
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Controlling Contact-Rich Manipulation Under

Partial Observability

Florian Wirnshofer∗, Philipp S. Schmitt∗, Georg v. Wichert∗, and Wolfram Burgard†

∗Siemens Corporate Technology, Siemens AG †Department of Computer Science, University of Freiburg, Germany

Abstract—In this paper, we present an integrated, model-based
system for state estimation and control in dynamic manipulation
tasks with partial observability. We track a belief over the
system state using a particle filter from which we extract a
Gaussian Mixture Model (GMM). This compressed representation
of the belief is used to automatically create a discrete set of
goal-directed motion controllers. A reinforcement learning agent
then switches between these motion controllers in real-time to
accomplish the manipulation task. The proposed system closes the
loop from joint sensor feedback to high-frequency, acceleration-
limited position commands, thus eliminating the need for pre-
and post-processing. We evaluate our approach with respect
to five distinct manipulation tasks from the domains of active
localization, grasping under uncertainty, assembly, and non-
prehensile object manipulation. Extensive simulations demon-
strate that the hierarchical policy actively exploits the uncertainty
information encoded in the compressed belief. Finally, we validate
the proposed method on a real-world robot.

I. INTRODUCTION

In industrial applications, robotic systems are used for

various tasks that involve object manipulation. Examples in-

clude material handling, logistics, and assembly. However,

industrial working environments are highly structured, e. g.,

using fixtures or part feeders. In less structured environments

manipulation still poses a considerable challenge. The robot

must keep track of its current knowledge about the environ-

ment and obtain new information from sensors. Perceiving the

object with external sensors such as cameras is challenging

since a direct view on all relevant aspects of the scene may be

hindered, especially during direct interaction with the object.

In such cases, the robot must make use of internal sensory

feedback available in contact.

Consider the example depicted in Figure 1, where a “blind”

robot must push an object into a goal region. The robot is

only given a coarse prior on the object’s initial position. In

such a setting, the robot must consider the risk that comes

with performing actions. A rash action based on a coarse prior

could cause the object to be pushed out of reach or even off

the table. On the other hand, it is important that the robot

performs its task quickly and purposefully. The robot should be

equipped with the ability to naturally balance efforts between

localization (exploration) and more goal-directed behaviors

(exploitation) and thus base its course of action on the present

degree of uncertainty. This type of manipulation problem
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Fig. 1. A robot must push an object into a goal region. No visual feedback
is available and the robot is only given a coarse multi-modal prior bt=0 about
the object location qo. To achieve the task at hand the robot must track and
improve the estimate using measurements available in contact. The robot must
balance between information gathering and goal-directed actions. To prevent
the object from being pushed off the table, the robot must consider the risk
of actions under the present degree of uncertainty.

can be modeled as a Partially Observable Markov Decision

Process (POMDP) with the following properties:

1) High-dimensional state and action space: Robot, envi-

ronment, and the object interact through forces in various

ways, e. g., through grasping or non-prehensile pushing.

The robot may knock over the object, push it out of its

reachable workspace, or even off the table. To account

for this rich scope of possible interactions and the various

(potentially unrecoverable) outcomes, one must consider

the high-dimensional, continuous state space including po-

sitions and velocities of both robot and object.

2) Nonlinear dynamics and multi-modal distributions:

Contact dynamics are highly nonlinear, exhibit abrupt dis-

continuities, and tend to quickly cause the formation of

multi-modal distributions across the system state.

3) Real-time and real-world constraints: Robots have re-

stricted workspaces, configuration-dependent dynamical

limits, and require high-frequency actuation signals. Object

manipulation involves dynamic transitions that require real-

time tracking and instantaneous reactions.

High-dimensional continuous state and action spaces, complex

dynamics, and real-time requirements render this POMDP,

i. e., the problem of optimal action selection for contact-rich

manipulation under partial observability, a major challenge.



The contribution of this work is an integrated system that

solves challenging real-world manipulation problems given

coarse priors on the initial state and with only joint-encoder

readings as feedback. We propose a hierarchical policy, where

an upper, long-term decision layer switches between high-

frequency, goal-directed motion controllers based on a com-

pressed representation of the current belief. Our system con-

siders the full state space of objects and takes into account the

robot’s dynamic and kinematic limits. We evaluate the control

framework in simulation on five different manipulation tasks

and on a real-world robot.

