
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Scalable and Congestion-aware Routing for
Autonomous Mobility-on-Demand

via Frank-Wolfe Optimization
Kiril Solovey, Mauro Salazar and Marco Pavone

Autonomous Systems Lab, Stanford University, Stanford, CA 94305, USA
{kirilsol,samauro,pavone}@stanford.edu

Abstract—We consider the problem of vehicle routing for
Autonomous Mobility-on-Demand (AMoD) systems, wherein a
fleet of self-driving vehicles provides on-demand mobility in a
given environment. Specifically, the task it to compute routes for
the vehicles (both customer-carrying and empty travelling) so
that travel demand is fulfilled and operational cost is minimized.
The routing process must account for congestion effects affecting
travel times, as modeled via a volume-delay function (VDF).
Route planning with VDF constraints is notoriously challenging,
as such constraints compound the combinatorial complexity of
the routing optimization process. Thus, current solutions for
AMoD routing resort to relaxations of the congestion constraints,
thereby trading optimality with computational efficiency. In this
paper, we present the first computationally-efficient approach for
AMoD routing where VDF constraints are explicitly accounted
for. We demonstrate that our approach is faster by at least
one order of magnitude with respect to the state of the art,
while providing higher quality solutions. From a methodological
standpoint, the key technical insight is to establish a mathematical
reduction of the AMoD routing problem to the classical traffic
assignment problem (a related vehicle-routing problem where
empty traveling vehicles are not present). Such a reduction allows
us to extend powerful algorithmic tools for traffic assignment,
which combine the classic Frank-Wolfe algorithm with modern
techniques for pathfinding, to the AMoD routing problem. We
provide strong theoretical guarantees for our approach in terms
of near-optimality of the returned solution.

I. INTRODUCTION

Mobility in urban environments is becoming a major issue
on the global scale [23]. The main reasons are an increas-
ing population with higher mobility demands and a slowly
adapting infrastructure [1], resulting in serious congestion
problems. In addition, the usage of public transit is dropping,
whilst mobility-on-demand operators such as Uber and Lyft
are increasing their operation on urban roads, increasing
further congestion [7, 26, 43]. For instance, the yearly cost
of congestion in the US has doubled between 2007 and
2013 [39, 51], and in Manhattan cars are traveling about 15%
slower compared to five years ago [17].

Space limitations and a largely fixed infrastructure make
congestion an issue difficult to address in urban environ-
ments. While existing public transportation systems need to
be extended to ease congestion, it is important to adopt
technological innovations improving the efficiency of urban
transit. The advent of cyber-physical technologies such as
autonomous driving and wireless communications will en-
able the deployment of Autonomous Mobility-on-Demand

Fig. 1. The AMoD network. The white circles represent intersections and
the black arrows denote road links. The dotted arrows represent pick-up and
drop-off locations for single customers.

(AMOD) systems, i.e., fleets of self-driving cars providing
on-demand mobility in a one-way vehicle-sharing fashion
(see Fig. 1). Specifically, such a system is designed to carry
passengers from their origins to their destinations, potentially
in an intermodal fashion (i.e., utilizing several modes of
transportation), and to assign empty vehicles to new requests.
The main advantage of AMOD systems is that they can
be controlled by a central operator simultaneously computing
routes for customer-carrying vehicles and rebalancing routes
for empty vehicles, thus enabling a system-optimal operation
of this transportation system. This way, AMOD systems could
replace current taxi and ride-hailing services and reduce the
global cost of travel [46].

Conversely to conventional navigation providers computing
the fastest route by passively considering congestion in an
exogenous manner, AMOD systems controlled by a central
operator enable one to consider the endogenous impact of the
single vehicles’ routes on road traffic and travel time, and can
thus be operated in a congestion-aware fashion.

Statement of contributions: We introduce a computationally-
efficient approach for congestion-aware AMOD routing to
minimize the system cost—the total cost of executing the
routing scheme over all the vehicles in the system. To the
best of our knowledge, this is the first method that takes
into consideration the full representation of the volume-delay
function that estimates the travel time based on the amount of
traffic. Moreover, we demonstrate that our approach is faster
by at least one order of magnitude than previous work (see
Section II) for congestion-aware AMOD, while being more
accurate in terms of congestion estimation.

On the algorithmic side, we develop a reduction which
transforms the AMOD routing problem into a Traffic As-
signment Problem (TAP), where the latter does not involve
rebalancing of empty vehicles. We then prove mathematically

that an optimal solution for the latter TAP instance yields a
solution to our original AMOD problem with the following
properties: (i) The majority (e.g., 99% in our experiments) of
rebalancing demands are fulfilled and (ii) the system cost of
the solution is upper bounded by the system optimum where
100% of the rebalancing demands are fulfilled. (We note that,
in practice, the unfulfilled rebalancing demand, being just a
small fraction – say, < 1% – can be addressed via post-
processing heuristic strategies with minimal impact on cost.)

Such a reformulation of the AMOD problem allows us to
leverage state-of-the-art techniques for TAP, that can effi-
ciently compute a congestion-aware system optimum. In par-
ticular, we employ the classic Frank-Wolfe algorithm [13, 28],
which is paired with modern shortest-path techniques, such as
contraction hierarchies [14] (both of which are implemented in
recent open-source libraries [8, 12]). This allows us to compute
in a few seconds (on a commodity laptop) AMOD routing
schemes for a realistic test case over Manhattan, New York,
consisting of 156,000 passenger travel requests.

Organization: The remainder of this paper is structured as
follows. In Section II we provide a review of related work.
In Section III we formally define the instances of TAP and
AMOD we are concerned with in this work. There we also
discuss the assumptions of our model and possible limitations.
In Section IV we provide a description of the Frank-Wolfe
algorithm for TAP. Our main theoretical contribution is given
in Section V, where we describe our approach for AMOD by
casting it into TAP, and develop its mathematical properties.
In Section VI we demonstrate the power of our approach and
test its scalability on realistic inputs. We conclude the paper
with a discussion and future work in Section VII.

II. RELATED WORK

There exist several approaches to study AMOD systems,
spanning from simulation models [16, 22, 24] and queuing-
theoretical models [55, 18] to network-flow models [30, 35,
46]. On the algorithmic side, the control of AMOD systems
has been mostly based on network flow models employed
in a receding-horizon fashion [19, 47, 48], and thresholded
approximations of congestion effects [35], also accounting for
the interaction with public transit [36, 37] and the power-
grid [34]. In such a framework, cars can travel through a
road at free-flow speed until a fixed capacity of the road is
reached. At that point, no more cars can traverse it. Such
models result in optimization problems solvable with off-
the-shelf linear-programming solvers—making them very well
suitable for control purposes—but lacking accuracy when
accounting for congestion phenomena, which are usually de-
scribed with volume-delay functions providing a relationship
between traffic flow and travel time. In particular, the Bureau
of Public Roads (BPR) developed the most commonly used
volume-delay function [9], which has been applied to problems
ranging from dynamic estimation of congestion [32] to route
planning in agent-based models [5, 25]. Against this backdrop,
a piecewise-affine approximation of the BPR function is pre-
sented in [38] and combined with convex relaxation techniques
to devise a congestion-aware routing scheme for AMOD
systems resulting in a quadratic program. Nevertheless, in
large urban environments with several thousand transportation

requests such approaches usually lead to computational times
of the order of minutes, possibly rendering them less suitable
for real-time control purposes.

