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Abstract—Small-scale robots have the potential to impact many
areas of medicine and manufacturing including targeted drug
delivery, telemetry and micromanipulation. This paper develops
an algorithmic framework for regulating external magnetic fields
to induce motion in millimeter-scale robots in a viscous liquid,
to simulate the physics of swimming at the micrometer scale.
Our approach for planning motions for these swimmers is based
on tools from geometric mechanics that provide a novel means
to design periodic changes in the physical shape of a robot that
propels it in a desired direction. Using these tools, we are able to
derive new motion primitives for generating locomotion in these
swimmers. We use these primitives for optimizing swimming
efficiency as a function of its internal magnetization and describe
a principled approach to encode the best magnetization distribu-
tions in the swimmers. We validate this procedure experimentally
and conclude by implementing these newly computed motion
primitives on several magnetic swimmer prototypes that include
two-link and three-link swimmers.

I. INTRODUCTION

Planning motions for small-scale robots in a liquid can have
a huge impact for applications such as microsurgery, teleme-
try and micromanipulation. Due to the small size of these
robots, locomotion at the sub-millimeter scale is dominated
by low Reynolds (Re) hydrodynamics. One consequence of
swimming in this regime is that motion is highly damped and
inertial effects have no contribution towards movement [4].
Therefore, the task of designing robots at this scale requires
accounting for the physics of swimming as well as actuation
that scales to this regime. The use of on-board actuation is
not an option because programmable micromotors that scale
to this regime do not exist. Therefore, one solution is to use
an external source of actuation such as thermal, chemical or
magnetic to wirelessly induce motion in an electrically passive
robot. Motivated by this idea, the aim of this paper is to
synthesize novel motion primitives for a magnetic robot that
responds to magnetic fields, and experimentally fabricate an
optimal swimmer for point-to-point steering.

External magnetic fields interact with the intrinsic mag-
netization distributions (magnetic dipole moments) of these
robots by creating a torque or force which causes the robot to
bend in response [5, 14]. Therefore, by carefully programming
the internal magnetization profiles and prescribing a suitable
external field, we demonstrate an algorithmic framework to
orchestrate shape changes that generate effective motions in a
two-link ferromagnetic swimmer (Fig. 1). Although, it is well
known that a two-link robot cannot achieve net displacement
in a low Re regime using internally actuated shape changes
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Fig. 1: Schematic of a two-link magnetic swimmer. Gray ar-
rows show external magnetic field, black arrows show internal
magnetizations and the joint between the links is springless.

(Scallop theorem [18]), the system we consider escapes this
constraint by using external actuation and asymmetric magne-
tizations which allow it to locomote using reciprocal motions.
This work addresses the following technical questions:

1) Given a magnetic swimmer, how do we determine
control inputs (i.e. external magnetic field) that induce
translation and turning motions in the swimmer ?

2) Given an input with fixed amplitude and frequency,
what are the best values of internal magnetizations that
optimize the average translational speed of swimmer?

3) Finally, how can these design variables be used to exper-
imentally fabricate an optimal swimmer for locomotion?

As a first step towards addressing these questions, we derive
a physics based model for the dynamics of this swimmer by
incorporating hydrodynamic and magnetic effects borrowing
ideas from previous works [2, 3, 10] (Sec. IIT). Based on this
model, we identify symmetries in the dynamics which allow
us to only focus on a representative class of swimmers that are
easier to analyze and fabricate (Sec. IV). Next, we address how
to compute external field inputs (motion primitives) for these
swimmers to induce net locomotion along a desired direction
(Sec. V). To that end, we show how gait design tools from
geometric mechanics literature can be used to our advantage
to prescribe magnetic fields that advance these swimmers in
desired directions. Using these tools, we not only motivate
previously proposed primitives [11], but also synthesize new



primitives that have not been explored before. We show that
asymptotic stability offered by the existing primitive allows
us to synthesize new primitives and compose them to realize
turning in place and trajectory following motion (Sec. VI).
Next, we analyze the efficiency of swimming measured
using average forward translational speed of the swimmer as a
function of its internal magnetization strength (Sec. VII). We
numerically solve an optimization problem that identifies the
best distribution of internal magnetizations that maximizes the
swimming efficiency for a given amplitude of magnetic field.
Although the problem of efficiency optimization is explored
in [11], we go a step further and describe a principled ap-
proach to experimentally induce these optimal magnetization
distributions in millimeter scale ferromagnetic filaments. We
finally fabricate these optimal swimmers and validate the
motion primitives derived from simulation on these swimmers.
Specifically, we show timing test results from fabrication,
average speed v/s internal magnetizations trends and swim-
ming trajectories from (1) translation using classical primitives
(2) translation using curvature-function based primitive (3)
turning-in-place motions and (4) following a rectangle by
composing primitives. These results are shown in Sec. VIII for
the case of a two link swimmer. We also show experimental
results with a three-link swimmer by applying the control
inputs for a two-link swimmer to a three-link swimmer.