II. RELATED WORK

In the following, we review existing approaches to solving

a POMDP from the domains of sampling-based motion plan-

ning (Section II-A) and control-related approximate iterative

techniques (Section II-B). Some of these algorithms have been

used and extended in approaches directly targeting contact-rich

manipulation (Section II-C).

A. Motion Planning Under Uncertainty

To account for actuation and sensing uncertainties in

dynamical systems with continuous state, action, and

observation spaces, the works of Prentice and Roy [31],

Van Den Berg et al. [38], Agha-Mohammadi et al. [2], and

Bry and Roy [5] extend sampling-based roadmap- and tree-

planners to beliefs (distributions over states). Platt et al. [28]

and Van Den Berg et al. [39] use iterative trajectory

optimization to obtain locally optimal control policies.

To efficiently handle the POMDP planning problem, these

methods assume an unimodal Gaussian belief. Unfortunately,

the dynamics in contact quickly form multi-modal beliefs.

Hauser [11] and Platt et al. [29] remove this assumption

by using a particle-based belief representation and online-

replanning. Using replanning schemes in our application

context is challenging, since non-prehensile manipulation

involves computationally demanding dynamic models yet

requires real-time, reactive behaviors.

B. Approximate POMDP Solvers

A substantial share of work addresses the POMDP prob-

lem using approximate, point-based value iteration. Estab-

lished solvers including the works of Pineau et al. [27],

Porta et al. [30], Kurniawati et al. [22], or Bai et al. [4]

approximate policies for a set of probable scenarios offline and

use these policies during execution. However, these methods

require an adequate discretization of state, action, and obser-

vation space and fall victim to the curse of dimensionality

on typical problems of contact-rich manipulation. The online

solvers of Kurniawati and Yadav [21], Seiler et al. [34],

and Chen et al. [6] address continuous POMDPs. Recent

discrete online-solvers [10] have shown to handle large state

and observation spaces. However, these methods perform a

substantial number of policy-rollouts during runtime, which,

given the computation-intense contact dynamics, prohibits fast,

reactive behaviors. To obtain an offline policy for a contin-

uous POMDP, Thrun [35] uses sampled off-policy rollouts

of a simulated particle filter. We combine this methodology

with belief augmentation [32] and use a deep neural net-

work to efficiently approximate the Q-function [42]. Other

works including Egorov [8], Hausknecht and Stone [12], and

Le et al. [23] have made use of deep neural networks to tackle

partial observability. However, these works are tailored to

visual feedback and noise in the form of image flickering or

partial image occlusions.

C. Action Generation for Manipulation Under Uncertainty

Kaelbling and Lozano-Pérez [16] and Phiquepal and Tous-

saint [26] address combined task and motion planning under

partial observability using a high-level tree search. They for-

malize actions on an abstract level (e. g., pick, look, place) and

branch based on symbolic observations. Instead, our method

directly processes the immediate joint-encoder feedback and,

without additional post-processing, provides high-frequency

joint-servo commands.

Hsiao et al. [14] introduces a POMDP framework for grasp-

ing static objects. Notably, the works of Koval et al. [20, 19]

provide near-optimal POMDP policies for non-prehensile

pushing tasks. However, the above methods require an a priori

state space discretization and assume a quasistatic interaction

model. Under quasistaticity, objects stop moving as soon as

the robot halts or breaks contact with the object. In contrast,

the method proposed in this work simulates the full dynamics

of both robot and object. As a consequence, the object can tip

over, roll off, or even drop off a table. Our method can thus

implicitly acquire measures to avoid risky maneuvers that lead

to such potentially unrecoverable outcomes.

III. PROBLEM FORMULATION & BACKGROUND

In the following, we give a brief overview on the POMDP

(Section III-A) and place it in context of contact-rich manip-

ulation (Section III-B).

A. POMDP

We consider a POMDP with a continuous state x ∈ X ,

actions u, and continuous, noisy observations z. On execut-

ing an action, the robot experiences a reward r. In solving

POMDPs, we aim to find a policy Π that maximizes the

expected cumulative reward. We refer to specific points in time

using the subscripts t and t′ = t+ 1.

