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Abstract—In this paper, we introduce and tackle the simul-
taneous enhancement and super-resolution (SESR) problem for
underwater robot vision and provide an efficient solution for
near real-time applications. We present Deep SESR, a residual-
in-residual network-based generative model that can learn to
restore perceptual image qualities at 2×, 3×, or 4× higher
spatial resolution. We supervise its training by formulating a
multi-modal objective function that addresses the chrominance-
specific underwater color degradation, lack of image sharpness,
and loss in high-level feature representation. It is also supervised
to learn salient foreground regions in the image, which in turn
guides the network to learn global contrast enhancement. We
design an end-to-end training pipeline to jointly learn the saliency
prediction and SESR on a shared hierarchical feature space for
fast inference. Moreover, we present UFO-120, the first dataset
to facilitate large-scale SESR learning; it contains over 1500
training samples and a benchmark test set of 120 samples. By
thorough experimental evaluation on UFO-120 and several other
standard datasets, we demonstrate that Deep SESR outperforms
the existing solutions for underwater image enhancement and
super-resolution. We also validate its generalization performance
on several test cases that include underwater images with diverse
spectral and spatial degradation levels, and also terrestrial images
with unseen natural objects. Lastly, we analyze its computational
feasibility for single-board deployments and demonstrate its
operational benefits for visually-guided underwater robots.

I. INTRODUCTION

Automatic generation of high resolution (HR) images from
low resolution (LR) sensory measurements is a well-studied
research problem in the domains of robotics and computer
vision [64, 72, 34]. For visually-guided robots, in particular,
this single image super-resolution (SISR) capability allows
zooming-in regions of interests (RoIs) for detailed perception,
to eventually make navigational and other operational deci-
sions. However, if the LR images suffer from noise and optical
distortions, those get amplified by SISR, resulting in uninfor-
mative RoIs. Hence, restoring perceptual and statistical image
qualities is essential for robust visual perception in noisy
environments (e.g., underwater [9, 25]). Although large bodies
of literature on perceptual image enhancement and SISR offer
solutions separately for both, a unified approach is more viable
for computationally constrained real-time applications.

To this end, we introduce simultaneous enhancement and
super-resolution (SESR) and demonstrate its effectiveness for
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Fig. 1: The proposed ‘Deep SESR’ model offers perceptually
enhanced HR image generation and saliency prediction by a
single efficient inference. The enhanced images restore color,
contrast, and sharpness at higher scales (up to 4×) to facilitate
an improved visual perception, whereas the saliency map can
be further exploited for attention modeling. All figures in this
paper are best viewed digitally by zoom for colors and details.

improved visual perception. SESR is particularly useful in the
underwater domain due to its unique optical properties [2],
e.g., attenuation, refraction, and backscatter. These artifacts
cause range-and-wavelength-dependent non-linear distortions
that severely affect vision despite often using high-end cam-
eras [35]. Specifically, the captured images exhibit various
levels of hue distortion, blurriness, low contrast, and color
degradation based on the waterbody types, distances of light
sources, etc. Some of these aspects can be modeled and
estimated by physics-based solutions, particularly for dehaz-
ing [7], color correction [10], water removal [3], etc. However,
these methods are often computationally too demanding for
real-time deployments. Besides, dense scene depth and optical
waterbody measures are not always available in practice.

The learning-based approaches attempt to address the prac-
ticalities by approximating the underlying solution to the ill-
posed problem of underwater image restoration with RGB data
alone. Several existing models based on convolutional neural
networks (CNNs) [48, 63] and generative adversarial networks
(GANs) [35, 44, 20] provide state-of-the-art (SOTA) perfor-



mance for perceptual color enhancement, dehazing, deblurring,
and contrast adjustment. Additionally, inspired by the success
of deep residual networks for terrestrial SISR [72, 42, 30], sev-
eral models have been proposed for underwater SISR in recent
years [13, 34], which report exciting results with reasonable
computational overhead. Contemporary research work [35, 34]
further demonstrates that the perceptually enhanced under-
water images provide significantly improved performance for
widely-used object detection and human body-pose estimation
tasks; moreover, detailed perception on salient image regions
facilitates better scene understanding and attention modeling.
However, as mentioned, separately processing visual data for
these capabilities, even with the fastest available solutions, is
not computationally feasible on single-board platforms.

In this paper, we present the first unified approach for
SESR with an end-to-end trainable model. The proposed Deep
SESR architecture incorporates dense residual-in-residual sub-
networks to facilitate multi-scale hierarchical feature learning
for SESR and saliency prediction. For supervision, we formu-
late a multi-modal objective function that evaluates the degree
of chrominance-specific color degradation and loss in image
sharpness, contrast, and high-level feature representation. As
demonstrated in Fig. 1, it learns to restore perceptual image
qualities at higher spatial scales (up to 4×); as a byproduct,
it learns to identify salient foreground regions in the image.
We also present the UFO-120 dataset, which contains over
1500 annotated samples for large-scale SESR training, and
a test set with an additional 120 samples. The dataset and
relevant resources are available for academic research purposes
at http://irvlab.cs.umn.edu/resources/ufo-120-dataset.