Mathematically, AMOD can be viewed as an extension of
TAP, where the latter ignores the cost and impact of rebal-
ancing empty vehicles. Historically, TAP was introduced to
model and quantify the impact of independent route choices of
human drivers on themselves, and the system as a whole (see
[28, 41]). Algorithmic approaches for TAP typically assume
a static setting in which travel patterns do not change with
time, allowing to cast the problem into a multi-commodity
minimum-cost flow [3], which can then be formulated as
a convex programming problem. One of the most popular
tools for convex programming in the context of TAP is
the Frank-Wolfe algorithm [13]. What makes this algorithm
particularly suitable for solving TAP is that its direction-
finding step corresponds to multiple shortest-path queries (we
expand on this point in Section IV). Recent advances in
pathfinding tailored for transportation networks [6], including
contraction hierarchies [12, 14], have made the Frank-Wolfe
approach remarkably powerful. In particular, a recent work [8]
introduced a number of improvements for pathfinding, and
combines those with the Frank-Wolfe method. Notably, the
authors present experimental results for TAP, where their ap-
proach computes within seconds a routing scheme for up to 3
million requests over a network of a large metropolitan area.
Nevertheless, such an approach is not directly applicable to
AMOD problems as it would not account for the rebalancing
of empty vechicles.

Finally, we mention that AMOD is closely related to Multi-
Robot Motion Planning (MRMP), which consists of computing
collision-free paths for a group of physical robots, moving
them from the initial set of positions to their destination.
MRMP has been studied for the setting of discrete [40, 52, 54]
and continuous [11, 42, 44] domains, respectively. The unla-
beled variant of MRMP [2, 45, 49, 50, 53], which involves
also target assignment, is reminiscent of the rebalancing empty
vehicles in AMOD, as such vehicles do not have a priori
assigned destinations.

III. PRELIMINARIES

In this section we provide a formal definition of TAP
and AMOD, as our work will exploit the tight mathematical
relation between these two problems.

The road network is modeled as a directed graph G =
(V,E): Each vertex v ∈ V represents either a physical road
intersection or points of interest on the road. Each edge
(i, j) ∈ E represents a road segment connecting two vertices
i, j ∈ V . To model the travel times along the network,
every edge (i, j) ∈ E is associated with a cost function
cij : R+ → R+, which represents the travel time along the
edge as a function of flow (i.e., traffic) along the edge per unit
of time, denoted by xij > 0. In order to accurately capture
the cost, every edge (i, j) has two additional attributes: the
capacity of the edge κij > 0 per unit of time, which can be
viewed as the amount of flow beyond which the travel time
will increase rapidly, and the free-flow travel time φij > 0, i.e.,
the nominal travel time when xij = 0. We mention that those
attributes are standard when modeling traffic (see, e.g., [28]).

The time-invariant nature of this model captures the average
value of the flows for a certain time period.

To compute cij we use the BPR function [9], which is the
most widely used volume delay function. We do note that our
approach presented below can be adapted to work with other
functions such as the modified Davidson cost [4], so long as
they induce a convex and continuously differential objective
function (see Equation 1 and Section IV). Specifically, we
define the cost function as

cij(xij) = BPR(xij , κij , φij) := φij ·
(

1 + α ·
(
xij
κij

)β)
,

where typically α = 0.15 and β = 4.
Travel demand is represented by passenger requests OD =

{(λm, om, dm)}Mm=1, where λm > 0 represents the amount of
customers willing to travel from the origin node om ∈ V to
the destination node dm ∈ V per time unit.

A. Traffic Assignment

Here we provide a mathematical formulation of traffic
assignment. We denote by xijm ∈ R+ the flow induced
by request m ∈ M on edge (i, j) ∈ E. We introduce the
following constraint which ensures that the amount of flow
associated with each request is maintained when a flow enters
and leaves a given vertex. The amount of flow corresponding
to the request m ∈ M , leaving om and entering dm must
match the demand flow λm as∑

j∈V +
i

xijm −
∑
j∈V −i

xjim = λim, ∀i ∈ V,m ∈M, (1)

where λim :=


λm, if om = i,

−λm, if dm = i,

0, otherwise,

and V −i := {j|(i, j) ∈ E} , V +
i := {j|(j, i) ∈ E}, denote

heads and tails of edges leaving and entering i ∈ V , respec-
tively. We also impose non-negative flows as

xijm > 0, ∀(i, j) ∈ E. (2)

The objective of TAP is specified in the following definition.
Informally, the goal is to minimize the total travel time
experienced by the users in the system, that is the sum of
travel times for each individual request m.

Definition 1. The traffic-assignment problem (TAP) consists
of minimizing the expression

FE(x) =
∑

(i,j)∈E

xijcij(xij), subject to (1), (2), (3)

where x :=
{
xij =

∑
m∈M xijm|(i, j) ∈ E

}
.

Observe that the cost (3) is unit-less, but is equivalent to
the average travel time experienced by each user (to see this,
divide the cost by the total number of requests).

B. Autonomous Mobility-on-Demand
In an AMOD system, the formulation of TAP captures only

partially the cost of operating the full system. In particular,
vehicles need to perform two types of tasks: (i) occupied
vehicles drive passengers from their origins to their destina-
tions; (ii) after dropping passengers off at their destination,
empty vehicles need to drive to the next origin nodes, where
passengers will be picked up. Indeed, the formulation of TAP
above only captures the cost associated with (i), but not (ii).
Another crucial difference between TAP and AMOD, which
makes the latter significantly more challenging, is the fact that
the travel destinations of empty vehicles are not given a priori
and should be computed by the algorithm. Thus, we extend the
model to include also rebalancing empty vehicles and define
xijr as the rebalancing flow of empty vehicles over (i, j) ∈ E.
We force empty vehicles to be rebalanced from destination
nodes to origin nodes as∑

j∈V +
i

xijr −
∑
j∈V −i

xjir = ri, ∀i ∈ V, (4)

for ri :=
∑
m∈M

(1{dm = i} − 1{om = i})λm,

where 1{·} is a boolean indicator function. Observe that nodes
with more arriving than departing passengers do not require
rebalancing. We use R :=

∑
i∈V 1{ri > 0}ri to denote

the total number of rebalancing requests and enforce non-
negativity of rebalancing flows as

xijr > 0, ∀(i, j) ∈ E. (5)

Definition 2. The autonomous-mobility-on-demand problem
(AMOD) consists of minimizing the expression FE(x̂), sub-
ject to (1), (2), (4), (5), where x̂ := {x̂ij := xij + xijr}(i,j)∈E .

