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VIMO: Simultaneous Visual Inertial Model-based

Odometry and Force Estimation

Barza Nisar*, Philipp Foehn*, Davide Falanga, Davide Scaramuzza

Abstract—In recent years, many approaches to Visual Inertial
Odometry (VIO) have become available. However, they neither
exploit the robot’s dynamics and known actuation inputs, nor
differentiate between desired motion due to actuation and un-
wanted perturbation due to external force. For many robotic
applications, it is often essential to sense the external force acting
on the system due to, for example, interactions, contacts, and
disturbances. Adding a motion constraint to an estimator leads to
a discrepancy between the model-predicted motion and the actual
motion. Our approach exploits this discrepancy and resolves it
by simultaneously estimating the motion and the external force.
We propose a relative motion constraint combining the robot’s
dynamics and the external force in a preintegrated residual,
resulting in a tightly-coupled, sliding-window estimator exploiting
all correlations among all variables. We implement our Visual
Inertial Model-based Odometry (VIMO) system into a state-of-
the-art VIO approach and evaluate it against the original pipeline
without motion constraints on both simulated and real-world
data. The results show that our approach increases the accuracy
of the estimator up to 29% compared to the original VIO, and
provides external force estimates at no extra computational cost.
To the best of our knowledge, this is the first approach exploiting
model dynamics by jointly estimating motion and external force.
Our implementation will be made available open-source.

Resources: http://rpg.ifi.uzh.ch/vimo/index.html

Keywords: Visual-Inertial, Model, Force, Estimation

I. INTRODUCTION

A. Motivation

Recent advances in robot perception have led to a number of

Visual Inertial Odometry (VIO) systems becoming more robust

and accessible solutions for state estimation and navigation,

such as [1, 2, 3, 4, 5, 6, 7]. Although these systems work

well in most conditions, they all neglect the robot’s dynamics

and cannot sense forces, such as contacts and interactions, and

disturbances, such as wind and other environmental influences.

Additionally, these approaches do not consider the fundamen-

tal distinction between the desired motion due to actuation

and unwanted perturbation due to external forces. Adding the

system dynamics to a VIO system (i) allows the perception of

external force acting on a robot, and (ii) adds information to

the estimation problem, resulting in increased accuracy.

Applications such as inspection, grasping, manipulation, and

delivery require a robot to sense interaction or forces, which

are often recovered using an estimator loosely-coupled with
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Fig. 1: Factor-graph of our VIMO approach with inertial, dynamic and force
factors. The red arrows indicate the discrepancy between the dynamic and
VIO factors, which is resolved by including an external force.

an odometry system, as proposed in [8, 9, 10, 11, 12, 13].

Such estimators introduce latency, computational overhead,

and neglect correlation among the estimated variables and

their noise characteristics. This shows the necessity for joint

estimation of motion and external force in a unified approach

addressing both, model and sensor noise characteristics.

On the other hand, VIO approaches on Unmanned Aerial

Vehicle (UAV), rely on minimal sensor configurations, typi-

cally consisting of visual and inertial sensors suffering from

additive noise. Thanks to Gaussian filtering theory [14], it is

known that additional knowledge and information improves

the estimation performance, especially in the presence of

Gaussian noise. By adding the system dynamics to a VIO es-

timation problem, we effectively add information. Intuitively,

this additional knowledge allows us to increase the accuracy

of the odometry. However, the pure addition of a motion

constraint from the system dynamics does not account for

any external influences, and may lead to a motion prediction

deviating from the actual motion, as depicted in Fig. 1. Since

this would degrade the estimator performance due to a wrong

prior, it highlights the importance of including external force

and jointly estimating all variables.

To the best of our knowledge, we present the first tightly-

coupled approach exploiting the model dynamics while jointly

estimating motion and external force. We derive the resulting

motion constraint and formulate a dynamic residual. This

residual is added to a pose-graph formulation of the VIO ap-

proach in [2] and is solved using numerical optimization. The

resulting estimator demonstrates up to 29% increased accuracy

and inherent ability to sense external force, opening the door

to a number of possible future research topics and applications.

As a call to the community, we want to raise awareness for

the importance of contact-enabled robotics and the need for

estimators to provide not only odometry information, but also

leverage the robot dynamics to increase accuracy and sense

external forces from contacts and interaction.