Furthermore, we evaluate the perceptual enhancement and
super-resolution performance of Deep SESR on UFO-120
and several other standard datasets. The results suggest that
it provides superior performance over SOTA methods on
respective tasks, and achieves considerably better general-
ization performance on unseen natural images. Finally, we
specify several design choices for Deep SESR, analyze their
computational aspects, and discuss the usability benefits for
its robotic deployments.

II. BACKGROUND

Underwater image enhancement is an active research
problem that deals with correcting optical image distortions to
recover true pixel intensities [3, 10]. Classical approaches use
hand-crafted filters to improve local contrast and enforce color
constancy. These approaches are inspired by the Retinex theory
of human visual perception [37, 71, 23], and mainly focus on
restoring background illumination and lightness rendition. An-
other class of physics-based approaches uses an atmospheric
dehazing model to estimate true transmission and ambient
light in a scene [15, 27]. Additional prior knowledge or
statistical assumptions (e.g., haze-lines, dark channel prior [7],
etc.) are often utilized for global enhancements. Recent work
by Akkaynak et al. [2, 3] introduces a revised image formation
model that accounts for the unique characteristics of under-
water light propagation; this contributes to a more accurate

estimation of range-dependent attenuation and backscatter.
While accurate underwater image recovery remains a chal-

lenge, the learning-based approaches for perceptual enhance-
ment have made remarkable progress in recent years. Driven
by large-scale supervised training [35, 68], these approaches
learn sequences of non-linear filters to approximate the under-
lying pixel-to-pixel mapping [36] between the distorted and
enhanced image domains. The contemporary deep CNN-based
generative models provide SOTA performance in learning
such image-to-image translation for both terrestrial [14, 11]
and underwater domains [35, 48]. Moreover, the GAN-based
models attempt to improve generalization performance by
employing a two-player min-max game [26], where a gen-
erator learns realistic enhancement while evolving with an
adversarial discriminator toward equilibrium. Several GAN-
based underwater image enhancement models have reported
impressive results from both paired [20, 45] and unpaired
training [35]. However, they are prone to training instability,
hence require careful hyper-parameter choices and intuitive
loss function adaptation to ensure convergence [5, 53].

Single image super-resolution (SISR) problem deals with
automatically generating a sharp HR image from its LR
measurements. Although SISR is relatively less studied in the
underwater domain, a rich body of literature exists for ter-
restrial imagery [66]. In particular, existing deep CNN-based
models [18, 42] and GAN-based models [57, 59] provide good
solutions for SISR. Researchers have also exploited contem-
porary techniques [39, 40, 61] such as gradient clipping, dense
skip connection, and sub-pixel convolution to improve SISR
performance on standard datasets. Moreover, deep residual net-
works [42, 30] and residual-in-residual networks [64, 47] are
known to be very effective for learning SISR. Such networks
employ skip connections to preserve the identity mapping
within repeated blocks of convolutional layers; this contributes
to a stable training of very deep models. Zhang et al. [72]
further demonstrated that dense skip connections within a
residual block allow combining of hierarchical features from
each layer, which boosts the SISR performance.

In recent years, similar ideas have been effectively ap-
plied for underwater imagery as well. For instance, Chen
et al. [13] adopt residual-in-residual learning for underwater
SISR, whereas Islam et al. [34] introduce a deep residual
multiplier model that can be dynamically configured for 2×,
4×, or 8× SISR. Although these models report inspiring
results, they do not account for underwater image distortions,
and hence rely on a secondary network for enhancement.
On the contrary, traditional approaches primarily focus on
enhancing underwater image reconstruction quality by de-
blurring/denoising [12, 56], or descattering [50]. Hence, their
applicability for end-to-end SESR is limited.

Visual attention-based saliency prediction refers to find-
ing interesting foreground regions in the image space [51, 63].
The classical stimulus-driven approaches use features such
as luminance, color, texture, and often depth information to
quantify feature contrast in a scene, which are subsequently
exploited for spatial saliency computation. Automatic saliency
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prediction over a sequence of frames is explored extensively as
well [6]. Another genre of approaches deal with goal-driven
saliency prediction for visual question answering [67], i.e.,
finding the image regions that are relevant to a specific query.
In the underwater domain, however, existing research work
mainly focuses on salient feature extraction for enhancing
object detection performance [19, 52, 70]. Hence, they do
not provide a general solution for attention modeling that can
facilitate faster visual search or better scene understanding.
Nevertheless, finding salient RoIs in distorted underwater
images and generating corresponding enhanced HR patches
can be extremely useful for visually-guided robots.

III. PROBLEM FORMULATION

A. Learning SESR

SESR refers to the task of generating perceptually enhanced
HR images from their LR and possibly distorted (LRD) input
measurements. We formulate the problem as learning a pixel-
to-pixel mapping from a source domain X (of LRD images)
to its target domain Y (of enhanced HR images); we represent
this mapping as a generative function G : X → Y . We
adopt an extended formulation by considering the task of
learning SESR and saliency prediction on a shared feature
space. Specifically, Deep SESR learns the generative function
G : X → S,E, Y ; here, the additional outputs S and E denote
the predicted saliency map, and enhanced image (in the same
resolution as the input X), respectively. Additionally, it offers
up to 4× SESR for the final output Y .