The state transition density p (xt′ | xt, ut→t′) accounts for

the stochastic nature of motion in unstructured environments.

Specifically, p (xt′ | xt, ut→t′) describes the probability of

ending up in xt′ , when starting in xt and applying action ut→t′

between t and t′. The probability of subsequently measur-

ing zt′ is given by the measurement density p (zt′ | xt′).
Bayesian Belief Update: Given its recorded history of

actions and observations, the robot can track its current belief

about the system state

bt = p(xt | u0→1, . . . , ut−1→t, z1, z2, . . . , zt

history

).
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Fig. 2. Manipulation under uncertainty through Bayes filter belief updates
(estimation) and Belief MDP decision-making.

To avoid the treatment of a possibly unbounded history (es-

pecially in the context of learning a mapping from belief to

action), it is common practice to draw on the recursive belief

update of a Bayes filter

b̂t′ =

∫

X

bt p (xt′ | xt, ut→t′) dxt

bt′ = η p (zt′ | xt′) b̂t′ .

(1)

Here, η is a normalizer that ensures
∫
X
b dx = 1. In doing

so, we can break our initial problem of decision-making under

uncertainty into two parts: recursive state estimation (i. e.,

tracking the belief) and executing a learned Belief MDP policy,

which maps the current belief bt to the next action ut→t′ . Refer

to Figure 2 for a schematic overview of this decision-making

procedure.

Belief MDP: Starting from an initial belief b0, the funda-

mental goal now lies in finding a belief MDP policy Π(bt)
that maximizes the cumulative expected reward

Rπ(bt) = E

[
∞∑

τ=0

γτ rt+τ | ut+τ→t′+τ = Π(bt+τ )

]
,

with discount factor γ ∈ [0, 1).

B. POMDP for Contact-Rich Manipulation

In the following, we put the previously established POMDP

framework into context with contact-rich manipulation. The

approach to modeling contact-rich manipulation under uncer-

tainty is based on our previous work [43]. The typical setting

considered within the present work consists of a robot and a

single object with known geometry and dynamics. An example

of such a system is depicted in Figure 1. Here, a robot has

to move an object to a desired location, despite being given

only a coarse prior on where the object initially rests. For the

remainder of this work, we abbreviate all robot- and object-

related variables with subscript (·)r and (·)o, respectively.

Furthermore, we consider system variables to be stacked vec-

tors of robot and object variables, e. g., the system configura-

tion q = [qr, qo]
⊤

contains the robot’s configuration qr ∈ R
nr

followed by the object configuration qo ∈ SE (3).

State, Action, & Measurement: In contact-rich manipulation

tasks, the system state at time t is given as xt = (q, q̇)t, i. e.,

the system configuration q and velocities q̇. As feedback zt,
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∫
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∫
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Fig. 3. Combined model of contact dynamics and compliance controller.
The system input is given as a sequence of acceleration-bounded set-points
(qd

r , q̇
d
r , q̈

d
r ). The compliance controller allows to specify inputs on the level

of positions while ensuring physically plausible and safe interaction under
uncertainty.

we only consider noisy measurements of the robot’s joint

position qr. The corresponding measurement model is

p (zt′ | xt′) = N (qr t′ , Σenc) , (2)

where Σenc denotes the assumed measurement variance of the

axis position encoders. Note that this choice of measurement

model does not rely on any object related quantities.

Robots are typically commanded via joint trajectories.

Hence, we assume the inputs ut→t′ to be an acceleration-

bounded sequence of set-points (qd
r , q̇

d
r , q̈

d
r ). To ensure a

safe interaction between the robot and its (potentially un-

observed) environment we generate the immediate robot

torques τ r ∈ R
nr by means of a stable compliance controller

as shown in Figure 3. Once the robot enters contact with the

environment, the compliance controller exerts torques

τ r = C
(
qr, q̇r, q

d
r , q̇

d
r , q̈

d
r

)
, (3)

based on the deviation of the current robot position/velocity

from the desired reference point (qd
r , q̇

d
r , q̈

d
r ). The controller

typically imposes a spring-damper alike behavior. When no

interaction occurs, the robot precisely tracks the reference.