B. Related Work

Previous approaches on external force estimation can be

split into two groups: deterministic and probabilistic.
1) Deterministic Approaches: Deterministic approaches es-

timate external force by subtracting the collective thrust vec-

tor from the inertial measurements [8]. [9, 10] proposed a

nonlinear force and torque observer based on the quadrotor’s

dynamical model, assuming that an estimate of the robot

state is available from another estimator. These deterministic

approaches do not consider (i) the thrust input noise, (ii)

the noise in the state, and (iii) noise and unknown time-

varying bias in the Inertial Measurement Unit (IMU). Hence,

deterministic methods only work appropriately in practice

when their inputs and outputs are carefully processed or when

the signal to noise ratio of the used sensor data is very high.
2) Probabilistic Approaches: Realizing the drawbacks of

deterministic force observers, [11] proposed an Unscented

Kalman Filter (UKF) to account for the process and sensors

noise and, consequently, improve the force estimate. Other

similar filtering-based external force estimators include a

Kalman filter [12] and UKF [13]. These methods can be

classified as loosely-coupled, since they use the state estimate

from a separate estimator [15, 13], and then fuse this estimate

with their prediction from the UAV’s dynamic model in a

separate estimation step. Loosely-coupled estimators do not

consider correlations among all estimated variables, which

may lead to inaccuracies [3]. Moreover, the external force is

estimated in an additional fusion step, which may introduce

latency and extra computation cost.
3) Extension to Sliding Window Smoother: A widely used

state estimator for UAVs is Visual Inertial Odometry (VIO)

based on sliding-window smoothing [2] with IMU preintegra-

tion [16] to make the optimization problem computationally

tractable in real time. IMU preintegration was first proposed

in [17] and later modified in [16] to address the manifold

structure of the rotation group. High-rate IMU measurements

are typically integrated between image frames to form a single

relative motion constraint. IMU preintegration theory reparam-

eterizes this constraint to remove the dependence of integrated

IMU measurements on previous state estimates. This avoids

repeated integration when the state estimates change during

each iteration of the optimization. [18] combined the idea of

incorporating dynamic factors for localization of UAVs from

[19] with the preintegration scheme from [16] to develop

a model-based visual-inertial state estimator similar to the

one proposed in our work, but without considering external

forces. [18] showed that in a smoothing-based VIO pipeline,

the dynamic residual in combination with the IMU residual

acts as an additional source of acceleration information, which

adds robustness to state estimation, especially in slow speed

flights, when accelerometer measurements have low signal-to-

noise ratio. While [18] chose to model air drag but ignored

external forces in the dynamic model of the quadrotor, our

work includes external forces and estimates them together

with the robot state. An implication of not modelling external

disturbances, such as wind, in model-aided state-estimation

problems was studied in [15]. In the presence of wind or

external forces, the estimator from [18] can tend to wrongly

adjust the IMU biases due to the mismatch between sensor

measurements and vehicle dynamics and therefore only works

in a disturbance-free environment, as confirmed by the authors.

[20] proposed to use Dynamic Differential Programming to

estimate the state, parameters, and disturbances (forces) in

a synthetic planar motion example, assuming perfect data

association, velocity and landmark position measurement with-

out real world applications. Their approach is significantly

simplified by modelling landmark position measurements, in-

stead of realistic camera projection measurements. Differently

from [20], our method extends an optimization-based VIO

framework with motion factors to simultaneously estimate

state and external force in real time on real world data. To

the best of our knowledge, there is no precedent of a tightly-

coupled or smoothing-based method that jointly estimates

robot states and 3-dimensional external forces.

C. Contribution

This work extends an optimization-based VIO in [3, 2, 16]

with a residual term integrating the dynamic model of the

quadrotor. Our main contribution is the derivation of this

residual term from a motion constraint enforced by the model

dynamics including external force, enabling a VIO framework

to jointly estimate this force in addition to the robot state

and IMU bias. Our approach works as a tightly-coupled

estimator, using visual-inertial measurements, and the collec-

tive thrust input. Since current smoothing-based VIO systems

offer higher accuracy compared to filtering-based methods, we

employ nonlinear optimization as estimation strategy.

Inspired from IMU preintegration [16], the high-rate thrust

inputs are preintegrated, resulting in dynamic factors used as

residuals between consecutive camera frames. A factor graph

representation of the VIO problem with dynamic factors is

depicted in Fig 1. The dynamic factors represent relative

motion constraints similar to the IMU factors but with a

different model and source of measurement. In our work, we

exploit this redundant motion representation to estimate exter-

nal force. The dynamic residual is implemented into VINS-

mono [2], an open-source sliding-window monocular VIO

framework. VINS-Mono was chosen because of its availability,

real-time capability, and requirement for only one camera and

an IMU. We show on real and simulated data that the proposed

estimator compared to VINS-mono, not only increases the

accuracy of the estimates (up to 29%) but also offers external

force estimates without increasing the computation time. Our

approach can be implemented analogously on other robots,

such as fixed-wings, manipulators and mobile ground robots.

D. Structure of this paper

The model-based VIO problem is described in Sec. II,

followed by the preintegration of the dynamic residual in Sec.