B. Data Preparation: The UFO-120 Dataset

We utilize several existing underwater image enhancement
and super-resolution datasets to supervise the SESR learning
with paired data of the form ({X}, {S,E, Y }). We prepare
over 1500 samples for training and another 120 for testing in
the UFO-120 dataset. It contains HR natural underwater im-
ages collected from oceanic explorations in multiple locations
having different water types, as seen in Fig. 2a. The saliency
maps are annotated by human participants, whereas standard
procedures for optical/spatial image degradation [35, 46, 20]
are followed to create the respective LRD samples.

Specifically, we adopt a widely used domain-transfer tech-
nique [35, 20] that deploys a CycleGAN [73]-based model
trained on unpaired natural data to generate distorted images
by mimicking underwater optical distortion characteristics.
Subsequently, we prepare the LRD samples by Gaussian
blurring (GB) and bicubic down-sampling (BD). Based on their
relative order, we group the data into three sets: i) Set-U: GB
is followed by BD, ii) Set-F: the order is interchanged with a
0.5 probability, and iii) Set-O: BD is followed by GB; we use
a 7× 7 kernel and a noise level of 20% for the GB.

As Fig. 2b illustrates, we use 2×, 3×, and 4× BD to
generate the LRD samples from the synthetically distorted HR
pairs. Hence, there are nine available training combinations
for SESR. Note that the UFO-120 dataset can also be used
for training underwater SISR (E→Y ), image enhancement
(X→E), or saliency prediction (E→S) models.

(a) A few sample ground truth images and corresponding saliency
maps are shown on the top, and bottom row, respectively.
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(b) Two particular instances are shown: the HR ground truth images
are of size 640×480; their corresponding LR distorted (LRD) images
are of size 320× 240, 214× 160, and 160× 120.

Fig. 2: The UFO-120 dataset facilitates paired training of
2×, 3×, and 4× SESR models; it also contains salient pixel
annotations for all training samples. The combined data is used
for the supervised training of Deep SESR model.

IV. DEEP SESR MODEL

As shown in Figure 3, the major components of our Deep
SESR model are: residual dense blocks (RDBs), a feature
extraction network (FENet), and an auxiliary attention network
(AAN). These components are tied to an end-to-end architec-
ture for the combined SESR learning.

Residual Dense Blocks (RDBs) consist of three sets of
convolutional (conv) layers, each followed by Batch Normal-
ization (BN) [32] and ReLU non-linearity [54]. As Figure 3a
illustrates, the input and output of each layer is concatenated
to subsequent layers. This architecture is inspired by Zhang et
al. [72] who demonstrated that such dense skip connections fa-
cilitate an improved hierarchical feature learning. Each conv
layer learns 64 filters of a given kernel size; their outputs are
then fused by a 1× 1 conv layer for local residual learning.

Feature Extraction Network (FENet) uses RDBs as
building blocks to incorporate two-stage residual-in-residual
learning. As shown in Figure 3b, on the first stage, two parallel
branches use eight RDB blocks each to separately learn 3× 3
and 5 × 5 filters in input image space; these filters are then
concatenated and passed to a common branch for the second
stage of learning. Four RDB blocks with 3×3 filters are used
in the later stage which eventually generates 32 feature maps.
Our motive for such design is to have the capacity to learn
locally dense informative features while still maintaining a
globally shallow architecture to ensure fast feature extraction.

Auxiliary Attention Network (AAN) learns to model vi-
sual attention in the FENet-extracted feature space. As shown
in Figure 3c, two sequential conv layers learn to generate a
single channel output that represents saliency (probabilities)
for each pixel. We show the predicted saliency map as green
intensity values; the black pixels represent background regions.

The Deep SESR learning is guided along the primary
branch by a series of conv and deconv (de-convolutional)
layers. As Figure 3c demonstrates, the enhanced image (LR),
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(c) The end-to-end architecture is shown. FENet-extracted feature
maps are propagated along two branches: i) to AAN for learning
saliency, and ii) to an intermediate convolutional layer for learning en-
hancement. Another convolutional layer and subsequent upsampling
layers learn SESR along the main branch.

Fig. 3: Network architecture and detailed parameter specifica-
tion of the proposed Deep SESR model.

and the SESR image (HR) are generated by separate output
layers at different stages in the network. The enhanced image
is generated from the conv layer that immediately follows
FENet; it is supervised to learn enhancement by dedicated loss
functions applied at the shallow output layer. The enhanced
features are also propagated to another conv layer, followed
by deconv layers for upsampling. The final SESR output is
generated from upsampled features based on the given scale:
2×, 3×, or 4×. Other model parameters, e.g., the number of
filters, kernel sizes, etc., are annotated in Figure 3.