II. PRIOR WORK

Several existing approaches in the literature provide inspi-
ration for the results presented in this work. Of these, two
are especially relevant to the results we present. In the first
category, we describe existing tools for computing gaits for
low Re swimmers and in the following category, we describe
existing magnetic swimmers and their modes of propulsion.

A. Geometric motion planning and optimal gait synthesis

In 1976, Edward Purcell analyzed the locomotion of arti-
ficial mechanisms in the low Re regime and established the
Scallop theorem [18]. He also proposed the simplest mechani-
cal device: a three-link planar swimmer capable of swimming
in this regime by using changes in its internal shape that are
non-time reversible. Since his initial work on the internally
actuated three-link planar swimmer, much of the subsequent
research has focused on planning and computing optimal gaits
for the three-link swimmer [20]. In addition to using numerical
optimization for computing optimal gaits for these planar
systems, authors in [21] use the minimum principle to derive
maximum-displacement gaits. Authors in [12] demonstrate
that using visual tools derived from geometric analysis, it is
possible to synthesize gaits for such a swimmer that make
it move along a desired direction in the world. The work
in [1] develops analytical techniques to extend gait design
to articulated systems with however many links such as a
snake like robot locomoting in granular media and a low-
Re swimmer respectively. Additionally, gait design for three-
dimensional swimmers has been recently considered in [9]
using ideas from geometric mechanics.

B. Magnetic microswimmers

In contrast to these works that mostly address motion
planning for swimmers that are actuated using on board servos,
there has also been significant work on inducing propulsion
in swimmers using magnetic fields. There are three prominent
types of magnetic microswimmers that currently exist. These
include a swimmer made with a rigid helical tail which propels
with a corkscrew like motion in a rotating magnetic field
[8, 17, 19]. The second category consists of swimmers with
flexible bodies as considered in [7, 13, 16]. Under the action of
an oscillating magnetic field, the flexible body undulates in a
non-reciprocal manner ultimately resulting in net propulsion of
the swimmer. Some of these swimmers have been analytically
modeled in [6, 11]. The third category consists of articulated
swimmers made with discrete links attached to each other
which undergo periodic undulations in oscillating magnetic
fields. Authors in [14] develop such a swimmer consisting
of links connected to each other with flexible hinges. By
developing a lumped parameter model of such swimmers,
authors in [10] solve a design optimization to determine
parameters that maximize displacement and swimming speed.

III. MATHEMATICAL MODEL

We now derive a mathematical model for the swimmer that
captures the effects of hydrodynamic and magnetic interac-
tions. We will use this model for synthesizing motion plans
and computing optimal physical parameters for maximizing
swimming efficiency. Our swimmer consists of two millimeter-
scale slender uniformly magnetized links connected by a
passive joint. We assume that the swimmer is fully submerged
in a liquid of high viscosity (1) such as glycerin to simulate
low Re hydrodynamics (Re = puL/u). Here p is the liquid’s
density, u is the swimmer’s speed and L is the length (for
each link). Fig. 1 shows a schematic of this swimmer.

Let W denote the inertial frame. For each link ¢ where
i € {1,2}, the body frame b; is a frame that is rigidly
attached to the link at its vertex. The tangential axis along
the body frame is denoted by #; and the normal axis of the
body frame is denoted by m,;. Thus, it is easy to see that
t, = (cosB;,sin6;) and n; = (—sinb;, cosb;) where 6; is
the angle between fi and X,,. In this representation, one can
note that b; = {(;,7;)}. The configuration space of the
swimmer is Q = SE(2)xS! where the first component SE(2)
corresponds to the position and orientation of the body frame
of the first link relative to the world. The second component
(S1) corresponds to the orientation of the second link relative
to the world. Hence the configuration of the swimmer is
identified by q = (z,y,01,02) = (p1,0) where p; = (z,y)
and 6 = (61, 602). We now describe magnetic properties of the
links. Each link is assumed to be ferromagnetic which means
that it has a permanent magnetic dipole moment in its volume.
Magnetization of a link is defined relative to its body frame
b; as shown in Fig. 1. Here, m! and m! are dimensionless
numbers that quantify the strengths of magnetization along £;
and n; of link ¢ respectively. Let A > 0 denote the value



of internal magnetization expressed in Am units. Relative to
inertial frame W, link ¢’s magnetization is expressed as