III. We report our experiments in Sec. IV and the limitations

in Sec. V. Finally the paper is concluded in Sec. VI.



II. PROBLEM FORMULATION

A. Notation

All coordinate frames used are depicted in Fig. 2. The

quadrotor pose is the body-fixed frame described in world

frame. The IMU frame corresponds to the body frame, at-

tached to the center of mass of the vehicle. The world frame

is denoted by [ ]w, the body frame by [ ]b and the camera

frame by [ ]c, while a hat [̂ ] represents noisy measurements.

The robot state at the time tk is defined as

xk = [pw
bk
,vw

bk
,qw

bk
,bak

,bωk
], k ∈ [0, n] (1)

comprised of position pw
bk

, velocity vw
bk

and Hamilton quater-

nion qw
bk

encoding the rotation of the body frame with respect

to the world frame, and accelerometer and gyroscope biases

bak
,bωk

in the IMU body frame. n is the number of the most

recent keyframes in the optimization window, where the nth

frame is the latest frame that does not need to be a keyframe.

The sliding window optimization variables are given by

X = [l1, · · · , lm,x0, f
b
e0
,x1, · · · , f ben−1

,xn] (2)

where m is the total number of features in the sliding window

and li is the inverse depth of the ith feature as in [2].

The total mass normalised external force f bek is expressed in

body frame and experienced by the quadrotor from the time

of k to k + 1 image i.e. during [tk, tk+1). If the duration

between consecutive image frames is small, f bek will be a good

approximation of the instantaneous force experienced at tk.

B. Dynamic Residual

To include the model dynamics and external force in

a nonlinear optimization, we formulate a dynamic residual

ekd(xk
, f bek ,xk+1

, ẑbkbk+1
), with the preintegrated measurements

ẑbkbk+1
. The full nonlinear optimization problem which solves

for the maximum aposteriori estimate of X is formulated as

min
X

n−1
∑

k=0

∥

∥

∥
e
k
d(xk, f

b
ek
,xk+1, ẑ

bk
bk+1

)
∥

∥

∥

2

Wk
d

+ JV IO(X , ẑ
bk
bk+1

) (3)

where JV IO contains the sum of prior residual ep, the visual

residual ev of all visible landmark reprojections, and the iner-

tial residual es comprising of the preintegrated measurements.

As proposed in [2] we summarize it into:

JV IO =

n
∑

k=0

∑

j∈Jk

ρ

(

∥

∥

∥
e
j,k
v

∥

∥

∥

2

Wv

)

+

n−1
∑

k=0

∥

∥

∥
e
k
s

∥

∥

∥

2

Wk
s

+
∥

∥

∥
e
k
p

∥

∥

∥

2

. (4)

Jk is the set of visible landmarks in frame k, while ekv is ro-

bustified by the Huber-norm ρ(x) =
(

√

1 + (x/δ)2 − 1
)

δ2.

The reader can refer to [2] for the derivation of JV IO.

In the next section, we formulate the dynamic residual

ekd as a function of the robot states and external forces

at times [tk, tk+1] and preintegrated thrust inputs and IMU

measurements ẑ
bk
bk+1

. Additionally, we derive the weight Wk
d

for the Mahalanobis norm of ekd by propagating the covariance

from the measurement noise. While the formulation so far was

robot-agnostic, we now focus on the quadrotor model.

xc
yc

zc
Cameraxb

ybzb

Body
xwyw

zw

World

gw

Fig. 2: Quadrotor scheme with world, body and camera frame indicated.

III. PREINTEGRATION OF QUADROTOR DYNAMICS

A. Model Dynamics

In the dynamical model we consider the evolution of po-

sition and velocity of the quadrotor subject to three forces:

collective rotor thrust Tb
t , external forces f bet , and gravity

gw = [0, 0,−9.81]Tms−2. The translational dynamics of the

quadrotor is given by the following equations:

ṗw
bt

= vw
bt

v̇w
bt

= R(qw
bt
)
(

Tb
t + f bet

)

+ gw (5)

where R(qw
bt
) is the rotation matrix corresponding to the

rotation from body to world frame. Since we do not know the

dynamics of external force, we assume it to be a Gaussian

variable fet = N (0, σ2
f ). This allows the framework to

distinguish between slowly walking accelerometer biases and

incidental external forces.

Preintegration of the system dynamics requires separation

of the residual terms dependent on optimization variables

from the terms dependent on the measurement. The rotational

dynamics of the quadrotor is not considered here, since the

control torques can not be separated from their dependency on

the optimization variables rendering preintegration ineffective.