C. Discussion
A few comments are in order. First, we make the assumption

that mobility requests do not change in time. This assumption
is justified in cities where transportation requests change
slowly with respect to the average travel time [27]. Second,
the model describes vehicle routes as fractional flows and it
does not account for the stochastic nature of the trip requests
and exogenous traffic. Given the mesoscopic perspective of
our study, such an approximation is in order. Moreover,
given the computational effectiveness of the approach, our
algorithm is readily implementable in real-time in a receding
horizon fashion, whereby randomized sampling algorithms
can be adopted to compute integer-valued solutions with
near-optimality guarantees [33]. Third, we assume exogenous
traffic to follow habitual routes and neglect the impact of our
decisions on the traffic base load, leaving the inclusion of
reactive flow patterns to future work. Fourth, we model the
impact of road traffic on travel time with the BPR function [9],
which is well established and, despite it does not account for
microscopic traffic phenomena such as traffic lights, serves the
purpose of route-planning on the mesoscopic level. Finally, we
constrain the capacity of the vehicles to one single customer,
which is in line with current trends, and leave the extension
to ride-sharing to future research [10, 48].

IV. CONVEX OPTIMIZATION FOR TAP

In this section we describe the Frank-Wolfe method for
convex optimization, which will later be used for solving
AMOD. First, we have the following statement concerning
the convexity of TAP.

Claim 1 (Convexity). TAP (Definition 1) is a convex problem.

Proof: Given a specific edge (i, j) ∈ E, observe that the
derivative of the expression xijcij(xij) is strictly increasing,
which implies that it is convex. As the expression FE(x)
consists of a sum of convex functions, it is convex as well.

A. The Frank-Wolfe Algorithm

Due to the convexity of the problems introduced, we can
leverage convex optimization to solve TAP, and consequently
AMOD, as we will see later on. Specifically, we use the Frank-
Wolfe algorithm (FRANKWOLFE), which is well suited to our
setting and has achieved impressive practical results for large-
scale instances of TAP in a recent work [8].

Before introducing FRANKWOLFE, it should be noted that
it is typically employed to minimize the user-equilibrium cost
function captured by

F̄E(x) =
∑

(i,j)∈E

∫ xij

0

c̄ij(s) ds, (6)

for some c̄ij : R+ → R+, whereas we are interested in
computing the system optimum corresponding to the minimum
of FE(x) =

∑
(i,j)∈E xijcij(xij), using cij as defined in

the previous section. However, we can enforce the user-
equilibrium reached by selfish agents to correspond to the
system optimum by using the marginal costs

c̄ij(xij) =
d

dxij
(xijcij(xij)) = cij(xij) + xijc

′
ij(xij),

which quantifies the sensitivity of the total cost with respect
of small changes in flows. Specifically, to compute the system
optimum, we only need to apply FRANKWOLFE to minimize
F̄E(x) as defined in (6). (See more information on this
transformation in [28].) The algorithm below will be presented
with respect to F̄E .

The following pseudo-code (Algorithm 1) presents a simpli-
fied version of FRANKWOLFE, which is based on [28, Chapter
4.1]. The algorithm begins with an initial solution x0, which
satisfies (1), (2). To obtain x0, one can, for instance, assign
each request (λm, om, dm) to the shortest route over the traffic-
free graph G, while ignoring the flows of the other users.

Algorithm 1 FRANKWOLFE (F̄E , G,OD)

1: x0 ← feasible solution for TAP; k ← 0
2: while stopping criterion not reached do
3: yk ← argminy F̄E(xk)+∇F̄E(xk)T (y−xk), s.t. yk

satisfies (1), (2)
4: αk ← argminα∈[0,1] F̄E(xk + α(yk − xk))

5: xk+1 ← xk + αk(yk − xk); k ← k + 1

6: return xk

In each iteration k of the algorithm, the following steps are
performed. In line 3 a value of yk minimizing the expression
F̄E(xk) + ∇F̄E(xk)T (yk − xk), which satisfies (1), (2), is
obtained. It should be noted that this corresponds to solving a
linear program with respect to yk, as xk is already known, and
one is working with the gradient of F̄E rather than the function
itself. We will say a few more words about this computation
below. In line 4 a scalar αk ∈ [0, 1] is found, such that
F̄E
(
xk + αk(yk − xk)

)
is minimized, which corresponds to

solving a single-variable optimization problem, which can be
done efficiently. At the end of the iteration in line 5 the solution
is updated to be a linear interpolation between xk and yk−xk.
The last value of xk computed before the stopping criteria has
been reached, is returned in the end. Due to the convexity of
the problem, it is guaranteed that as k →∞, xk converges to
the optimal solution of TAP.

B. All-or-nothing Assignment

What makes FRANKWOLFE particularly suitable for solving
TAP is the special structure of the task of computing yk which
minimizes F̄E(xk)+∇F̄E(xk)T (yk−xk). First, observe that
it is equivalent to minimizing the expression ∇F̄E(xk)Tyk.
Next, notice that for any (i, j) ∈ E it holds that ∂

∂xij
F̄E(xk) =

c̄ij(x
k
ij), where xkij is the value corresponding to (i, j) of xk.

That is, every variable ykij is multiplied by c̄ij(x
k
ij). Thus,

minimizing the expression ∇F̄E(xk)Tyk while satisfying (1),
(2) is equivalent to independently assigning the shortest route
for every request (λm, om, dm), over the graph G, where the
cost of traversing the edge (i, j) is independent of the traffic
passing through it, and is equal to (∇F̄E(xk))ij .

This operation is known as All-or-Nothing assignment, as
each request is assigned to one specific route. Its pseudo code
is given below (Algorithm 2). The SHORTESTPATH routine
returns a vector ykm, where for every (i, j) ∈ E that is found on
the shortest path from om to dm on G, weighted by ∇F̄E(xk),
ykm,ij = 1, and ykm,ij = 0 otherwise.

Algorithm 2 ALLORNOTHING (G,∇F̄E(xk), OD)

1: for m ∈M do
2: ykm ← SHORTESTPATH(G,∇F̄E(xk), om, dm)

3: return yk :=
∑
m∈M λmy

k
m

V. AMOD AS TAP

In this section we establish an equivalence between TAP
and AMOD. In particular, we show that a given AMOD
problem can be transformed into a TAP, such that a solution
to the latter, which is obtained by FRANKWOLFE, yields a
solution to the former.