Motion Model: Given the current state xt and an input ut→t′ ,

we can compute the state xt′ through numerical integration of

the underlying contact-based forward dynamics

q̈ = fdyn (q, q̇, τu)

= M (q)
−1

(τu + τ c − c (q, q̇)− g (q)) .
(4)

Here, q̈ ∈Rnq with nq = nr + 6 denotes the acceleration of

the system and M ∈ R
nq×nq is the mass matrix. Vectors

c ∈ R
nq and g ∈ R

nq are the Coriolis and gravitational

forces, respectively. Vector τ c ∈ R
nq summarizes all effects

arising from contact. We denote the vector of input torques

as τu = [τ r, τ o]
⊤

, where again, the robot torques τ r are

generated by means of a compliance controller (3) and a

commanded reference point (qd
r , q̇

d
r , q̈

d
r ) =̂ut→t′ .

This model of dynamics itself is deterministic. To account

for both random behavior and model errors, we require a

probabilistic model of motion.

As motion model we propagate the state according to the

compliance-interfaced contact dynamics model of Figure 3. To
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Fig. 4. Integrated system for manipulation under uncertainty. A particle filter for contact-rich manipulation tracks the current belief. The set of particles
is compressed to a GMM, which then serves as an input to a hierarchical policy. The upper decision layer acts as situation classifier. Based on the current
belief, i. e., the present degree of uncertainty, the upper layer selects a high-frequency local motion controller. The lower layer, that is, a set of goal-directed
local motion controllers, provides the high-frequency, acceleration- and velocity-bounded reference to the robot’s compliance controller.

systematically add uncertainty to the model without violating

physical consistency, we add force noise to the object through

the object torques τ o ∈ R
6. We generate these random

forces acting on the object according to an Ornstein-Uhlenbeck

stochastic process [37]. For further details on the motion

model, we refer to [43].

IV. CONTROLLING MANIPULATION UNDER UNCERTAINTY

In order to systematically solve the POMDP of the previous

section we need two main components: an approximation

to a Bayes filter to track the current belief bt and a pol-

icy ut→t′ = Π(bt). In this work we focus entirely on the

policy Π.

Due to the nonlinearity of contact dynamics, we choose

to approximate the Bayes filter using a particle filter. We

use the particle filter introduced in [43] to obtain a high-

frequency (200 Hz) estimate of the current belief. The resulting

problem is now to map the particle belief onto an executable

robot command in real-time that efficiently solves the un-

derlying manipulation task. We address this problem with a

hierarchical approach.

In a first step, we compress the high-dimensional input

to our policy, i. e., the particle set, into a lower-dimensional

representation of the belief by fitting a Gaussian Mixture

Model (GMM) into the distribution. In a second step, we derive

a set of Cartesian motion controllers from this mixture model

that are goal-directed with respect to the manipulation task.

Given this compressed belief and set of motion controllers,

the manipulation task is reformulated as a switching control

problem. In this problem, a high-level controller switches

at a low control frequency between high-frequency motion

controllers.

The low-frequency upper layer can be viewed as situation

classifier, taking into account the present uncertainty. The

high-frequency controllers enable locally reactive behaviors

and provide the reference command for the compliance con-

trolled robot. The switching control problem is then solved via

reinforcement learning.

A. Belief Compression

The filter’s belief estimate is represented as a set of

NP weighted ([i]w) particles. Unfortunately, this particle

set bt ≈ Xt =
{〈

[i]xt,
[i]wt

〉 ∣∣ i = 1, . . . , NP

}
, forms a high-

dimensional input with NP dim(xt) (' 10 000) entries. To

obtain a lower-dimensional statistic of this input that is also

independent of the number of particles, we compress the

particle belief using a GMM over configurations:

bt ≈
NG∑

i=1

hiN (q t; µi, Σi) .

Here, each of the NG modes is parameterized by means of a

heft hi, a mean µi = [µr,i, µo,i]
⊤

, and a covariance Σi. The

overall compressed belief is therefore given as

b̃ = 〈h1, µ1,Σ1, . . . , hNG
, µNG

,ΣNG
〉 . (5)

This lower-dimensional representation is useful for two

reasons: it is a suitable input to a neural network that forms the

high-level controller of our approach and it is the basis for a

task-oriented synthesis of the low-level controllers introduced

in the following section.