B. Preintegration of Dynamic Factors

In this section we derive the preintegration of the dy-

namic factors. The integration of (5) requires the evolution

of rotation, which is provided by the IMU’s rotation model

q̇w
bt

= 1

2
qw
bt
⊗[0,ωb

t ]
⊺ where ⊗ is the quaternion multiplication

and ωb is the angular velocity of the body expressed in the

body frame. The involved noisy measurements are the biased

angular velocity ω̂b
t = ωb

t + bωt
+ ηω from the IMU and the

collective rotor thrust T̂b
t = Tb

t+ηT . As in [2], the gyroscope

noise is considered as Gaussian ηω ∼ N (0,σ2
ω) and its bias

as random walk ḃωt
= ηbω with ηbω ∼ N (0,σ2

bω
). Since

neither the magnitude nor the direction of the actual thrust is

known precisely, we assume Gaussian noise in the thrust as

ηT ∼ N (0,σ2
T ). The vehicle state can be propagated between

two frames over time interval ∆tk = tk+1− tk by integrating

the thrust and gyroscope measurements:

pw
bk+1

= pw
bk

+ vw
bk

∆tk +
1

2
gw

∆t2k

+

∫ ∫ tk+1

tk

Rw
bτ

(

T̂b
τ + fbeτ − ηT

)

dτ2

vw
bk+1

= vw
bk

+ gw
∆tk +

∫ tk+1

tk

Rw
bτ

(

T̂b
τ + fbeτ − ηT

)

dτ

qw
bk+1

= qw
bk

⊗

∫ tk+1

tk

1

2
Ω

(

ω̂
b
τ − bωτ − ηω

)

q
bk
bτ

dτ

(6)



where: Ω(ω) =





0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0



 . (7)

To make the integration of the measurements independent of

the states at frame k, we group the terms containing measure-

ments in α̂bk
bk+1

, β̂bk
bk+1

, γ̂bk
bk+1

, and change the reference frame

from world to body frame as done in IMU preintegration [16]:

α̂
bk
bk+1

=

∫ ∫ tk+1

tk

R
bk
bτ

(

T̂
b
τ − ηT

)

dτ
2

β̂
bk
bk+1

=

∫ tk+1

tk

R
bk
bτ

(

T̂
b
τ − ηT

)

dτ

γ̂
bk
bk+1

=

∫ tk+1

tk

1

2
Ω

(

ω̂
b
τ − bωτ − ηω

)

γ̂
bk
bτ

dτ.

(8)

We then derive the prediction of the terms in (8) from the

model equations in (6) to form the factors

α
bk
bk+1

= R
bk
w

(

p
w
bk+1

− p
w
bk

− v
w
bk
∆tk −

1

2
g
w∆t

2
k

)

−
1

2
f
b
ek
∆t

2
k

β
bk
bk+1

= R
bk
w

(

v
w
bk+1

− v
w
bk

− g
w∆tk

)

− f
b
ek
∆tk

γ
bk
bk+1

= q
bk
w ⊗ q

w
bk+1

.

(9)

C. Dynamic Residual

Now we can combine (8) and (9) into the dynamic residual

between frames bk and bk+1, which also includes the zero-

mean prior on external forces.

ekd =







αbk
bk+1
− α̂bk

bk+1

βbk
bk+1
− β̂bk

bk+1

f bek






Wk

d =

[

P
bk −1

bk+1[0:5]
0

0 wfI

]

(10)

Finally, the weight of the residual can be formulated by the

inverse of the covariance in α̂bk
bk+1

and β̂bk
bk+1

extracted from

P
bk
bk+1

(derived in Sec. III-D) and a diagonal weight wf for

the external force zero-mean prior.

It is important to note that these preintegrated terms still

depend on the gyroscope bias. This means that each time

an optimization iteration changes the bias estimate slightly,

we need to repropagate the measurements. To avoid this

computationally expensive repropagation, we will adopt the

solution proposed in [16], and explained in Sec. III-E.

D. Propagation Algorithm

We start the propagation from an initial condition of α̂bk
bk

=

β̂bk
bk

= 03×1 and γ̂bk
bk

= [1,03×1]. The Euler integration over

timestep δti is computed by

α̂bk
i+1

= α̂bk
i + β̂bk

i δti +
1

2
R(γ̂bk

i )Tb
iδt

2
i (11)

β̂bk
i+1

= β̂bk
i +R(γ̂bk

i )Tb
iδti (12)

γ̂bk
i+1

= γ̂bk
i ⊗

[

1
1

2
(ωmi

− b̄ωk)δti

]

(13)

To achieve optimal linearization accuracy, the algorithm is run

at the rate of the fastest available measurement, typically the

IMU rate. The covariance P
bk
bk+1

is derived by linearizing the

error δz = [δα, δβ, δθ, δbω]
⊺ and noise η = [ηT ,ηω,ηbω ]

⊺

dynamics between integration steps as

zbk
i+1

= Aiz
bk
i +Gi





ηT

ηω

ηbω



 γbk
t ≈ γ̂bk

t ⊗
[

1
1

2
δθbk

t

]

(14)

where δθ is the minimal perturbation around the mean of γ.