The crucial difference between the two problems is that in
TAP every vehicle has a specific origin and destination vertex,
whereas in AMOD this is not the case. In particular, while
in AMOD empty rebalancers originate in specific destination
vertices of user requests, the destinations of these rebalancers
can in theory be any of the origin vertices. However, we show
that this gap can be bridged by supplementing the original
graph G with an additional “dummy” vertex, and connecting

2

1

5

3

4

6

Fig. 2. A simple example for the construction. The graph G consists
of the vertices 1 to 5 and the (black) edges between them. The demand
for G is OD = {(2, 1, 2), (1, 2, 4), (1, 3, 4), (2, 4, 1), (2, 4, 2)}, where
each triplet denotes the intensity, origin, and destination, respectively. Red
vertices indicate shortage of incoming vehicles (e.g., four passengers depart
from vertex 4, but only two vehicles arrive), green indicates excess (e.g,
four vehicles terminate in vertex 2 but only two passengers leave), black
represents vertices with met demand (e.g., vertex 1 where two vehicles
terminating, and two passengers departing). Consequently, the graph G′

additionally contains the dummy vertex 6, and edges (3, 6), (4, 6) drawn in
blue, originating from vertices of G with shortage. Accordingly, the capacity
is set to κ3,6 = 1, κ4,6 = 2. OD′ extends OD with the request (3, 2, 6).
Observe that its intensity corresponds to the total excess in vertices 3, 4.

to it edges emanating from all the vertices that need to be
rebalanced. We then set the costs of the edges to guarantee an
almost complete rebalancing, i.e., only a small fraction of the
rebalancing requests will not be fulfilled. In the remainder of
this section we provide a detailed description of the approach
and proceed to analyze its theoretical guarantees.

A. The construction

We formally describe the structure of this new graph
G′ = (V ′, E′), where V ′ = V ∪ {n}, and E′ = E ∪
{(i, n)|i ∈ V and ri < 0}. Recall that ri < 0 indicates that
there are fewer user requests arriving to i ∈ V than there
are departing from the vertex, which implies that rebalancers
should be sent to this vertex. The vertex n 6∈ V is new and
will serve as dummy target vertex for all the rebalancers. See
example in Figure 2.

To ensure that a sufficient number of rebalancers will arrive
at each vertex that needs to be rebalanced, we assign to every
edge (i, n) the cost cin(xin) = BPR(xin, κin, φin), where
κin = −ri, and φin = L, where L is a large constant whose
value will be determined later on.

The final ingredient in transforming AMOD to TAP is pro-
viding excess vehicles with specific origins and destinations.
Given the original set of requests OD, for every i ∈ V such
that ri > 0 we add the request (ri, oi, n), where ri is its
intensity. This yields the extended requests set OD′.

As each free or occupied vehicle has a specific destina-
tion, we can think of the AMOD problem as a new TAP
problem over the graph G′ and the extended set of requests
OD′. As rebalancers are no longer needed to be considered
separately from the users, we may redefine xij to be the
total flow along an edge (i, j) ∈ E′, including users and
rebalancers. Denote Ē := E′ \ E. The cost function for the
corresponding TAP is FE′(x) = FE(x) + FĒ(x), where
FĒ(x) =

∑
(i,n)∈Ē xincin(xin).

We show in the remainder of this section that after choos-
ing L correctly, then x∗, which minimizes the system op-
timum FE′(x

∗) under the constraints (1), (2), with respect
to G′, OD′, represents a high-quality solution to the AMOD
problem, in which the majority of rebalancing requests are

fulfilled. It is worth clarifying that the cost of the obtained
flow is represented by FE(x).

B. Analysis
First, we note that the new objective function FE′ remains

convex owing to the fact that for every new dummy edge its
cost function is monotone and increasing with respect to its
flow (see Claim 1). Given a vector assignment x for TAP over
G′, it will be useful to split it into variables xE corresponding
to the edges E, and variables xĒ corresponding to Ē.

The motivation for setting the specific capacity value κin to
edge (i, n) ∈ Ē is given in the following lemma. Recall that
R :=

∑
i∈V 1{ri > 0}ri.

Lemma 1 (Optimal assignment for dummy edges). Let x∗

minimize FĒ(x∗), under the constraint that
∑

(i,n)∈Ē x
∗
in =

R. Then x∗
Ē

= κ, where κ =
{
κin
∣∣(i, n) ∈ Ē

}
.

Proof: Note that FĒ(xĒ) is convex, and feasible for the
constraint

∑
xin∈xĒ xin = R. Thus, it has a unique minimum.

To find it, we shall use Lagrange multipliers.
Let g(x) :=

∑m
j=1 xj and define the Lagrangian

L(x, λ) := FĒ(x)− λ(g(x)−R). For any xj ∈ x,

∂

∂xj
L = L

(
1 + 0.75

(
xj
κj

)4
)
− λ, and

∂

∂λ
L = R− g(x).

As ∂
∂xj
L = 0, xj = κj

(
λ

0.75L − 1
0.75

)1/4
, which is then

plugged into ∂
∂λL = 0, where we use the fact that

∑`
j=1 κj =

R, to yield λ = 1.75L. We then substitute λ to yield xj = κj ,
which concludes the proof.

We arrive at the main theoretical contribution of the paper,
which states that L can be tuned to obtain a solution where the
fraction of unfulfilled rebalancing requests δ > 0 is as small
as desired. Notice that for a given solution x, the expression
‖xĒ−κ‖1

2R represents the fraction of unfulfilled requests.

Theorem 1 (Bounded fraction of unfulfilled requests). Let
x∗ := argminx FE′(x) subject to (1), (2). For every δ ∈ (0, 1]

exists Lδ ∈ (0,∞) such that if L > Lδ then ‖x
∗
Ē
−κ‖1

2R 6 δ.

Proof: Let x0 be an assignment satisfying (1), (2) such
that x0

Ē
= κ, which minimizes the expression FE′(x0). That

is, x0 minimizes FE′ over all x which fully satisfies the
rebalancing constraints. (Observe that such x0 represents the
optimal solution of the original AMOD problem.) If x0 turns
out to yield the minimum of FE′(x) without conditioning
on x0

Ē
= κ then the result follows. Thus, we assume

otherwise. Fix δ ∈ (0, 1] and let xδ represent any assignment,
satisfying (1), (2), and for which it holds that ‖x

δ
Ē
−κ‖1

2R > δ.
Our goal is to find a value of Lδ such that for any L > Lδ

it holds that FE′(xδ) > FE′(x
0). This implies that using

such L we are guaranteed that if a solution returned by
FRANKWOLFE will have at most δ unfulfilled request. This
is equivalent to requiring that

FĒ(xδ)− FĒ(x0) > FE(x0)− FE(xδ).

Notice that by Lemma 1, it holds that FĒ(xδ) − FĒ(x0) >
0. Recovering a precise upper bound for the expression
FE(x0) − FE(xδ), which depends on δ, is quite difficult.

We therefore resort to a crude (over-)estimation of it, which
is the value FE(x0). Thus, we wish to find L such that
FĒ(xδ)− FĒ(x0) > FE(x0).