= (m} cos@; —m!, sin@;, m:sin6; +m? cosf;)h (1)

For a link with length L and internal magnetization M*, the
external magnetic field applies a torque on the link given by
Tim = LM x B(t) where B(t) = (B,(t), By(t)) denotes
the X,, and Y,, components of the external magnetic field
measured in Tesla/Gauss. We also assume that there is no
torsional spring connecting the two links. This is because drift-
lessness of the dynamics will be necessary for synthesis of the
motion plans in Sec. V. The model of the swimmer is derived
by incorporating forces and torques from hydrodynamic and
magnetic effects as follows:

1) F;}: Hydrodynamic drag force on link 7 in world frame
2) Ti’j' ' Hydrodynamic drag torque on link 4 about the Z,
axis passing through p,, expressed in world frame

3) Tim: Magnetic torque on link ¢ expressed in world frame
where (i,m € {1,2}) denote link index and point index
respectively. From the assumptions of resistive force theory, it
is known that the hydrodynamic forces and torques on a link
are linear in the velocity of the link. The exact expressions for
these forces can be found in [1]. Additionally, the net force
and moment on a system in quasistatic equilibrium vanishes:

Fi,+F,=0 (2a)
T+ Tah + Tim + Tom = 0 (2b)
To5, + Tom =0 (2¢)

After substituting the expressions for the forces and torques
([1]) and rearranging, we can rewrite Eqgs. 2a-2c in the form
of a control affine system. The control input to the system is
defined by the spatial magnetic fields i.e. u = (B,(t), By(t))
and the state of the system is q(t).

q=91(q)B:(t) + g2(q) By(?)
=G(q)u 3)

We define a vector m = (m}, m?,m., m?2) that denotes the
internal magnetizations of the links (the subscript indicates
tangential/normal while the superscript indicates the link in-
dex). To emphasize on the dependence of the matrix G(g) on
m, we will explicitly denote it as G(g, m).

IV. SYMMETRIES IN DYNAMICS

In the derivation of the dynamics model, we assumed that
each link of the swimmer has magnetization components along
the link’s tangential (i.e. m! # 0) and normal directions
(i.e. m}, # 0). However, intuitively it should be possible to
modify the external field in a way such that it exerts the
same torque on each link as if it had internal magnetizations
only along its tangential direction. Swimmers with tangential
only magnetizations are more intuitive to analyze since we can
interpret their links as slender bar magnets. Additionally, as
we will show, requiring only tangential magnetizations gives
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Fig. 2: Equivalence between swimmers with tangential+normal
magnetizations and only tangential magnetizations

us a representative class of swimmers which have the same
locomotive functionalities as swimmers with both components
of magnetizations. We state this symmetry theorem as follows:

Theorem 4.1: Any trajectory of a two link swimmer with
both normal and tangential magnetizations and a given mag-
netic field can be obtained from a two link swimmer with only
tangential magnetizations and a transformed magnetic field

Proof: We begin by establishing some notation. We
will use the superscript tan + nor to refer to a swimmer
with both tangential and normal magnetization components.
Likewise, we will use the superscript tan to refer to a
swimmer with only tangential magnetization components. Re-
call that the differential equations governing the dynamics
of a two link swimmer are (Eq. 3) ¢ = G(q,m)u(t)
where m = (m%,mf,m}l,mi) are the magnetization com-
ponents and w(t) = (B (t), By(t)) is the magnetic field. Let
Qtan+nor(t) be the solution to Eq. 3 for m = mbentnor —
(Cl,CQ,dl,dg) for Cl,CQ,d1,d2 e R — {O} such that % =
2.q(0) = 0and u(t) = u™tmor(t) = (By(t), By(t))
(Fig. 2 left) Similarly, let g:u,(t) be solution to Eq. 3 for
m = mb*" = (c1,¢,0,0),q(0) = 0 and u(t) = ut*™(t) =
(Ba(t) + LBy (1), =2 B, (t) + B,(t)) (Fig. 2 right).