B. Low-Level, Goal-Directed Motion Controllers

Imagine the task of pushing an object on a table from the

left side to the right. On an abstract level a manipulator might

move above the object to avoid collisions, then move to the

left-hand side of the object and push it to the right. The low-

level controllers of this section are intended to provide such

goal-directed behaviors to our system.

As shown in Figure 5, we define a set of Cartesian relative

positions between the end-effector of the manipulator and the

object. For each object mode µo,i ∈ SE (3) of our GMM

representation of the belief, we determine n Cartesian end-

effector targets tj ∈ SE (3). This results in NC = nNG

Cartesian goals. To actually steer the end-effector towards

such a Cartesian goal, we automatically construct NC con-

trollers πk(b̃) using an acceleration-resolved variant [33] of

the eTaSL/eTC control framework [1]. This works as follows:
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Fig. 5. The goal-directed motion controllers act based on the current
GMM. Each motion controller represents an attractor for the end-effector. The
attractor is encoded as transform tj ∈ SE (3) relative to one of the mixture
modes. The controller imposes zero-convergent critically damped dynamics
on the deviation e between end-effector and local target.

The deviation between the current end-effector position and

target µo,i tj ∈ SE (3) is measured via a vector-valued error

function e(qd
r , µo,i tj). For this error function e we define

stable and properly damped second order dynamics

ë = Jeq̈
d
r + J̇eq̇

d
r

!
= −Kp e−Kdė, (6)

where Je is the Jacobian of the error function e (·). In this,

and the following context, Kp and Kd denote diagonal gain

and damping matrices of fitting dimension. To impose limits

on both joint positions and velocities, we introduce the vector-

valued inequality constraints

cp(q
d
r ) ≤ 0

d

dt
cv(q

d
r ) ≤ 0.

Similar to the error function e, we impose stable, critically

damped dynamics for both constraint functions.

The desired acceleration q̈d
r is now determined via the

following optimization problem:

min
q̈
d
r

‖ë− (−Kp e−Kdė)‖2

s.t.
∂c̈p

∂q̈d
r

q̈d
r ≤ −Kp cp −Kdċp

∂c̈v

∂q̈d
r

q̈d
r ≤ −Kdċv

q̈min
r ≤ q̈d

r ≤ q̈max
r ,

(7)

where c∗, ċ∗, and c̈∗ are the value and time derivatives for

given qd
r and q̇d

r . Vectors q̈min
r and q̈max

r denote the lower and

upper bounds on the reference acceleration q̈d
r . All constraints

are linear in q̈d
r and the cost function is linear quadratic in

q̈d
r . The resulting quadratic program can therefore be solved

efficiently with established numerical solvers.

The controllers introduced above are acceleration-resolved.

We can thus switch among the controllers without causing

discontinuities in the robot’s motion. Switching acceleration-

resolved controllers has another notable advantage. The con-

trollers act as attractors that accelerate the end-effector towards

a desired Cartesian target, but only for short periods of time.

By continually changing the direction of acceleration, we can

create a rich set of movements from a sparse grid of coarsely

specified motion controllers. The placement of the targets tj ,

though coarse, requires some hand-engineering. A simple yet

suitable heuristic is to place the targets such that the the object

can be approached from every side, yet motions between

neighboring targets do not interfere with the object.

C. High-Level Manipulation Controller

Given a compressed representation of the belief and a

corresponding set of low-level motion controllers, we may now

reformulate the manipulation problem as a switching control

problem. Based on the current compressed belief b̃, a high-

level controller selects one of the motion controllers at discrete

time intervals. The output of this controller is used as control

input until the next controller is selected. Since the low-level

motion controllers take care of dynamic reactions, the high-

level switching controller may operate at a low frequency

(e. g., 2 Hz). The goal of the high-level controller is to steer the

system into a goal state as quickly as possible. The evolution

of the belief – and thus also its compressed representation –

is stochastic. This results in a stochastic shortest path problem

with a continuous, high-dimensional state space, a discrete

action space, and constant negative reward. The problem is

now handled with the established reinforcement learning ma-

chinery. Specifically, we train a deep Q-Network (DQN) [24]

on off-policy rollouts of the simulated particle filter. The DQN

maps the compressed belief b̃ to an index a∗ ∈ {1, . . . , NC},
which selects the currently active motion controller. For an

overview of the resulting overall system, we refer to Figure 4.