Define ∆in := xin − κin, for every (i, n) ∈ Ē, where
xin ∈ xδĒ . For every such xin the following holds:

cin(xin) = L

(
1 + 0.15

(
xin
κin

)4
)

> L

(
1 + 0.15

(
1 +

4∆in

κin

))
= L

(
1.15 +

0.6∆in

κin

)
,

where the inequality follows from Bernoulli’s inequality. Also,
note that cin(κin) = L · 1.15. Thus,

F Ē(xδ) =
∑
(i,n)

xincin(xin) >
∑
(i,n)

(κin + ∆in)L

(
1.15 +

0.6∆in

κin

)

=
∑
(i,n)

L

(
1.15 · κin + 1.75 ·∆in +

0.6∆2
in

κin

)

=
∑
(i,n)

1.15Lκin +
∑
(i,n)

1.75L∆in +
∑
(i,n)

L
0.6∆2

in

κin

= FĒ(x0) + 0 +
∑
(i,n)

L
0.6∆2

in

κin
> FĒ(x0) +

0.6L

R

∑
(i,n)

∆2
in

> FĒ(x0) +
0.6L

R
· `−1

∑
(i,n)

|∆in|

2

= FĒ(x0) +
0.6L

R`

∥∥∥xδĒ − x0
Ē

∥∥∥2

1
> FĒ(x0) + 2.4RL`−1δ2,

where the second to last inequality is due to Cauchy-Schwarz,
and ` is the number of dummy edges.

We have just shown that for any xδ it holds that FĒ(xδ)−
FĒ(x0) > 2.4RL`−1δ2. To conclude, for L = FE(x0)

2.4R`−1δ2 , it
follows that FE′(zδ) > FE′(z

0), which implies that any value
x∗ satisfying the constraints (1), (2) and minimizing FE′(x),
also guarantees that ‖x

∗
Ē
−κ‖1

2R 6 δ.
We will consider the practical aspects of computing a proper

L in Section VI. The next corollary is the final piece of the
puzzle. It proves that when using a proper L, not only that δ
is bounded, but also the value FE(x∗) is at most FE(x0).

Corollary 1 (Bounded cost of routing). Fix δ ∈ (0, 1] and let
L ∈ (0,∞) such that L > Lδ . Then (i) ‖x

∗
Ē
−κ‖1

2R 6 δ, and
(ii) FE(x∗) < FE(x0), where x∗ = argminx FE′(x) under
constraints (1), (2).

Proof: Let x∗,x0 be as defined in the previous proof. It
is clear that x∗ satisfies (i). Now, observe that by definition
FE′(x

∗) < FE′(x
0), and by Lemma 1, FĒ(x0) < FĒ(x∗).

Then the following derivation proves (ii): FE(x∗) +FĒ(x∗) <

FE(x0) + FĒ(x0) < FE(x0) + FĒ(x∗).

VI. EXPERIMENTAL RESULTS

In this section, we use experimental results to demonstrate
the power of our approach for AMOD routing via a reduction
to TAP (Section V) on a real-world case study. In the first set
of experiments in Section VI-C we validate experimentally
the theory developed in Section V-B. In summary, we observe
that the approach yields near-optimal solutions within a few

seconds, where most (more than 99%) of the rebalancing
requests are fulfilled, when L is properly tuned. We then test
the scalability of the approach on scenarios involving as much
as 600k user requests, where we observe that running times
and convergence rates scale only linearly with the size of input.
In the final set of experiments we demonstrate the benefit of
the approach over previous methods.

A. Implementation Details
All results were obtained using a commodity laptop

equipped with 2.80GHz × 4 core i7-7600U CPU, and 16GB of
RAM, running 64bit Ubuntu 18.04 OS. The C++ implementa-
tion of the FRANKWOLFE algorithm is adapted (with merely
minor changes) from the routing-framework, which was
developed for [8]. For shortest-path computation in the AL-
LORNOTHING routine, we use contraction hierarchies [14],
which are embedded in the routing-framework, and are
in turn based upon the code in the RoutingKit (see [12]).
Running times reported below are for a 4-core parallelization.

In our experiment we observed that in some situations,
the first few iterations of FRANKWOLFE route most of the
rebalancers to a select set of dummy edges, so that the actual
flow is far larger than the capacity. This leads to numeric
overflows when working with the standard C++ double and
to failure of the program. We mention that this phenomenon
was not observed for the modified Davidson cost function [4],
linearized at 95% of the capacity, which has a more gentle
gradient. To alleviate the problem when working with BPR, one
can resort to using long double or linearize the value of
the function after a certain threshold is reached. We chose the
latter, by linearizing at 500% of the capacity. We emphasize
that this does not affect the final outcome of the algorithm.

Finally, we mention that we experimented with a few cost
functions (including linear, and modified Davidson) for the
dummy edges, until we settled on BPR, which yields the best
convergence rates.

B. Data
Similarly to [38], our experiments are conducted over

Manhattan in New York City, where the OD-pairs are inferred
from taxi rides that occurred during the morning peak hour on
March 1st, 2012. As in [38], we assume to centrally control
all ride-hailing vehicles in Manhattan, and accordingly scale
taxi rides requests by a factor of 6. The total number of real
user OD-pairs in our experiments is thus 6 × 25,960 (unless
stated otherwise). In order to take into consideration the fact
that autonomous vehicles need to share the road with private
vehicles, which should increase the overall cost of travelling
along edges, we introduce a parameter of exogenous traffic
(as was done in [38]). In particular, for a non-dummy edge
(i, j) ∈ E, with a flow xij , we assign the cost cij

(
xij + xeij

)
,

where xeij denotes the exogenous flow. For simplicity, we
set this value so that the fraction of xeij over the capacity
κij of the edge κij is the same, over all edges. That is, we
choose a value γexo > 0 and set xeij/κij = γexo. Unless stated
otherwise, γexo = 0.8, which approximates the scenario of the
rush-hour traffic, mentioned above. The underlying road-map
G = (V,E) was extracted from an Open Street Map [15],
where |V | = 1352, |E| = 3338.

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

fr
a
ct

io
n

(δ
)

fraction of unfulfilled requests (δ)

3 (0.109)

6 (0.057)

12 (0.029)

24 (0.016)

48 (0.009)

96 (0.007)

192 (0.009)

OPT (0.004)

0 20 40 60 80 100
6.4

6.6

6.8

7.0

7.2

co
st

(d
ec

is
ec

on
d

s)

×108 real cost (Cr)

3 (-0.004)

6 (-0.001)

12 (0.002)

24 (0.006)

48 (0.011)

96 (0.017)

192 (0.028)

OPT (0)

0 20 40 60 80 100

iterations

108

109

1010

1011

co
st

(d
ec

is
ec

on
d

s)
[l

og
]

dummy cost (Cd)

3

6

12

24

48

96

192

OPT

Fig. 3. Validation of theoretical results. For all the plots, OPT represents the
corresponding optimal value for L = 96. [TOP] A plot of δ. The left number
in the legend represents L, whereas the value in the brackets denotes δ after
iteration 100. For instance, OPT yields δ = 0.004, whereas for the same L
after 100 iterations we have that δ = 0.007. [CENTER] A plot of Cr . The
left number in the legend represents L, whereas the value in brackets denotes
(Cr − OPT)/OPT after iteration 100. E.g., Cr for L = 96 is only 1.7%
larger than OPT. [BOTTOM] A plot for Cd.