Finally, Pbk
bk+1

is linearly propagated from P
bk
bk

= 0 by

P
bk
i+1

= AiP
bk
i AT

i +GiQGT
i (15)

with the linearization Ai =
∂zbk

i+1

∂zbk
i

and Gi =
∂zbk

i+1

∂η
.

E. Bias Correction

The first-order Jacobian matrix Jbk+1
of zbkbk+1

with respect

to z
bk
bk

can be computed recursively by Ji+1 = AiJi starting

from the initial Jacobian of Jbk = I. The preintegrated terms

can then be corrected by their first order approximation with

respect to the change in gyroscope bias δbωk
= bωk

− b̄ωk

from the initial estimate b̄ωk
as follows:

α̂bk
bk+1
← α̂bk

bk+1
+ Jα

bω
δbωk

Jα
bω

=
∂αbk

bk+1

∂bωk

β̂bk
bk+1
← β̂bk

bk+1
+ J

β
bω
δbωk

J
β
bω

=
∂βbk

bk+1

∂bωk

. (16)

F. Marginalization

We adapt the marginalization strategy proposed in [2], such

that when the second last frame in the window is a keyframe,

we marginalize out the oldest keyframe’s state and external

force fe0
. The corresponding visual, inertial, and thrust mea-

surements of the marginalized states are converted into a prior.

If the second last frame is not a keyframe, its state, external

force and corresponding visual measurements are dropped,

while the preintegrated IMU and thrust measurements are kept

and continued to be preintegrated till the last frame.

IV. EXPERIMENTS

We perform 3 types of experiments: IV-A: simulation based

experiments; IV-B: evaluation on the Blackbird dataset [21]

with real pose, inertial, and rotor speed measurements but

synthetic camera frames; IV-C real-world experiments.

A. Simulation

Experiment Setup: To generate repeatable data in a fully

controlled environment, we used the RotorS simulator from

[22], a Micro-Aerial Vehicle Simulator using Gazebo in ROS.

We used a forward looking camera with 752 × 480 image

resolution. The base simulation vehicle was Hummingbird

from [22] according to which the onboard IMU was corrupted

with noise of σω = 0.004rad/s
√
Hz for the gyroscope,

σa = 0.1m/s2
√
Hz for the accelerometer, and a bias random

walk of σbω = 0.000038rad/s2
√
Hz for the gyroscope, and

σba = 0.00004 [m/s3
√
Hz] for the accelerometer. The tuning

parameters σT and wf were hand-tuned and then kept the
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Fig. 3: Comparison between VINS — (green), VIMO — (ours, blue) and ground truth — (purple) on a random trajectory (top) and a helical eight trajectory
(bottom) at 2.5m s−1 with external forces applied. This configuration depicts the worst performance of VIMO compared with VINS-Mono. The two left
columns show the estimated trajectories aligned with the ground truth. The two right columns summarize the relative translation and yaw error statistics over
trajectory segments. Boxes indicate the middle two quartiles while whiskers denote upper and lower quartiles and the center line indicates the median.

same across all of the experiments. The dynamic residual

was implemented in VINS-Mono with a maximum number

of 150 features tracked per frame. For a fair comparison,

no loop closure was applied. The estimator is run on a

2.5GHz Intel Core i7 CPU. VINS-Mono processes frames

and provides estimates at 10Hz, with IMU measurements

sampled at 900Hz, thrust inputs at 150Hz, and camera images

at 40Hz. An external force is applied programmatically in the

simulation, therefore its ground truth is known. We acquired

simulated datasets for two trajectory shapes: trajectory 1 is

73.7m long and is generated by arbitrarily choosing waypoints

(Figs. 3a and 3b); trajectory 2 is helical eight (Figs. 3e and 3f)

given by formulation p(θ) = [lx sin 2θ, ly cos θ,
h
2π

(sin θ− θ)]
with lx = 2m ly = 4m and height h = 3.2m. In the first

set of experiments, the quadrotor flies undisturbed at speeds of

[1, 2, 2.5, 4, 5]m s−1, while in the second set external forces act

on the vehicle flying at [1, 2, 2.5]m s−1. In all the experiments,

the reference heading was set to sinusoidally change with a

magnitude of 30◦. We first compare the performance of our

approach (VIMO) against VINS-Mono in terms of accuracy

and computation times. Finally, we compare the quality of the

external force estimate against the estimate obtained from a

naive approach.