A. Loss Function Formulation

The end-to-end training of Deep SESR is supervised by
seven loss components that address various aspects of learning
the function G : X → S,E, Y . By denoting Ŝ, Ê, Ŷ = G(X)
as the generated output, we formulate the loss terms as follows:

1) Information Loss for saliency prediction is measured
by a standard cross-entropy function [51, 63]. It quantifies
the dissimilarity in pixel intensity distributions between the
generated saliency map (Ŝ) and its ground truth (S). For a
total of Np pixels in Ŝ, it is calculated as

LAAN
Saliency =

1

Np

Np∑
p=1

[
−Sp log Ŝp−(1−Sp) log(1−Ŝp)

]
. (1)

2) Contrast loss (LR) evaluates the hue and luminance
recovery in the enhanced images. The dominating green/blue
hue in distorted underwater images often causes low-contrast
and globally dim foreground pixels. We quantify this loss of
relative strength (i.e., intensity) in foreground pixels in RGB
space by utilizing a differentiable function: Contrast Measure-
ment Index (CMI) [58, 62]. The CMI measures the average
intensity of foreground pixels (FI ) relative to the background
(BI ) for an image I , as CMI(I) = (FI−BI)

(FI+BI)
∝ (FI − BI).

We exploit the saliency map S (or Ŝ) to find the foreground
pixels in E (or Ê), as FE = E � S and FÊ = Ê � Ŝ;
here, � denotes element-wise multiplication. Subsequently, we
compute the contrast loss as

LLR
Contrast =

∣∣∣∣CMI(E)− CMI(Ê)
∣∣∣∣
2
. (2)

An immediate consequence of using LLR
Contrast is that AAN

can directly influence learning enhancement despite being on
a separate branch. Such coupling also provides better training
stability (otherwise AAN tends to converge too early and starts
over-fitting). Moreover, in Figure 4a, we show the distributions
of CMI for training samples of the UFO-120 dataset, which
suggests that the distorted samples’ CMI scores are skewed
to much lower values compared to the ground truth. Hence,
LLR
Contrast forces the CMI distribution to shift toward higher

values for learning contrast enhancement.
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Ground truth sample  I: CMI (I) = 0.27,  |   I| = 82.91 

(c) Image contrast and sharpness properties of a particular sample
compared to its ground truth measurement.

Fig. 4: The lack of contrast and sharpness in LRD samples of
UFO-120 dataset (compared to their ground truth) are shown
in (a) and (b); as seen, distributions for LRD samples are
densely skewed to lower values, whereas the ground truth
distributions span considerably higher values. A qualitative
interpretation of this numeric disparity is illustrated in (c).

3) Color Loss (LR/HR) evaluates global similarity of the
enhanced (Ê) and SESR (Ŷ ) output with respective ground
truth measurements in RGB space. The standard L2 loss terms



are: LLR
2 =

∣∣∣∣E−Ê∣∣∣∣
2
, and LHR

2 =
∣∣∣∣Y −Ŷ ∣∣∣∣

2
. Additionally,

we formulate two perceptual loss functions that are particu-
larly designed for learning underwater image enhancement and
super-resolution. First, we utilize two wavelength-dependent
chrominance terms: Crg = (r − g), and Cyb = 1

2 (r + g)− b,
which are core elements of the Underwater Image Colorfulness
Measure (UICM) [55, 49]. By denoting ∆r, ∆g, and ∆b, as
the per-channel numeric differences between Ê and E, we
formulate the loss as:

LLR
P =

∣∣∣∣4(∆r −∆g)2 + (∆r + ∆g − 2∆b)2
∣∣∣∣
2
. (3)

On the other hand, being inspired by [17, 34], we evaluate the
perceptual similarity at HR as

LHR
P =

∣∣∣∣ (512 + R̄)

256
∆R2+4∆G2+

(767− R̄)

256
∆B2

∣∣∣∣
2
. (4)

Here, R̄ = (RY +RŶ )/2, whereas ∆R, ∆G, and ∆B are the
per-channel disparities between Ŷ and Y . Finally, we adopt
the color loss terms for enhancement and SESR as

LLR
Color = 0.25 LLR

P + 0.75 LLR
2 , and (5)

LHR
Color = 0.25 LHR

P + 0.75 LHR
2 , respectively. (6)

4) Content loss (LR/HR) forces the generator to restore a
similar feature content as the ground truth in terms of high-
level representation. Such feature preservation has been found
to be very effective for image enhancement, style transfer,
and SISR problems [31, 34]; as suggested in [38], we define
the image content function ΦV GG(·) as high-level features
extracted by the last conv layer of a pre-trained VGG-19
network. Then, we formulate the content loss for enhancement
and SESR as

LLR
Content =

∣∣∣∣ΦV GG(E)− ΦV GG(Ê)
∣∣∣∣
2
, and (7)

LHR
Content =

∣∣∣∣ΦV GG(Y )− ΦV GG(Ŷ )
∣∣∣∣
2
, respectively. (8)

5) Sharpness loss (HR) measures the blurriness recov-
ery in SESR output by exploiting local image gradients.
The literature offers several solutions for evaluating image
sharpness based on norm/histogram of gradients or frequency-
domain analysis. In particular, the notions of Just Noticable
Blur (JNB) [22] and Perceptual Sharpness Index (PSI) [21]
are widely used; they apply non-linear transformation and
thresholding on local contrast or gradient-based features to
quantify perceived blurriness based on the characteristics of
human visual system. However, we found better results and nu-
meric stability by using the norm of image gradients directly;
specifically, we use the standard 3× 3 Sobel operator [24] for
computing spatial gradient ∇I =

√
I2x + I2y for an image I .