C. Results

Before proceeding to the experiments we mention that in
some results we compare the outcome of our algorithm with
an optimal value, denoted by OPT. To obtain it, we run the
algorithm, with a corresponding set of parameters, for 10,000
iterations. This provides a good approximation of the real
optimum. E.g., for the final iteration of the algorithm, when
L = 96min, the relative difference in the real and dummy cost
is 1.64 ·10−7 and 2.91 ·10−7, respectively. The terms real and
dummy costs correspond to FE and FĒ , respectively.

Validation of the theory. Our first set of experiments is
designed to validate the convergence of the approach, and the
theory presented in Section V. In summary, we observe that
with already small L a solution where a large majority of
rebalancing requests are fulfilled is achieved. Moreover, the
system cost for the rebalaced system is also very close to the
optimal value. Importantly, this is achieved within only 100
iterations of FRANKWOLFE, corresponding to around 15s.

In order to test how the value of L affects the fraction of
unbalanced requests δ, as stated in Theorem 1, and the real and
dummy costs of solution, i.e., Cr := FE(x), Cd := FĒ(x),
respectively, we experiment with values of L in the range of
3 to 192min (see Figure 3).

In terms of the fraction of unfulfilled requests δ, as The-
orem 1 states, increasing L reduces this value. For instance,
when L = 3, δ = 0.109, but already when L = 48 then

0 20 40 60 80 100

0.0

0.2

0.4

0.6

fr
a
ct

io
n

(δ
)

fraction of unfulfilled requests (δ)

x1 (0.007)

x2 (0.006)

x3 (0.007)

x4 (0.007)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

co
st

(d
ec

is
ec

on
d

s)

×1010 real cost (Cr)

x1 (0.013)

x2 (0.018)

x3 (0.025)

x4 (0.030)

0 200 400 600 800 1000

iterations

0

200

400

600

se
co

n
d

s

running time

x1 (15)

x2 (29)

x3 (53)

x4 (60)

Fig. 4. Plots for scalability experiments. [TOP] A plot of δ, i.e., fraction of
unfulfilled rebalancing requests. The left notation in the legend (×i) indicates
the used number of copies of the original OD set, whereas the value in brackets
denotes δ after iteration 100. [CENTER] A plot of Cr . The value in brackets
denotes the ratio of deviation for Cr between the iterations 100 and 1000.
[BOTTOM] A plot of total running time. The value in brackets denotes the
running time after iteration 100.

δ = 0.009, after 100 iterations. It should be noted that a small
value of δ is reached only when Cd is noticeably larger than
Cr (see middle and bottom plots in Figure 3, for comparison).

This implies that our estimation for L suggested in Theo-
rem 1 is quite conservative. From a practical point of view,
we recommend iterating over L using binary search until a
desired value of δ is achieved.

We now discuss the relation between the magnitude of L
and Cr. We observe that Cr increases with L. This follows
from the fact that a smaller δ requires rebalancers to increase
the total length of their trips in order to accommodate more
requests. Here we can also observe a possible drawback in
setting L to be needlessly large, as it takes more iterations to
settle on the correct value of Cr. This follows from the fact
that to obtain a smaller δ requires more iterations.

Lastly, observe that already after approximately 50 iter-
ations, all three values reach a plateau, i.e., increasing the
number of iterations only slightly changes the corresponding
value. Also note that values of OPT, computed for L = 96, are
very close to corresponding values for the same L after only
100 iterations. This indicates that a small number of iterations
suffices to reach a near-optimal value, be it δ, Cr, or Cd.

Scalability. In this set of experiments we demonstrate the
scalability of the approach by increasing the total number of
OD requests. We use the set of 6×25,960 OD pairs, which was
utilized in the above experiments, as a basis, and then multiply
this set by 1, 2, 3 and 4. The last case includes 623,040 travel

requests. In an attempt to make the four settings similar in
terms of the total traffic on the road, we pair each setting with
exogenous traffic of γexo ∈ {0.8, 0.6, 0.4, 0.2}, respectively.

Each scenario was executed for 1000 iterations. For the
first two plots we chose to show results only for the first
100 iterations, as the change is very minor from this point
on. We also omit a plot for the dummy cost as we found it
uninformative. The results are presented in Figure 4.

The convergence rate and the final result for δ, Cr behave
similarly for the four settings. However, we note that we expect
to see a more significant difference for a more realistic data
set, as a bigger data set would have more diverse OD pairs.
Nevertheless, we emphasize that our four settings do not yield
similar solutions with respect to flow distribution, as the scale
of flow affects the cost. In terms of the running time, we
mention that it scales proportionally to the number of OD
pairs, and the rate of change with respect to the number of
iterations is roughly constant.

Comparison with previous work. We demonstrate the bene-
fits of computing a solution to AMOD using the precise for-
mulation of the cost function BPR, as opposed to a piecewise-
affine approximation of BPR, or a congestion-unaware solu-
tion. The piecewise-affine approximation approach was sug-
gested in [38], where the BPR function is approximated by two
affine functions (see more details in Section II). In terms of
computation time, our approach yields the results in around
15s, whereas the reported running times of [38] are around
4min for similar hardware. We wish to point out that [38]
do not minimize travel time for rebalancing vehicles, and
also include walking times in their analysis. The congestion-
unaware approach, which was utilized in earlier works (see,
e.g., [29]), generates a solution without considering the effect
of congestion of the routed vehicles on the overall cost.

We implemented all three types of solution using our
framework, by replacing the precise formulation of the BPR
function, where relevant. We wish to clarify that the cost
function used on the dummy edges remains BPR, to guarantee
rebalancing (see Section V-B), as this does not affect the real
solution cost. The computation was done with L = 96. The
same applies to OPT which was computed using the full BPR.

We ran the three approaches for varying values of
γexo ∈ [0, 2] (see plots of the comparison in Figure 5). As was
observed in previous studies, congestion-unaware planning
underestimates the real travel cost, which results in plans that
divert traffic to overly congested routes. The deviation from
OPT increases with exogenous traffic. Already for γexo = 0.8,
the total cost is around 1.3 times OPT. Approximate BPR
is much more accurate in this respect. However, it either
under- or overestimates the real cost, which yields plans where
vehicles are rerouted from low-cost routes to more congested
routes. Approximate BPR yields plans whose deviation from
OPT is twice as high for the precise BPR, when γexo ∈ [0, 1.1];
it coincides with our solution for γexo = 1.2; for larger values
of γexo ∈ [0, 1.1] the deviation becomes more noticeable. For
instance, when γexo = 1.3 it yields a solution of around 1.1
times OPT. In contrast, our approach yields an accurate
estimation of OPT for the entire range of γexo.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

exogenous flow (γexo)

1.0

1.1

1.2

1.3

1.4

1.5

C
r
/O

P
T

Comparison with previous methods

BPR (1.013)

BPR approx. (1.027)

Congestion unaware (1.270)

OPT

Fig. 5. Plots for comparison experiments. For each of the three types of
cost functions we plot the ratio between the obtained cost Cr and the cost
for OPT, as a function γexo (x-axis). The corresponding value for γexo = 0.8
is given in the brackets.

