDP learning and control with temporal logic con-

straints,” arXiv preprint arXiv:1404.7073, 2014.

[14] D. Kasenberg and M. Scheutz, “Interpretable apprentice-

ship learning with temporal logic specifications,” in IEEE

Conference on Decision and Control, 2017.

[15] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust

control of uncertain markov decision processes with

temporal logic specifications,” in IEEE Conference on

Decision and Control, 2012.

[16] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A.

Seshia, “A learning based approach to control synthesis

of markov decision processes for linear temporal logic

specifications,” in IEEE Conference on Decision and

Control, 2014.

[17] N. Gopalan, D. Arumugam, L. Wong, and S. Tellex,

“Sequence-to-sequence language grounding of non-

markovian task specifications,” in Robotics: Science and

Systems, 2018.

[18] X. Liu and J. Fu, “Compositional planning in markov de-

cision processes: Temporal abstraction meets generalized

logic composition,” arXiv preprint arXiv:1810.02497,

2018.

[19] J. R. Büchi, “On a decision method in restricted second

order arithmetic,” in The Collected Works of J. Richard

Büchi. Springer, 1990, pp. 425–435.

[20] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenen-

baum, “Hierarchical deep reinforcement learning: Inte-

grating temporal abstraction and intrinsic motivation,” in

Advances in Neural Information Processing Systems 29,

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, Eds.

[21] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.

Pappas, “Temporal logic motion planning for dynamic

robots,” Automatica, vol. 45, no. 2, pp. 343 – 352, 2009.

[22] J. McMahon and E. Plaku, “Sampling-based tree search

with discrete abstractions for motion planning with dy-

namics and temporal logic,” in Proc. of the IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems, 2014.

[23] K. Cho, J. Suh, C. J. Tomlin, and S. Oh, “Cost-aware path

planning under co-safe temporal logic specifications,”

IEEE Robotics and Automation Letters, vol. 2, no. 4,

pp. 2308–2315, 2017.

[24] Y. Oh, K. Cho, Y. Choi, and S. Oh, “Robust multi-layered

sampling-based path planning for temporal logic-based

missions,” in IEEE Conference on Decision and Control,

2017.

[25] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud,

E. Renault, and L. Xu, “Spot 2.0 — a framework for

LTL and ω-automata manipulation,” in Proc. of the

International Symposium on Automated Technology for

Verification and Analysis (ATVA’16), ser. Lecture Notes

in Computer Science. Springer, 2016.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,

Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer, “Automatic differentiation in pytorch,” 2017.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov, “Dropout: a simple way to pre-

vent neural networks from overfitting,” The Journal of

Machine Learning Research, vol. 15, no. 1, pp. 1929–

1958, 2014.

[29] B. M. Lake and M. Baroni, “Still not systematic

after all these years: On the compositional skills

of sequence-to-sequence recurrent networks,” arXiv

preprint arXiv:1711.00350, 2017.

[30] P. Koehn and R. Knowles, “Six challenges for neural

machine translation,” arXiv preprint arXiv:1706.03872,

2017.

[31] I. Dasgupta, D. Guo, A. Stuhlmüller, S. J.

Gershman, and N. D. Goodman, “Evaluating

compositionality in sentence embeddings,” CoRR,

vol. abs/1802.04302, 2018. [Online]. Available:

http://arxiv.org/abs/1802.04302

[32] I. Brand, J. Roy, A. Ray, J. Oberlin, and S. Ober-

lix, “Pidrone: An autonomous educational drone using

raspberry pi and python,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

2018.

[33] H. Chen, A. S. Lee, M. Swift, and J. C. Tang, “3d col-

laboration method over hololens and skype end points,”

in Proc. of the 3rd International Workshop on Immersive

Media Experiences, 2015.