Comparison with VINS-Mono: Fig. 3 shows plots compar-

ing simulation performance of VINS-Mono with VIMO on

the two trajectory shapes flown at 2.5 m/s top speed and

disturbed with external forces. This scenario represents the

worst performance of VIMO in comparison with VINS-Mono

on trajectory 1 and an average performance for trajectory

2, as visible from Tab. I. The plots were generated and the

absolute and relative errors were computed using the open

source trajectory evaluation toolbox for VIO pipelines [23].

For all the experiments, we align all the estimated states to

the ground truth using posyaw trajectory alignment method of

the toolbox. The top and side view of the estimated trajectories

by VINS-Mono and VIMO almost overlap and are very close

TABLE I: Comparison between performance of VINS and VIMO.

trans. RMSE (m) rot. RMSE (deg) avg solve time (ms) max solve time (ms)
top speed (m/s) VINS VIMO % decrease VINS VIMO % decrease VINS VIMO VINS VIMO

Trajectory 1: 73.7m

without external forces

1.0 0.066 0.039 40.9 1.40 0.57 59.3 42.0 40.9 52.1 54.7
2.0 0.093 0.073 21.5 0.69 0.64 7.2 39.9 39.9 61.8 63.3
2.5 0.085 0.076 10.6 0.60 0.56 6.7 38.5 38.7 50. 49.7
4.0 0.038 0.033 13.2 0.49 0.36 26.5 37.9 38.0 49.1 50.5
5.0 0.068 0.062 8.8 0.66 0.47 28.8 38.3 38.3 51.1 53.8

Trajectory 1: 73.7m

with external forces

1.0 0.105 0.089 15.2 1.81 0.75 58.6 42.0 40.7 52.2 54.2
2.0 0.057 0.051 10.5 0.75 0.61 18.7 39.6 39.7 50.8 55.5
2.5 0.055 0.059 - 7.3 0.71 0.69 2.8 39.3 38.8 59.7 51.0

Trajectory 2: 65.8m

without external forces

1.0 0.228 0.189 17.1 1.45 1.12 22.8 40.7 40.9 54.0 60.7
2.0 0.147 0.143 2.7 0.67 0.42 37.3 39.7 39.1 52.6 51.8
2.5 0.203 0.158 22.2 0.74 0.48 35.1 39.3 38.5 77.2 54.4
4.0 0.085 0.068 20.0 0.81 0.65 19.8 38.3 38.0 50.5 57.4
5.0 0.073 0.061 16.4 0.72 0.48 33.3 38.2 38.0 51.8 61.6

Trajectory 2: 65.8m

with external forces

1.0 0.162 0.154 4.9 1.29 1.00 22.5 40.8 40.9 55.6 61.8
2.0 0.157 0.136 13.4 0.74 0.62 16.2 40.2 38.8 84.5 58.7
2.5 0.094 0.061 35.1 0.64 0.52 18.8 39.5 38.5 52.1 61.7
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Fig. 4: Comparison between external force estimates from VIMO — (pink), the naive approach — (green) and calculated ground truth — (blue) on
the random trajectory (top, a - c) and the helical-eight trajectory (bottom, d - f). The external force estimate consists of air drag in body x- and y-axis and 2
external forces applied at t = 10 s and t = 32 s for the top experiment and t = 47 s and t = 68 s for the bottom experiment.

to the ground truth. For this worst-case scenario, the relative

translation error for VIMO is less than or similar to the error

for VINS-Mono, while the relative yaw errors for VIMO

is slightly higher than VINS-Mono. We report all measured

RMSE and computation time for VINS-Mono and VIMO

in Table I, together with the percentage decrease in RMSE

of VIMO compared to VINS-mono. The maximum increase

in accuracy is ∼ 40%, experienced at a speed of 1 m/s in

random trajectory, without external forces, while one outlying

experiment (trajectory 1, with forces at 2.5m s−1) showed

a decrease of accuracy. Overall, we achieve a decrease in

translational RMSE of ∼ 15%, and a decrease in rotational

RMSE ∼ 25% in the simulated experiments. In general, the

addition of dynamic residuals excels especially in scenarios

of low signal-to-noise ratio in the IMU data, which occur at

low accelerations. While we could tune the parameters σT

and wf to increase the accuracy of individual experiments, we

wanted to fairly evaluate our estimator’s performance without

tuning between scenarios to accurately represent real-world

applications. In addition to increasing the accuracy, it can be

observed in Tab. I that our approach does not increase the

average solving time, but keeps it nearly equal to VINS-Mono.