Subsequently, we formulate the sharpness loss for SESR as

LHR
Sharpness =

∣∣∣∣ |∇Y |2 − |∇Ŷ |2 ∣∣∣∣
1
. (9)

In Figure 4b, we present a statistical validity of LLR
sharpness

as a loss component; also, edge gradient features for a par-
ticular sample are provided in Figure 4c. As shown, numeric
disparities for the norm of gradients between distorted images
and their HR ground truth are significant, which we quantify
by LLR

sharpness to encourage sharper image generation.

B. End-to-end Training Objective

We use a linear combination of the above-mentioned loss
components to formulate the unified objective function as

G∗ = arg min
G

{
λAAN
s LAAN

Saliency + LLR
SESR + LHR

SESR

}
; (10)

where LLR
SESR and LHR

SESR are expressed by

LLR
SESR = λLR

c LLR
Color + λLR

f LLR
Content + λLR

t LLR
Contrast, and

LHR
SESR = λHR

c LHR
Color + λHR

f LHR
Content + λHR

g LHR
Sharpness.

Here, λ�� symbols are scaling factors that represent the
contributions of respective loss components; their values are
empirically tuned as hyper-parameters.

V. EXPERIMENTAL RESULTS

A. Implementation Details

As mentioned in Section III-B, Deep SESR training is
supervised by paired data of the form ({X}, {S,E, Y }). We
use TensorFlow libraries [1] to implement the optimization
pipeline (of Eq. 10); a Linux host with two NvidiaTM GTX
1080 graphics cards are used for training. Adam optimizer [41]
is used for the global iterative learning with a rate of 10−4

and a momentum of 0.5; the network converges within 23-
26 epochs of training in this setup (with a batch-size of 2).
In the following sections, we present the experimental results
based on qualitative analysis, quantitative evaluations, and
ablation studies. Since there are no existing SESR methods, we
compare the Deep SESR performance separately with SOTA
image enhancement and super-resolution models. Note that, all
models in comparison are trained on the same train-validation
splits (of respective datasets) by following their recommended
parameter settings. Also, for datasets other than UFO-120, the
AAN (and LLR

Contrast) is not used by Deep SESR as their
ground truth saliency maps are not available.

B. Evaluation: Enhancement

We first qualitatively analyze the Deep SESR-generated
images in terms of color, contrast, and sharpness. As Fig. 5
illustrates, the enhanced images are perceptually similar to the
respective ground truth. Specifically, the greenish underwater
hue is rectified, true pixel colors are mostly restored, and the
global image sharpness is recovered. Moreover, the generated
saliency map suggests that it focused on the right foreground
regions for contrast improvement. We further demonstrate
the contributions of each loss-term: LLR

Contrast, LLR
P , LLR

Color,
and LLR

Content for learning the enhancement. We observe that
the color rendition gets impaired without LLR

P and LLR
Color,

whereas, LLR
Content contributes to learning finer texture details.

We also notice a considerably low-contrast image generation
without LLR

Contrast, which validates the utility of saliency-
driven contrast evaluation via CMI (see Section IV-A).

Next, we compare the perceptual image enhancement per-
formance of Deep SESR with the following models: (i) relative
global histogram stretching (RGHS) [29], (ii) unsupervised
color correction (UCM) [33], (iii) multi-scale fusion (MS-
Fusion) [4], (iv) multi-scale Retinex (MS-Retinex) [71], (v)
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Fig. 5: Each row demonstrates perceptual enhancement and saliency prediction by Deep SESR on respective LRD input images;
the corresponding results of an ablation experiment shows contributions of various loss-terms in the learning.

TABLE I: Quantitative performance comparison for enhancement: scores are shown as mean±
√

variance; the first and second
best scores (in each row) are colored red, and blue, respectively.

Dataset RGHS UCM MS-Fusion MS-Retinex Water-Net UGAN Fusion-GAN FUnIE-GAN Deep SESR

P
SN

R UFO-120 20.05 ± 3.1 20.99 ± 2.2 21.32 ± 3.3 21.69 ± 3.6 22.46 ± 1.9 23.45 ± 3.1 24.07 ± 2.1 25.15 ± 2.3 27.15 ± 3.2
EUVP 20.12 ± 2.9 20.55 ± 1.8 19.85 ± 2.4 21.27 ± 3.1 20.14 ± 2.3 23.67 ± 1.5 23.77 ± 2.4 26.78 ± 1.1 25.25 ± 2.1
UImNet 19.98 ± 1.8 20.48 ± 2.2 19.59 ± 3.2 22.63 ± 2.5 21.02 ± 1.6 23.88 ± 2.1 23.12 ± 1.9 24.68 ± 2.4 25.52 ± 2.7