VII. DISCUSSION AND FUTURE WORK

This paper presented a computationally-efficient framework
to compute the system-optimal operation of a fleet of self-
driving cars providing on-demand mobility in a congestion-
aware fashion. To the best of our knowledge, this is the first
scheme providing high-quality routing solutions for large-scale
AMOD fleets within seconds, thus enabling real-time imple-
mentations for operational control through receding horizon
optimization (to account for new information that is revealed
over time) and randomized sampling (to recover integer flows
with near-optimality guarantees [33]). Our approach consists
of reducing our problem to a TAP instance, such that an
optimal solution achieved for the latter yields an optimal
for AMOD. This allows us to leverage modern and highly
effective approaches for TAP. We showcased the benefits of
our approach in a real-world case-study. The results showed
our method outperforming state-of-the-art approaches by at
least one order of magnitude in terms of computational time,
whilst improving the system performance by up to 20%.

This work opens the field for several extensions, and leaves
a few open questions. On the side of theory, our immediate
goal is to analyze the convergence rate of our approach. There
is an abundance of recent results on the theoretical proper-
ties of FRANKWOLFE (see, e.g., [21, 31]), which regained
popularity in recent years due to applications in machine
learning [20]. However, it is not clear whether these results
are applicable to our setting, and what their implications are
on the convergence of the real cost FE , rather than FE′ .
We also plan to investigate approaches to obtain a more
informative estimation of the constant L (see Theorem 1).
On the implementation side, we mention that the performance
can be further improved by using customizable contraction
hierarchies [12] for pathfinding, and bundling identical OD
pairs. We also point out the fact that the ALLORNOTHING
routine is embarrassingly parallel, and a significant speedup
can be gained from using a multi-core machine. Finally, on the
application side, we aim at exploiting the high computational
efficiency of the presented approach by implementing it in
real-time using receding horizon schemes. To this end, it might
be necessary to employ a time-expansion of the road-graph and
account for stochastic effects, as it was done in [18, 47]. In
addition, it is of interest to extend this framework to capture
the interaction with public transit [36] and the power grid [34],
and account for the interaction of self-driving vehicles with the
urban infrastructure.

ACKNOWLEDGMENTS

We would like to thank Valentin Buchhold for advising
on the routing-framework. We thank Dr. Ilse New and
Michal Kleinbort for proofreading this paper and providing
us with their comments and advice. Our special thanks are
also extended to our labmates Ramón Darı́o Iglesias, Matthew
Tsao, and Jannik Zgraggen for the fruitful discussions. The
second author would like to express his gratitude to Dr. Chris
Onder for his support. This research was supported by the
National Science Foundation under CAREER Award CMMI-
1454737 and the Toyota Research Institute (TRI). The first
author is also supported by the Fulbright Scholars Program.
This article solely reflects the opinions and conclusions of its
authors and not NSF, TRI, Fulbright, or any other entity.

REFERENCES

[1] The world factbook. Central Intelligence Agency, 2018.
Available at https://www.cia.gov/library/publications/
the-world-factbook/fields/2212.html.

[2] A. Adler, M. De Berg, D. Halperin, and K. Solovey.
Efficient multi-robot motion planning for unlabeled discs
in simple polygons. IEEE Trans. Automation Science and
Engineering, 12(4):1309–1317, 2015.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pearson,
1993.

[4] R Akcelik. A new look at Davidson’s travel time
function. Traffic Engineering & Control, 19(N10), 1978.

[5] J. Aslam, S. Lim, and D. Rus. Congestion-aware traffic
routing system using sensor data. In Proc. IEEE Int.
Conf. on Intelligent Transportation Systems, 2012.

[6] H. Bast, D. Delling, A. Goldberg, M. Müller-
Hannemann, T. Pajor, P. Sanders, D. Wagner, and R. F.
Werneck. Route Planning in Transportation Networks,
pages 19–80. Springer International Publishing, 2016.

[7] P. Berger. Mta blames uber for decline in new york city
subway, bus ridership. The Wall Street Journal, 2018.
available online.

[8] V. Buchhold, P. Sanders, and D. Wagner. Real-time traffic
assignment using fast queries in customizable contraction
hierarchies. In International Symposium on Experimental
Algorithms, pages 27:1–27:15, 2018. URL https://github.
com/vbuchhold/routing-framework.

[9] Bureau of Public Roads. Traffic assignment manual.
Technical report, U.S. Dept. of Commerce, Urban Plan-
ning Division, 1964.

[10] M. Cáp and J. Alonso-Mora. Multi-objective analysis
of ridesharing in automated mobility-on-demand. In
Robotics: Science and Systems, 2018.

[11] M. Cáp, Novák P., A. Kleiner, and M. Selecký. Priori-
tized planning algorithms for trajectory coordination of
multiple mobile robots. IEEE Trans. Automation Science
and Engineering, 12(3):835–849, 2015.

[12] J. Dibbelt, B. Strasser, and D. Wagner. Customizable
contraction hierarchies. ACM Journal of Experimental
Algorithmics, 21(1):1.5:1–1.5:49, 2016. URL https://
github.com/RoutingKit/RoutingKit.

[13] M. Frank and P. Wolfe. An algorithm for quadratic
programming. Naval research logistics quarterly, 3(1-
2):95–110, 1956.

[14] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter.
Exact routing in large road networks using contraction hi-
erarchies. Transportation Science, 46(3):388–404, 2012.

[15] M. Haklay and P. Weber. OpenStreetMap: User-
generated street maps. IEEE Pervasive Computing, 7
(4):12–18, 2008.

[16] S. Hörl, C. Ruch, F. Becker, E. Frazzoli, and K. W. Ax-
hausen. Fleet control algorithms for automated mobility:
A simulation assessment for Zurich. In Annual Meeting
of the Transportation Research Board, 2018.

[17] W. Hu. Your Uber car creates congestion. should you
pay a fee to ride? The New York Times, 2017. available
online.

[18] R. Iglesias, F. Rossi, R. Zhang, and M. Pavone. A
BCMP network approach to modeling and controlling
Autonomous Mobility-on-Demand systems. In Workshop
on Algorithmic Foundations of Robotics, 2016.

[19] R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec,
and M. Pavone. Data-driven model predictive control of
autonomous mobility-on-demand systems. In Proc. IEEE
Conf. on Robotics and Automation, 2018.

[20] Martin Jaggi and Zaid Harchaoui. ICML 2014 Tutorial
on Frank-Wolfe and Greedy Optimization for Learn-
ing with Big Data, 2017. https://sites.google.com/site/
frankwolfegreedytutorial, Last accessed on 2019-05-09.

[21] S. Lacoste-Julien and M. Jaggi. On the global linear
convergence of Frank-Wolfe optimization variants. In
Neural Information Processing Systems, pages 496–504,
2015.