Evaluation of External Force Estimate: In this section we

compare VIMO’s external force estimate against the estimate

obtained from a naive approach and the ground truth. We

compute a naive deterministic estimate as f̃et = âbt − T̂b
t by

simply subtracting the mass normalised thrust T̂b
t from the

accelerometer measurements âbt . Fig 4 shows plots of force

estimates obtained for the different trajectory shapes flown at

2.5 m/s top speed. In both the experiments, we disturb the

quadrotor at its center of mass by 2 external forces for 2

seconds each, one after the other, in all three body axes. The

ground truth of the external force is computed as a sum of mass

normalised external disturbance measured by the force sensor

and the drag force. Since RotorS does not provide ground truth

of the drag force, we approximate it offline using the linear

drag model −diag([dx, dy, dz])Rw
b
T vwb [24], and the ground

truth rotation, velocity and mass normalized drag coefficients

dx, dy, dz from the simulator. We assume dz = 0 because the

drag in body z axis is very small. From the plots it is evident

that the naive deterministic estimate needs additional filtering

and bias removal steps, whereas our estimator implicitly takes

into account the noise characteristics of the IMU, its bias, the

noise in the state estimates, and the noise of the commanded

thrust. Hence, our estimate lies closer to the computed ground

truth force. The plots also show that the force estimates take

time to converge at the beginning, as long as the IMU bias

estimate is not converged (first ∼ 8 − 10s). One peculiarity

visible in Fig 4(f) are the peaks in the estimate at t = 32 s
and t = 88 s, which are not visible in the ground truth. This

is the result of a high change in commanded thrust, while the

actual thrust has latency introduced by the motors and speed

controllers.

B. Blackbird Dataset

Experiment Setup: Additionally, we evaluate the perfor-

mance of VIMO and VINS-Mono on the Blackbird dataset

from [21], which uses a motion capture system for closed-

loop control of a UAV along fast trajectories, while rendering

photorealistic images of synthetic scenes synchronized with

onboard IMU and rotor thrust measurements. We use the

two sequences star and picasso at speeds from 1 to 4m s−1

with the camera forward-facing for the star sequence and

at a fixed yaw for the picasso sequence. Since this dataset

does not include any applied external forces, we only evaluate

pose estimation as direct comparison on the public available

dataset for reproducibility. Since the dataset contains IMU

measurements at 100Hz, we downsample the images, which

are available at a faster rate of 120Hz, to 30Hz to allow proper

IMU preintegration. We use the rotor thrust measurements at

the provided ∼ 190Hz.

Evaluation: Also for the Blackbird dataset [21], we use the

trajectory alignment toolbox from [23] with the posyaw align-

ment. Even though this dataset does not include sequences

with applied (and measured) external forces, we could measure

a slight performance increase as shown in Table II. Different

from most available datasets (Sec. V-B), the Blackbird dataset

includes the rotor speed measurements which we exploit



TABLE II: Blackbird Dataset Evaluation

trans. RMSE (m) rot. RMSE (deg)
VINS VIMO %decrease VINS VIMO %decrease

star 1m/s 0.102 0.088 13.7 0.46 0.48 -4.3
star 2m/s 0.133 0.082 38.2 0.67 0.60 10.5
star 3m/s 0.235 0.183 22.1 0.96 0.88 8.7

picasso 1m/s 0.097 0.055 43.5 0.67 0.77 -14.9
picasso 2m/s 0.043 0.040 7.8 0.46 0.43 9.1
picasso 3m/s 0.045 0.043 2.9 0.34 0.30 14.6
picasso 4m/s 0.056 0.049 11.9 0.67 0.53 21.7

through the known system dynamics and achieve superior

accuracy in nearly all test sequences. One can observe that in

the star trajectory the translational errors are generally higher

and the highest tested speed is 3m s−1. This is because of the

high yaw rate and the resulting high optical flow, rendering

the estimation problem more difficult, and causing the system

to fail at 4m s−1 without significant retuning.

C. Real-World Validation

Experiment Setup: To fully validate our approach, we

provide a real world experiment where we record data con-

sisting of camera frames, IMU data, commanded collective

thrust, force measurements and quadrotor state ground truth.

For the quadrotor, we used an ARM-based platform with a

monochrome global-shutter VGA resolution camera at 30Hz
synchronized with an IMU providing inertial data at 400Hz,

based on the Qualcomm Snapdragon Flight as depicted in

Fig. 6a. For the experiment we used our inhouse-developed

flight stack. To provide ground truth data, we employed an

OptiTrack motion capture system. As a force ground truth,

we used an ATI Mini40-SI-20-1 force and torque sensor (Fig,

6b) also tracked in our motion capture system to recover the

direction of the force. We evaluate disturbance-free figure-

eight trajectory flight with lx = 2.25m, ly = 1.5m, h = 0m,

and disturbing the vehicle in hover with ∼ 3N by pushing it

with the force-measurement pole.

Evaluation: As a simple validation of our approach, we

depict the top view on the position estimate of VINS-Mono,

VIMO and ground truth in Fig. 5a, indicating a very similar

performance of both approaches. We evaluate a translational

RMSE of 0.1069m for VIMO and 0.1497m for VINS-Mono,

corresponding to 29% error reduction, while the rotational

(a) Snapdragon Flight Quadrotor (b) Force sensor ATI Mini40
Fig. 6: Experimental quadrotor platform (a) and an force/torque sensor (b).