SS
IM

UFO-120 0.75 ± 0.06 0.78 ± 0.07 0.79 ± 0.09 0.75 ± 0.10 0.79 ± 0.05 0.80 ± 0.08 0.82 ± 0.07 0.82 ± 0.08 0.84 ± 0.03
EUVP 0.69 ± 0.11 0.73 ± 0.14 0.70 ± 0.05 0.69 ± 0.15 0.68 ± 0.18 0.67 ± 0.11 0.68 ± 0.05 0.86 ± 0.05 0.75 ± 0.07
UImNet 0.61 ± 0.08 0.67 ± 0.06 0.64 ± 0.11 0.74 ± 0.04 0.71 ± 0.07 0.79 ± 0.08 0.75 ± 0.07 0.77 ± 0.06 0.81 ± 0.05

U
IQ

M UFO-120 2.36 ± 0.33 2.41 ± 0.53 2.76 ± 0.45 2.69 ± 0.59 2.83 ± 0.48 3.04 ± 0.28 2.98 ± 0.28 3.09 ± 0.51 3.13 ± 0.45
EUVP 2.45 ± 0.46 2.48 ± 0.77 2.51 ± 0.36 2.48 ± 0.09 2.55 ± 0.06 2.70 ± 0.31 2.58 ± 0.07 2.95 ± 0.38 2.98 ± 0.28
UImNet 2.32 ± 0.48 2.38 ± 0.42 2.79 ± 0.55 2.84 ± 0.37 2.92 ± 0.35 3.32 ± 0.55 3.19 ± 0.27 3.23 ± 0.32 3.26 ± 0.36

Input FUnIE-GANUCM UGAN Deep SESRRGHS Fusion-GANMS-Fusion MS-Retinex Water-Net

Fig. 6: Qualitative comparison of Deep SESR-enhanced images with SOTA models: RGHS [29], UCM [33], MS-Fusion [4],
MS-Retinex [71], Water-Net [43], UGAN [20], Fusion-GAN [44], and FUnIE-GAN [35].

Water-Net [43], (vi) UGAN [20], (vii) Fusion-GAN [44], and
(viii) FUnIE-GAN [35]. The first four are physics-based mod-
els and the rest are learning-based models; they provide SOTA
performance for underwater image enhancement in RGB space
(without requiring scene depth or optical waterbody measures).
Their performance is quantitatively evaluated on common
test sets of each dataset based on standard metrics [35, 49]:
peak signal-to-noise ratio (PSNR) [28], structural similarity
measure (SSIM) [65], and underwater image quality measure
(UIQM) [55]. The PSNR and SSIM quantify reconstruction
quality and structural similarity of generated images with
respect to ground truth, whereas the UIQM evaluates image
qualities based on colorfulness, sharpness, and contrast. The
evaluation is summarized in Table I; moreover, a few qualita-
tive comparisons are shown in Fig. 6.

As Fig. 6 demonstrates, UCM and MS-Retinex often suffer

from over-saturation, whereas RGBH, MS-Fusion, and Water-
Net fall short in hue rectification. In comparison, the color
restoration and contrast enhancement of UGAN, Fusion-GAN,
and FUnIE-GAN are generally better. In addition to achieving
comparable color recovery and hue rectification, the Deep
SESR-generated images are considerably sharper. Since the
boost in performance is rather significant for UFO-120 dataset
(suggested by the results of Table I), it is likely that the addi-
tional knowledge about foreground pixels through LLR

Contrast

helps in this regard. Deep SESR achieves competitive and
often better performance in terms of PSNR and SSIM as
well. In particular, it generally attains better UIQM scores;
we postulate that LLR

P contributes to this enhancement, as it
is designed to improve the UICM (see Section IV-A). Further
ablation investigations reveal a 9.47% drop in UIQM values
without using LLR

P in the learning objective.



TABLE II: Quantitative performance comparison for super-resolution: scores are shown as mean ±
√

variance; the first and
second best scores (in each column per-dataset) are colored red, and blue, respectively. (�Does not support 3× scale)

PSNR SSIM UIQM
Model 2× 3× 4× 2× 3× 4× 2× 3× 4×

U
FO

-1
20

SRCNN 24.75 ± 3.7 22.22 ± 3.9 19.05 ± 2.3 .72 ± .07 .65 ± .09 .56 ± .12 2.39 ± 0.35 2.24 ± 0.17 2.02 ± 0.47
SRResNet 25.23 ± 4.1 23.85 ± 2.8 19.13 ± 2.4 .74 ± .08 .68 ± .07 .56 ± .05 2.42 ± 0.37 2.18 ± 0.26 2.09 ± 0.30
SRGAN 26.11 ± 3.9 23.87 ± 4.2 21.08 ± 2.3 .75 ± .06 .70 ± .05 .58 ± .09 2.44 ± 0.28 2.39 ± 0.25 2.26 ± 0.17
RSRGAN 25.25 ± 4.3 23.15 ± 4.1 20.25 ± 2.4 .79 ± .08 .71 ± .08 .58 ± .04 2.41 ± 0.29 2.38 ± 0.31 2.27 ± 0.22