Then for this choice of external magnetic field and magneti-
zations, we will show that qiantnor(t) = Qran(t) YVt > 0. We
know that the dynamics of the swimmer are governed by the
matrix G(g, m)u which depends on magnetic torques T; m,
aside from hydrodynamic forces and torques. We now show
that magnetic torques on these two types of swimmers (i.e. Fig.
2 left and Fig. 2 right) are identical for the given choice of
magnetizations and external magnetic fields. For the swimmer
with both tangential and normal components (Fig.2 left), note:

Tit,l:r?'i'"or = (szz + diﬁi) X utan+n07.(t)
= (Ciffi + legfl) % ’u,tan"‘"o"‘(t)
= (el + diRg)t; x wh™tmen(t) - (4)

Note from the definition of the two controls that

uter (t) — (I _ ?R;) utantmnor (t) (5)
1

where I is the identity matrix. For the swimmer with only



tangential magnetizations (Fig.2 right), note that

T.tan(t) = Cifi X utan (t)

i,m

& d
= Citi X (I — 1R72r>utan+nor(t)

C1
= cify x wtmFNOT (1) — dif; x Rz utantmor (1)
it x ut*m T (t) + d;Ra £y x utomtmer(t)
= (cil + d; Rz )t; x ut*™Hmor(¢)
=Tim (1) (©6)

Therefore, for the given choice of internal magnetizations and
external fields, the two swimmers (Fig. 2 left and Fig. 2
right) experience same magnetic torques. Additionally, since
the hydrodynamic torques on these systems do not depend
on their magnetic properties, both swimmers experience iden-

tical hydrodynamic effects as well, i.e. Ff§"™ = Ff%"*‘"o’“
and 79" = 7!9"F"" Hence, the dynamics of these

swimmers are identical ie G(q,mtantnor)ytantnor
G(q, m'*™)ut*™ based on Eq. 2. Since the initial condition
in both systems is same, the governing IVP for both systems
is the same, therefore qiuntnor(t) = Qian(t) Yt > 0. [ ]
Therefore, for forgoing discussion, we will only consider
swimmers with tangential internal magnetizations components
in each link. Let m{ = ¢; > 0 and m? = c2 > 0 denote the
strengths of magnetizations in links 1 and 2 respectively. We
will assume that co # ¢1 to avoid front back symmetry.

V. MOTION PLANNING USING GEOMETRIC MECHANICS

In Sec III and IV, we have formulated the equations of
motion for a two-link swimmer and identified symmetries
allowing us to focus only on a simplified swimmer. Based
on the model, we can explore the behavior of the swimmer’s
motion as a function of different types of control inputs
u(t) = (Bg(t), By(t)). In this section, we will demonstrate
that by using tools from geometric mechanics we can generate
new motion primitives for swimming compared to the ones
proposed before. We assumed that the swimmer is springless
so there is no drift vector field in the dynamics of the swimmer:

q=G(g,m)u )

where ¢ = (p,0), G(g,m) = [gi(q,m),g2(gq,m)| and
u(t) = (By(t), By(t)). Since the magnetic field is spatially
uniform, the instantaneous (x,y) position coordinates of the
swimmer do not effect its motion. The only state variables that
influence the dynamics are the orientation of the swimmer’s
links in the inertial frame. Therefore, the dynamics of the
position variables i.e. p = (&,9) depend exclusively on the
orientation variables @ = (61, 6). Similarly, the dynamics of

the orientation variables 8 depend exclusively on 6. Hence,
we can break Eq. 7 into two separate sub-systems as follows:

§ = Glg,m)u = G(6,m)u
= p=P(O,m)u (8)
6=H(O,m)u ©))

where P(0,m) € R?>*2 and H (0, m) € R?>*2 . The exact ex-
pressions for these matrices are omitted in the interest of space.
Assuming H (8, m) is invertible on [—27, 27| X [— 27, 27], we
can compute u from Eq. 9 and substitute in Eq. 8 as follows:

u=H"10,m)0 (10a)
— p=P(O,m)H ' (6,m)0 (10b)
— p=J(0,m)8 (10c)

where J(0,m) = P(0,m)H (0, m). Note that Eq. 10c is
in a form similar to the Kinematic Reconstruction Equation