[22] M. W. Levin, K. M. Kockelman, S. D. Boyles, and T. Li.
A general framework for modeling shared autonomous
vehicles with dynamic network-loading and dynamic
ride-sharing application. Computers, Environment and
Urban Systems, 64:373 – 383, 2017.

[23] J. I. Levy, J. J. Buonocore, and K. Von Stackelberg. Eval-
uation of the public health impacts of traffic congestion:
a health risk assessment. Environmental Health, 9(1):65,
2010.

[24] M. Maciejewski, J. Bischoff, S. Hörl, and K. Nagel. To-
wards a testbed for dynamic vehicle routing algorithms.
In Int. Conf. on Practical Applications of Agents and
Multi-Agent Systems - Workshop on the application of
agents to passenger transport (PAAMS-TAAPS), 2017.

[25] E. Manley, T. Cheng, A. Penn, and A. Emmonds. A
framework for simulating large-scale complex urban
traffic dynamics through hybrid agent-based modelling.
Computers, Environment and Urban Systems, 44:27–36,
2014.

[26] R. Molla. Americans seem to like ride-sharing services
like Uber and Lyft. But it’s hard to say exactly
how many use them. Recode, 2018. Available
at https://www.recode.net/2018/6/24/17493338/
ride-sharing-services-uber-lyft-how-many-people-use.

[27] H. Neuburger. The economics of heavily congested
roads. Transportation Research, 5(4):283–293, 1971.

[28] Michael Patriksson. The Traffic Assignment Problem:
Models and Methods. Dover Publications, 2015. ISBN
0486787907.

[29] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus. Load
balancing for Mobility-on-Demand systems. In Robotics:
Science and Systems, 2011.

[30] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus. Robotic
load balancing for Mobility-on-Demand systems. Int.
Journal of Robotics Research, 31(7):839–854, 2012.

[31] J. Peña, D. Rodrı́guez, and N. Soheili. On the von
Neumann and Frank-Wolfe algorithms with away steps.
SIAM Journal on Optimization, 26(1):499–512, 2016.

[32] A. Rivas, G. Inmaculada, S. Sánchez-Cambronero, R. M.
Barba, and L. Ruiz-Ripoll. A continuous dynamic
traffic assignment model from plate scanning technique.
Transport Research Procedia, 18:332–340, 2016.

[33] F. Rossi. On the Interaction between Autonomous
Mobility-on-Demand Systems and the Built Environment:
Models and Large Scale Coordination Algorithms. PhD
thesis, Stanford University, Dept. of Aeronautics and
Astronautics, 2018.

[34] F. Rossi, R. Iglesias, M. Alizadeh, and M. Pavone. On the
interaction between Autonomous Mobility-on-Demand
systems and the power network: Models and coordination
algorithms. In Robotics: Science and Systems, 2018.
Extended version available at https://arxiv.org/abs/1709.
04906.

[35] F. Rossi, R. Zhang, Y. Hindy, and M. Pavone. Routing
autonomous vehicles in congested transportation net-
works: Structural properties and coordination algorithms.
Autonomous Robots, 42(7):1427–1442, 2018.

[36] M. Salazar, F. Rossi, M. Schiffer, C. H. Onder, and
M. Pavone. On the interaction between autonomous
mobility-on-demand and the public transportation sys-
tems. In Proc. IEEE Int. Conf. on Intelligent Transporta-
tion Systems, 2018. In Press. Extended Version, Available
at https://arxiv.org/abs/1804.11278.

[37] M. Salazar, N. Lanzetti, F. Rossi, M. Schiffer, and
M. Pavone. Intermodal autonomous mobility-on-demand.
IEEE Transactions on Intelligent Transportation Systems,
2019. URL ../wp-content/papercite-data/pdf/Salazar.ea.
T-ITS19.pdf. Submitted.

[38] M. Salazar, M. Tsao, I. Aguiar, M. Schiffer, and
M. Pavone. A congestion-aware routing scheme for
autonomous mobility-on-demand systems. In European
Control Conference, 2019.

[39] D. Schrank, T. Lomax, and S. Turner. The 2007 urban
mobility report. Technical report, Texas Transportation
Institute, 2007.

[40] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant.
Conflict-based search for optimal multi-agent pathfind-
ing. Artificial Intelligence, 219:40–66, 2015.

[41] Y. Sheffi. Urban Transportation Networks: Equilib-
rium Analysis with Mathematical Programming Methods.
Prentice Hall, 1985.

[42] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E.
Bekris. dRRT*: Scalable and informed asymptotically-
optimal multi-robot motion planning. Autonomous

Robots, 2019.
[43] F. Siddiqui. Failing transit ridership poses an ‘emer-

gency’ for cities, experts fear. The Washington Post,
2018. available online.

[44] K. Solovey, J. Yu, O. Zamir, and D. Halperin. Motion
planning for unlabeled discs with optimality guarantees.
In Robotics: Science and Systems, 2015.

[45] Kiril Solovey and Dan Halperin. On the hardness of
unlabeled multi-robot motion planning. I. J. Robotics
Res., 35(14):1750–1759, 2016.

[46] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Mor-
ton, and M. Pavone. Toward a systematic approach to
the design and evaluation of Autonomous Mobility-on-
Demand systems: A case study in Singapore. In Road
Vehicle Automation. Springer, 2014.

[47] M. Tsao, R. Iglesias, and M. Pavone. Stochastic model
predictive control for autonomous mobility on demand.
In Proc. IEEE Int. Conf. on Intelligent Transportation
Systems, 2018. In Press. Extended Version, Available at
https://arxiv.org/pdf/1804.11074.

[48] M. Tsao, D. Milojevic, C. Ruch, M. Salazar, E. Frazzoli,
and M. Pavone. Model predictive control of ride-sharing
autonomous mobility on demand systems. In Proc. IEEE
Conf. on Robotics and Automation, 2019. In Press.

[49] M. Turpin, N. Michael, and V. Kumar. Capt: Concurrent
assignment and planning of trajectories for multiple
robots. I. J. Robotics Res., 33(1):98–112, 2014.

[50] M. Turpin, K. Mohta, N. Michael, and V. Kumar. Goal
assignment and trajectory planning for large teams of
interchangeable robots. Auton. Robots, 37(4):401–415,
2014.

[51] B. Tuttle and T. Cowles. Traffic jams cost americans
$124 billion in 2013. Time - Money, 2014.

[52] J. Yu. Constant factor time optimal multi-robot routing
on high-dimensional grids. In Robotics: Science and
Systems, 2018.

[53] J. Yu and S. M. LaValle. Distance optimal formation
control on graphs with a tight convergence time guaran-
tee. In IEEE Conference on Decision and Control, pages
4023–4028, 2012.

[54] J. Yu and S. M. LaValle. Optimal multirobot path
planning on graphs: Complete algorithms and effective
heuristics. IEEE Trans. Robotics, 32(5):1163–1177,
2016.

[55] R. Zhang and M. Pavone. Control of robotic Mobility-
on-Demand systems: A queueing-theoretical perspective.
Int. Journal of Robotics Research, 35(1–3):186–203,
2016.