SRDRM 26.23 ± 4.4 � 22.26 ± 2.5 .79 ± .09 � .59 ± .05 2.45 ± 0.43 � 2.28 ± 0.35

SRDRM-GAN 26.26 ± 4.3 � 22.21 ± 2.4 .78 ± .08 � .58 ± .13 2.42 ± 0.30 � 2.27 ± 0.44
Deep SESR 28.57 ± 3.5 26.86 ± 4.1 24.75 ± 2.8 .85 ± .09 .75 ± .06 .66 ± .05 3.09 ± 0.41 2.87 ± 0.39 2.55 ± 0.35

U
SR

-2
48

SRCNN 24.88 ± 4.4 24.01 ± 3.5 23.75 ± 3.2 .73 ± .08 .70 ± .10 .69 ± .12 2.38 ± 0.38 2.31 ± 0.29 2.21 ± 0.68
SRResNet 24.96 ± 3.7 23.39 ± 5.2 22.21 ± 3.6 .74 ± .07 .71 ± .11 .70 ± .08 2.42 ± 0.48 2.33 ± 0.58 2.27 ± 0.70
SRGAN 25.76 ± 3.5 25.02 ± 3.9 24.36 ± 4.3 .77 ± .06 .75 ± .05 .69 ± .13 2.53 ± 0.42 2.65 ± 0.44 2.75 ± 0.66
RSRGAN 25.11 ± 2.9 24.96 ± 4.7 24.15 ± 2.9 .75 ± .06 .72 ± .09 .71 ± .09 2.42 ± 0.35 2.49 ± 0.56 2.55 ± 0.47

SRDRM 26.16 ± 3.5 � 24.96 ± 3.3 .77 ± .10 � .72 ± .11 2.47 ± 0.69 � 2.35 ± 0.51

SRDRM-GAN 26.77 ± 4.1 � 24.77 ± 3.4 .82 ± .07 � .70 ± .12 2.87 ± 0.55 � 2.81 ± 0.56
Deep SESR 27.03 ± 2.9 25.92 ± 3.5 24.59 ± 3.8 .88 ± .05 .76 ± .05 .71 ± .08 3.15 ± 0.44 3.04 ± 0.37 2.96 ± 0.28

RSRGANSRCNN SRDRM SRDRM-GAN
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SRGAN
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Fig. 7: Qualitative comparison for SISR performance of Deep SESR with existing solutions and SOTA models: SRCNN [18],
SRResNet [42], SRGAN [42], RSRGAN [13], SRDRM [34], and SRDRM-GAN [34].

C. Evaluation: Super-Resolution

We follow similar experimental procedures for evaluating
the super-resolution performance of Deep SESR. We consider
the existing underwater SISR models named RSRGAN [13],
SRDRM [34], and SRDRM-GAN [34] for performance com-
parison. We also include the standard (terrestrial) SISR models
named SRCNN [18], SRResNet [42], and SRGAN [42] in the
evaluation as benchmarks. We compare their 2×, 3×, and 4×
SISR performance on two large-scale datasets: UFO-120, and
USR-248. The results are presented in Table II, and a few
samples are shown in Fig. 7. Note that, the test images of
USR-248 dataset are left undistorted for a fair comparison.

TABLE III: Deep SESR performance on the UFO-120 test
dataset; set-wise mean scores are shown for 2×/3×/4× SESR.

PSNR SSIM UIQM
Set-U 28.55/26.77/24.25 0.86/0.75/0.66 3.07/2.89/2.54
Set-F 27.93/26.33/24.87 0.85/0.73/0.63 3.10/2.84/2.52
Set-O 28.95/27.15/25.45 0.84/0.79/0.68 3.09/2.86/2.58

As Table II demonstrates, Deep SESR outperforms other
models in comparison by considerable margins on UIQM. This
is due to the fact that it enhances perceptual image qualities
in addition to spatial resolution. As shown in Fig. 7, Deep
SESR generates much sharper and better quality HR images
from both distorted and undistorted LR input patches, which
contributes to its competitive PSNR and SSIM scores on the

SRDRM

Input

Deep SESR RSRGAN SRDRM

Input

Deep SESR RSRGAN

Fig. 8: Color and texture recovery of Deep SESR: comparison
shown with two best-performing SISR models (as of Table II).

USR-248 dataset. Fig. 8 further demonstrates that it does not
introduce noise by unnecessary over-correction, which is a
prevalent limitation of existing solutions. Lastly, we observe
similar performance trends for all three types of spatial down-
sampling, i.e., for Set-U, Set-F, and Set-O (see Section III-B);
we present the relative quantitative scores in Table III.

VI. GENERALIZATION PERFORMANCE

Due to the ill-posed nature of modeling underwater image
distortions without scene-depth and optical waterbody mea-
surements, learning-based solutions often fail to generalize
beyond supervised data. In addition to the already-presented
results, we demonstrate the color and texture recovery of Deep
SESR on unseen natural images in Fig. 9. As seen in Fig. 9a,
Deep SESR-enhanced pixel intensities are perceptually similar
to a comprehensive physics-based approximation [7]. Addi-
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(a) Comparison with a physics-based color restoration method [7]
that uses spectral waterbody measures and haze-lines prior.
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(b) Performance for 2×, 3×, and 4× SESR on terrestrial images.