Y

where A(a) € R3*2 is known as the local form of a
connection. It maps shape velocities to body velocities: A(a) :
To, St x Tn,S' — se(2). In the literature on geometric
theory of swimming [15], this equation has been used to
synthesize motion primitives for swimmers that are internally
actuated i.e. where it is possible to command any values of
a(t). On the contrary, note that in Eq. 10c the variables
(61,02) refer to the orientation of the swimmer relative to
the world. Additionally, the left hand side of Eq. 10c also
involves velocities referenced relative to the inertial frame as
opposed to the body velocities & expressed in the body frame.
Hence, we cannot model this system with a principal fiber
bundle structure. Nevertheless, assuming for the moment that
we can fully control (61, 62), it is possible to compute the total
displacement over a cyclic change in (61, 63) as follows

£=-Ala)a

p(T) = [ 760 m)b(e)i

_ / J(0,m)do

://VXJd91d92
S

In Eq. 12, we have used Stokes’ theorem' to simplify the
problem of computing line integral of the rows of J(6,m)
along 7, to computing volume integrals of the curvature of J
(curl J) defined over S. We plot the  and y components
of curl J in Fig. 3. To synthesize a motion primitive for
translation in the X, direction of the world frame, we visually
query and inspect regions in Fig. 3 in the orientation angle
phase space which enclose a net non-zero volume in z
component and zero volume in the y component. Using this
visual inspection, we pick a loop in the (6,62) space that
encloses such a region. One such candidate loop is highlighted
in red in Fig. 3 and is parametrized as:

12)

0f(t) = 0.35sin (wt — 1.817)
03 (t) = 0.53 sin (wt — 0.7186)

(13a)
(13b)

IDifferently from the work in [2], we use Stokes’ theorem for magnetic
swimmers without springs and visualize the effect of the limit cycles over the
full orientation space using curvature function plots in Fig. 3. Secondly, we
do not require a small-angle approximation and instead illustrate the effect of
the full swing limit cycle on displacement directly.
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Fig. 4: Magnetic field input for the red loop using Eq. 14

With this parametrization and Eq. 10a, we compute the control:

u(t) = H(0%(0), 03(1)) [ﬂ (14)
1 » V2

03
The resulting input is plotted in Fig. 4.

A. Relation to previously proposed motion primitive

Note that the magnetic field input in Fig. 4 exhibits a
discontinuity which happens whenever 6;(t) = 62(¢). This
singularity is the result of the swimmer admitting an in-
stantaneous straightened configuration and is not a locked
singularity. We low-pass filter these inputs to remove the
singularity and normalize them by their amplitude. This gives

B,(t) =1,By(t) =sinwt (15)
This control input matches exactly with the ones proposed
in [2, 10]. Using this, we numerically simulate the dynamics
of the system Eq. 3 and plot the resulting trajectory of the
swimmer in Fig. 5. Note that the swimmer indeed undergoes
translation along X,, axis as we set out our initial goal.

B. Novel motion primitives

We extend this tool to synthesize new control inputs that
also result in translation along X,,. To that end, consider a
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Fig. 5: Translation trajectory using B, = 1, B, = sinwt
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Fig. 6: Translation trajectory using inputs in Eq. 17

time parametrized loop in the (6, 62) defined below

0%(t) = 0.5 cos wt cos% —0.25sinwt sin% + %T (16a)
3
03 (t) = 0.5 coswt sin% + 0.25sinwt cos% + Iﬂ (16b)

This loop is depicted in black in Fig. 3. Using this parametriza-
tion, we compute u(t) = (By(t), By(t)) using Eq. 14. Using
interpolation, we write the corresponding control input as:

4 4
B,(t) = Z af sin (bt + ), By(t) = Z af sin (bYt + ¢}
i=1 i=1
a7
To save space, we omit specifying the exact values of
{a¥,b¥,c¥,a?,bY, c!}. We simulate the system dynamics us-
ing this input and show the resulting displacement of the
swimmer in Fig. 6. Note from Fig. 6 that the translation
distance of the swimmer computed over 15 cycles of executing
control Eq. 17 is ~7 body lengths. However, exciting the
swimmer with 15 cycles of the control from Eq. 15 results
in a translation of ~14 body lengths as shown in Fig. 5. This
suggests that as measured using average swimming speed, the
motion generated by Eq. 15 is ~two times more efficient than
the motion generated by the control in Eq. 14. We validate
these primitives by implementing them on our fabricated
robots and show in Sec. VIII that this relative efficiency ratio is
indeed observed in experiments as well. Next, we will analyze
the stability properties of the primitives in Eq. 15 and 17.