RMSE is at 4.95◦ for VIMO and 5.15◦ for VINS-Mono,

corresponding to 4% error reduction. Fig. 5b reports the error

statistics on the real world data computed with the trajectory

evaluation toolbox [23]. Additionally, we disturbed the vehicle

with ∼ 3N while in hover, as shown in Fig. 5c. The estimate

is accurate, while noisy due to high vibrations on the used

vehicle.

V. DISCUSSION

A. Limitations due to Measurement Modality

While our approach offers the benefits of improving state

estimates and estimating external force, it also comes with two

limitations due to its measurement modality.

First, we consider the acceleration measurement abk in body

frame abk − bb
ak

= Tb
k + f bek = Tb

k + f̄ bek + f bdk
where we

have separated f bek from (5) into the true external force f̄ bek
and the aerodynamic drag f bdk

force. While abk and Tb
k are

measured quantities, all other quantities have to be estimated.

Due to the additive nature of external (f̄ bek ) and drag (f bdk
)

force, one can only estimate the sum of both (fek , as done in

this paper) if one does not add any additional assumption or

model the aerodynamic drag. Furthermore, the same additive

nature introduces an ambiguity between external force (i.e.

summed f bek ) and the bias bb
ak

. But contrary to force and

drag, summed external force and bias can be discriminated

by their different dynamics, implemented as an additional

prior. Due to the nature of IMU bias, we have to assume

a random walk prior by ḃak
= N (0, σ2

ba
) with N as the

Gaussian distribution. In contrast, we assume the external

forces to be zero-mean Gaussian (10), since we are mainly

interested in detecting incidental changes in the force. Any

constant component in the external force will be estimated as
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(b) Translational errors over trajectory segments
of VINS — (green), VIMO — (ours, blue) on
real world data as statistical box plot.

(c) External force estimate fey (top) and ‖fe‖ (bottom)
on real world data compared between VIMO — and a
force sensor — with a disturbance of ∼ 3N magnitude.

Fig. 5: Real world experiments flying a figure 8 trajectory at 1.5m s−1 depicted in top view x,y-plot (Fig. (a)) and statistical box plots (Fig. (b)). Fig. (c)
shows the force estimate and ground-truth (obtained with a force sensor) of a disturbance of ∼ 2N.



accelerometer bias, since the bias is the only estimated variable

without cost on its magnitude, effectively forming a low-pass

filter. Further evaluations of the observability of visual-inertial

localization can be found in [25]. Finally, we use commanded

thrust in the dynamic model whereas the accelerometer detects

acceleration due to the actual rotor thrust. Therefore, our

estimator comprehends the difference between commanded

and actual thrust, if large enough, as external force. This

is observed as mentioned before in Sec. IV-A as peaks in

Fig 4(f), indicating that VIMO also has the capability to detect

model inaccuracy as external force. This difference between

commanded and actual rotor thrust could be mitigated by using

advanced motor speed controllers with feedback on the actual

rotor speed or by modelling the motor dynamics.

B. Other Datasets

Several existing UAV visual-inertial datasets, such as Eu-

RoC MAV [26], UPenn fast flight [27], Zurich Urban MAV

[28], have been used extensively for evaluating the perfor-

mance of VIO. Although these datasets include synchronized

camera and IMU data with accurate ground truth, we could not

use them to evaluate our approach since they do not provide

rotor speed measurements or commanded thrust.

VI. CONCLUSION

This paper extends a visual inertial estimator by adding a

motion constraint derived from the dynamic model including

external forces. The resulting tightly-coupled system is shown

to accurately estimate vehicle’s motion, IMU biases, and

external forces, from visual and inertial measurements and

commanded thrust inputs. Thereby, our approach enables dif-

ferentiation between actuation and disturbance by the detected

external forces. Inspired from IMU preintegration, the high-

rate collective rotor thrust is preintegrated into relative motion

constraints, implemented as residuals into an existing VIO

pipeline (VINS-Mono). Synthetic and real world experiments,

conducted in the presence of external disturbances, illustrate

that, compared to VINS-Mono, our estimator not only im-

proves odometry accuracy up to 29% on real world data, but

also estimates time-varying external forces without increasing

the computation time. Our unified state and force estimator

enables a robot to sense motion and external forces, opening

the door to a number of possible future research works and

applications. As a call to the community, we want to raise

awareness for the importance of contact-enabled robotics and

the need for estimators to provide not only odometry informa-

tion, but also leverage the robot dynamics to increase accuracy

and sense external forces from contacts and interaction.
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