Fig. 9: Demonstration of generalization performance of Deep
SESR model (trained on UFO-120 dataset).

tionally, it generates the respective HR images and saliency
maps, and still offers more than 10 times faster run-time.

Deep SESR also provides reasonable performance on terres-
trial images. As demonstrated in Fig. 9b, the color and texture
enhancement of unseen objects (e.g., grass, face, clothing, etc.)
are perceptually coherent. Moreover, as Table IV indicates, its
performance in terms of sharpness and contrast recovery for
2×, 3×, and 4× SISR are competitive with SOTA benchmark
results [46, 72]. Note that, much-improved performance can
be achieved by further tuning and training on terrestrial
datasets. Nevertheless, these results validate that the proposed
architecture has the capacity to learn a generalizable solution
of the underlying SESR problem.

TABLE IV: Deep SESR performance on terrestrial test data;
blue (and boldfaced) scores represent 3% (and 1%) margins
with SOTA benchmark results for 2×/3×/4× SISR [46, 72].

PSNR SSIM
Set5 [8] 29.87 / 28.77 / 26.14 0.925 / 0.908 / 0.855
Set14 [69] 28.78 / 27.34 / 26.89 0.914 / 0.801 / 0.756
Sun80 [60] 25.73 / 23.18 / 21.05 0.802 / 0.755 / 0.704

VII. OPERATIONAL FEASIBILITY & DESIGN CHOICES

Deep SESR’s on-board memory requirement is only 10 MB,
and it offers a run-time of 129 milliseconds (ms) per-frame,
i.e., 7.75 frames-per-second (FPS) on a single-board computer:
NvidiaTMAGX Xavier. As shown in Table V, it provides much
faster speeds for the following design choices:

1) Learning Ê and Ŝ on separate branches facilitates a
faster run-time when HR perception is not required. Specifi-
cally, we can decouple the X → S, E branches from the frozen
model, which operates at 10.02 FPS (22% faster) to perform
enhancement and saliency prediction. As shown in Fig. 10,

the predicted saliency map can be exploited for automatic RoI
selection by using density gradient estimation techniques such
as mean-shift [16]. The SESR output corresponding to the RoI
can be generated with an additional 25 ms of processing time.

TABLE V: Run-time comparison for various design choices
of Deep SESR (on NvidiaTMAGX Xavier).

X → S, E X → S, E , Y
With FENet-1d 87.3 ms (11.45 FPS) 113 ms (8.85 FPS)
With FENet-2d 99.8 ms (10.02 FPS) 129 ms (7.75 FPS)
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Fig. 10: Demonstration of automatic RoI selection based on
local intensity values in the saliency map; Deep SESR can be
applied again on the enhanced RoI for a detailed perception.

2) FENet-1d and FENet-2d are two design choices for the
FENet (see Fig. 3b); FENet-2d is the default architecture that
learns 3×3 and 5×5 filters in two parallel branches, whereas,
FENet-1d refers to using a single branch of 3 × 3 filters. As
shown in Table V, faster feature extraction by FENet-1d facil-
itates a 12.5% speed-up for Deep SESR. However, we observe
a slight drop in performance, e.g., 1.8%/1.5%/1.8% lower
scores for PSNR/SSIM/UIQM on UFO-120 dataset. Neverthe-
less, the generated images are qualitatively indistinguishable
and the trade-off is admissible in practical applications.

Overall, Deep SESR offers use-case-specific design choices
and ensures computational efficiency with robust SESR per-
formance. These features make it suitable for near real-time
robotic deployments; further demonstration is provided in the
supplementary material (see https://youtu.be/wEkTu2CPW-g).

VIII. CONCLUSION

In this paper, we introduce the problem of simultaneous
enhancement and super-resolution (SESR) and present an effi-
cient learning-based solution for underwater imagery. The pro-
posed generative model, named Deep SESR, can learn 2×−4×
SESR and saliency prediction on a shared feature space. We
also present its detailed network architecture, associated loss
functions, and end-to-end training pipeline. Additionally, we
contribute over 1500 annotated samples to facilitate large-
scale SESR training on the UFO-120 dataset. We perform
a series of qualitative and quantitative experiments, which
suggest that Deep SESR: i) provides SOTA performance
on underwater image enhancement and super-resolution, ii)
exhibits significantly better generalization performance on nat-
ural images than existing solutions, iii) provides competitive
results on terrestrial images, and iv) achieves fast inference on
single-board platforms. The inspiring performance, computa-
tional efficiency, and availability of application-specific design
choices make Deep SESR suitable for near real-time use by
visually-guided underwater robots. In the future, we seek to
incorporate 6×−8× spatial upscaling capability into the model
with reasonable performance trade-offs.

https://youtu.be/wEkTu2CPW-g
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