VI. LIMIT CYCLE STABILITY

From simulations, we observe that the steady state motion
of the swimmer using the input from Eq. 15 is independent
of the swimmer’s initial orientation in the world. On the other
hand, corresponding to Eq. 17, the steady state response of
the swimmer indeed is sensitive to the initial orientation of
the links relative to the world. This observation suggests that
corresponding to input w(t) = (1, sinwt), the asymptotic tra-
jectory in the (01, 0-) phase portrait is locally asymptotically
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Fig. 7: Limit cycle (red) from different initial orientations

stable with respect to variations in the initial orientation of the
swimmer. We state this result in the theorem below:
Theorem 6.1: Given the control input u(t) = (1,sinwt),
the flows of the differential equation 6 = H(0)u(t),
0(0) = (61(0),05(0)) converge to the same solution 8> (t) =
(05°(t), 0°(t)) for all 8(0) close to (1) i.e. the periodic
trajectory specified by 0°°(t) is locally asymptotically stable.
Proof: See supplementary material [ |
To illustrate this, we plot the flows of the orientation compo-
nents of g(t) starting from different initial conditions in Fig. 7
using u(t) = (1, sinwt). This figure shows that all these flows
converge to the same limit cycle (05°(t), 05°(¢)) (highlighted
in red). Moreover, it also illustrates that the limit cycle is not
only locally asymptotically stable but that it also has a large
basin of attraction. This suggests that it is possible to align
the swimmer with the direction of the external magnetic field
vector even when the initial orientation of individual links of
the swimmer is off by as much as 7 radians relative to the
direction the external field. Hence, by switching the direction
of the field vector, we can make the swimmer turn-in-place
or follow a rectangular trajectory in the workspace. In the
interest of space, we skip simulation results and demonstrate
experimentally in Fig. 9 (two-link) and Fig. 10 (three-link).
All these derivations have been done for a two-link swim-
mer because exact inversion in Eq. 10a is only possible for
two inputs ie. (By(t), By(t)) and two outputs ie. (61,62).
Since a three link swimmer has two inputs and three outputs
(61, 02,03), exact inversion in Eq. 10a and control synthesis is
not possible. Therefore, for simulations and experiments, we
directly used the control inputs for the two link system and
applied them on the three link system to study its response.

VII. DESIGN OPTIMIZATION AND FABRICATION

Using stability analysis, we have demonstrated that the input
from Eq. 15 is suitable for point to point steering and turning in
place type motions. Given a fixed amplitude and frequency of
this input, we would now like to determine parameters intrinsic
to the swimmer that maximize its forward translational speed.
One such parameter is the intrinsic magnetization of each
link which dictates how much magnetic torque that link
experiences under the action of a magnetic field. This in-turn
regulates the amplitude of undulation and hence the speed. So,

we select magnetization as a design variable for optimizing
swimming efficiency for a given field amplitude.

A. Optimizing over internal magnetization

We can either consider optimizing over magnetizations of
both links or optimizing over the magnetization of link 2
(head link) for a fixed magnetization of link 1 (tail link).
However, note that by increasing the amplitude of external
magnetic field, we can realize a proportionate increase in the
magnetization of both links. Therefore, we will only optimize
over magnetization of link 2 for a fixed magnetization of link
lie m} =c = 1,m? =cy # 0,m, = m2 = 0. We
now pose an optimization problem to compute the values of
co that maximize the total displacement of the swimmer in a
fixed duration from ¢t =0to ¢t =7T. We set f = 0.8Hz same
as the frequency of actuation in our experimental setup.

maximize |z(T)/T
c2

subject to g = G(gq,m)u
u(t) = (1,sin 27 ft),q(0) = 0

We use numerical simulations to solve this optimization
problem. Fig. 8a depicts the relation between the absolute
average speed of the swimmer for several values of the
magnetization of link 2. As we can note, increasing the values
of the magnetization of link 2 relative to link 1 results in
increasing values of the speed of the swimmer. This is because
by increasing strength of magnetization of link 2, it bends
with greater amplitude, due to which it drags through more
fluid and advances a greater distance forward. The peak from
M € (0,1) exists because the magnetization of link 2 is weak
compared to link 1 so the swimmer advances backward. Note
that the X axis in Fig. 8a is limited to 6 because the ratio
of the strongest to weakest magnetizing field we can generate
with our experimental setup (to be described next) is precisely
6. We conducted a similar optimization for three-link swimmer
and determined the optimal magnetization ratio to be 1:4:4.

B. Experimental Fabrication

We have seen that by increasing the magnetization of the
head link relative to the tail link, the efficiency of swimming
can be improved. We now describe an experimental procedure
to fabricate a two link swimmer with a high value of interlink
magnetization ratio. For our experiments, we manufacture fer-
romagnetic links that are connected with an elastomer to make
the two link swimmer. Each link is made by mixing equal
parts of unmagnetized ferromagnetic particles Magnequench
MQFP-B (D50=15um) and resin (Smooth-Cast 326). After
curing, the substrate is laser cut into 6.5 mm x 4.2 mm x 1.75
mm. rectangular links. To magnetize a link, we use a pair of
neodymium magnets that generate strong magnetizing fields in
0.1 T-0.6T in a height range of 0 to 3.5 cms (supplementary
material). Each link is suspended between these magnets
which induces magnetic moments along its length . We then
join two such links with an elastomer of low-bending stiffness
to make the complete swimmer. We assume that the strength
of magnetization in a link M;pduced < Bmagnetizing between
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TABLE I: Results from translation, turning in place and trajectory tracking averaged over 5 runs

Swimmer Straight locomotion (de- | Straight locomotion (de- | Turning (oscillating input) | Turning (constant input)
rived from Eq. 15) rived from Eq. 17)

Links [BL/s] [BL/s] [rad/s] [rad/s]

Two-links 3.663e — 3 £+ .305e — 3 1.4173e —3+.00331le —3 | 5.445e — 1+ .468e — 1 1.606e — 1+ .0174e — 1

Three-links 200.973e — 3 £+ .321e — 3 | No translation observed 1.376e — 1 £ .380e — 1 9.466e — 2+ 1.77e — 2

the magnets at that height. To realize a desired inter-link
magnetization ratio, we conduct a turning time test. In this
test, we investigate the time a single link submerged in glycerin
takes to turn and align itself with constant magnetic field as
a function of its internal magnetization. From simulations, we
find that the time taken to turn is inversely related to internal
magnetization. To verify this experimentally, we magnetize
several links at different field strengths, measure the local
magnetizing field on the surface of the link with a Gaussmeter
at the placement height and measure the time to turn by
5 for these links using OpenCV. As Fig. 8b shows, the
experimental data matches well with simulations, and indeed
this test allows us to compare magnetizations between different
links and can be used to fabricate a swimmer with a desired
magnetizations. Following this procedure, we fabricated a
batch of 12 swimmers with identical magnetization in the first
link and varying magnetizations in the second. Each swimmer
was actuated with u(t) = Bo(1l,sin27ft) at By = 40G,
f = 0.8Hz and time taken to cross between two points at
fixed distance was measured, for computing average speed.
We conducted five runs per swimmer to compute mean and
standard deviation as shown in Fig. 8a. Notice that overall, the
experimental result follows the same trend as simulation i.e.
average speed increases with magnetization. However, there
is a significant difference between the two curves. This can
be described as follows: our Neodymium magnet pair setup
generates a highly nonuniform magnetic field that varies from
0.1 Tto 0.6 Tin a O to 3cm long column and the height
of a link itself is 0.5cm. So precise control of numerical
values of induced magnetization in a link is difficult using our
setup. Secondly, in simulated model, we assumed that the joint
between two links is springless. However, for the experimental
swimmer, we used an elastomer to connect the links. This
elastomer acts like a torsional spring which applies a torque

resisting deformation from magnetic torque due to which the
swimmer does not undulate as much as in simulations. Links

magnetized at weaker fields experience more torsional resis-
tance so the experimental result tends to be further away from
simulation. Finally, note that we use normalized units to denote
magnetization on X axis in Figs. 8a, 8b because we dont have
exact measurements of magnetizations induced in the links.
We assume that M;y,quced < Bmagnetizing 50 the X axis for
experimental results is indeed the magnetizing field strength
in normalized units. For simulation result, we obtained an
estimate value of magnetization 0.12 + 0.02 Am by following
the magnetizing procedure in [13] for our fabricated links and
scaled it proportionately for the 12 swimmers. Hence, our
models are slightly approximate because we dont have precise
values of internal magnetizations. Controlling and estimating
precise values of induced magnetizations in these links is part
of future work

VIII. EXPERIMENTAL VALIDATION OF MOTION PLANS

After fabricating the swimmers, we are now ready to
experimentally validate motion primitives derived in Section.
V. Fig. 8c shows the setup which consists of two pairs of
Helmholtz coils connected to a power supply via a Roboclaw
motor driver. The strength of the fields produced by these
coils is ~ 40G. The size of the workspace is 6 cms x 10
cms. We measured the magnetic field in the workspace on
a grid of equally spaced points to check for field gradients
and concluded that the field is spatially uniform (see supple-
mentary material for a plot). The swimmer (L = 1.3 cms) is
fully submerged in glycerin which has a viscosity 1.706 Pa.s
and density 1260 kg/m?. In translation, it has average speed
close to 0.0004 m/s. The resulting Re is ~ 0.0035 which is
well-within the low- Re regime. We now describe the results of
translation, turning in place and rectangular trajectory tracking.

A. Translation using classical primitive Eq. 15

We now present our results from applying wsrans(t) =
By(1,sin 27 ft) to the two link and three link swimmers. For
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Fig. 9: Results from two-link swimmer (magnetization: 1:6). See supplementary videos for experiments.

(a) Translation using Eq. 15

(b) Turning with constant input

Fig. 10: Results from three-link swimmer (magnetization:

these experiments, we used By = 40 Gauss and f = 0.8Hz.
Fig. 9a and 10a depicts snapshots of the translation in the two
and three link swimmers as a function of time. The average
speed can be noted from the second column in Table I.

B. Translation using new primitive Eq. 17

We also show translation using the new primitive (Eq. 17)
derived in Sec.V. Fig. 9b shows snapshots of the two link
swimmer with this input. The average speed of the swimmer
with this input (third column in Table I) is roughly 40% of
the average speed in the swimmer using the classical primi-
tive, which closely matches with the result from simulations
(50%) (Fig. 5 and Fig. 6). Additionally, from simulations,
we obtained that the trajectory from this input is sensitive
to the initial orientation of the swimmer. This explains why
the trajectory observed in experiments is not fully straight.
This input does not result in translation in three-link swimmer
(neither in simulations) so we omit that result in Table 1.

C. Turn in place with oscillatory and constant inputs

We identified that input w(t) = By(1,sinwt) allows us
to switch the direction of magnetic field vector to induce
locomotion along a given direction. We can modulate the field
in a continuous fashion by composing it with a frequency
component slower than the actuating frequency. This causes
the swimmer to continuously rotate as the instantaneous mag-
netic field vector on average also rotates. Fig. 9c and 10c
demonstrate an example of this motion. For this experiment,
we used Upot = Ry, tu(t) where w = 27 f, wsion, = w/10
and f = 0.8Hz. Alternatively, we can switch and maintain a
constant magnetic along a given orientation to induce turning
in place (Fig. 10b) (similar to orientation of magnetic compass
with external field). The angular velocities for these motions
can be compared in the fourth and fifth columns in Table 1.

D. Rectangular trajectory following

Similarly, we can make the swimmer track a rectangular
trajectory by synthesizing switching time instants at which the

(c) Oscillating input turning (d) Rectangle tracking

1:4:4). See supplementary videos for these experiments.

magnetic field vector turns counter clockwise by 7 radians.

Whenever this happens, the swimmer turns in place and
exhibits a transient response while it turns, which eventu-
ally diminishes and steady translation is obtained along the
constant component. Fig. 9d and 10d depict snapshots of
swimmers following rectangular trajectory using:

Wirans(t) 0 mins < ¢t < 15 mins

ult) = Rzuirans(t) 15 m%ns <t<28 m%ns (18)
Rytirans(t) 28 mins < ¢ < 44 mins
Risx Utrans(t) 44 mins < ¢ < 62 mins

2
IX. CONCLUSIONS

In this paper, we explored motion planning and efficiency
optimization for a two-link magnetic swimmer actuated using
magnetic fields. Starting with a mathematical model, we
identified a representative class of swimmers and showed how
tools from geometric mechanics can be used to synthesize
novel motion primitives for this swimmer. We analyzed the
efficiency of locomotion using these primitives and further
explored how to improve it by optimizing the internal mag-
netization distributions in the swimmer. We demonstrated an
experimental procedure to fabricate these optimal swimmers.
Although our results from the model were different from the
experimental results, we still have a starting approach for
fabricating optimal swimmers through our results. We also
conducted experiments to verify translation, trajectory tracking
and turn in place motions in two link and three link swimmers.
In future, we are interested in resolving the difference in
theoretical and simulation results from efficiency analysis, and
extending the numerical design optimization and geometric
control synthesis tools to multi-link magnetic swimmers.
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