V. IMPLEMENTATION & RESULTS

A. Implementation Details

Contact Dynamics with Compliance: We computed the

forward dynamics (4) using the MuJoCo physics engine [36]

with a constant integrator step-size of 5 ms. As active robot

compliance C (see (3)), we used joint-level impedance control

with gravity compensation. The corresponding control law is

τ r = M r (qr) q̈
d
r +K

(
qd
r − qr

)
+D

(
q̇d
r − q̇r

)
+ gr (qr) ,

where M r and gr (qr) are the inertia matrix and gravitational

forces of the robot. Matrices K ∈ R
nr×nr and D ∈ R

nr×nr

denote the positive definite stiffness and damping matrices

of the imposed compliance. The stiffness matrix was chosen

diagonal with 200 Nm/rad for revolute joints and 800 N/m on all

prismatic Degrees of Freedom (DoFs). We chose the matrix D

to achieve critical damping using double-digitalization damp-

ing design [3]. For the filter’s measurement update (2), we

assumed a standard deviation σnom = 1.0 deg on all joints,

i. e., an encoder variance Σenc = σ2
nom Inr .

Compression: We obtained the compressed belief from the

particle set (NP = 300) using Gaussian mixture expectation-

maximization. Attention must be paid since the object con-

figuration qo is in SE (3) and thus q element of a non-

Euclidean vector space. To encode orientations and Euclidean



quantities in a common representation, we used the QGMM

of Kim et al. [17]. Parallelization and seeding the GMM re-

gression using approximate k-medoids partitioning [25] sig-

nificantly reduced the fitting time (/1ms). Using NG = 2
components has shown to be sufficient for our purposes.

To keep the neural net’s input space low-dimensional we

only used the main diagonal of the covariance matrix for

the compressed belief representation. To avoid scaling related

instabilities during training, we provided the element-wise

logarithm of the covariance as network input.

Low-Level Controllers: The low-level controllers operate at

200 Hz. We computed the Jacobian Je of the error function

and the derivatives of the constraint functions cp and cv
using an auto-differentiation scheme based on the eTaSL/eTC

framework [1]. We chose the proportional gain matrix of the

error and constraint dynamics Kp to obtain a time-constant of

0.2 s. The damping matrix Kd was chosen so that the dynamics

are critically damped. We solved the quadratic program in (7)

using qpOASES [9]. Refer to Figure 6 for the number of

motion controllers NC used for the respective task.

High-Level Controller: The high-level controller operates

at a rate of 2 Hz. To obtain a mapping from the compressed

belief to the next action we use a Q-learning update [42] on

the compressed belief

Q(b̃, a)← Q(b̃, a)+α
[
r(b̃, a) + γmax

a′
Q(b̃′, a′)−Q(b̃, a)

]
,

with constant negative reward r(b̃, a) = −1. We approximate

the Q-function using a neural network. Each episode samples

a ground-truth candidate from the prior distribution b0. This

ground-truth candidate generates the simulated measurement

used during the correction step of the particle filter rollouts.

Typical tasks such as in assembly or non-prehensile ma-

nipulation require reaching a desired state space target xgoal.

In such a setting, we terminate an episode as soon as the

simulated ground-truth fulfills a goal condition

dist (x, xgoal) < ǫ, (8)

where dist : X → R
+ denotes a suitable distance function and

with ǫ ∈ R
+ being a distance threshold.

If merely localization is of interest, we define a terminal

belief as one with differential entropy

−

∫

X

bt log (bt) dxt < Hthresh. (9)

Here, Hthresh ∈ R is a given entropy threshold. We approximate

the differential entropy of the compressed belief using the

upper entropy bound for GMMs given by Huber et al. [15].

The focus of the present paper is not on reinforcement

learning. We use it as a tool to create the high-level policy.

Therefore, all design choices regarding network architecture

and training have been made in a way that minimized de-

bugging and implementation efforts. We strictly separated

data generation and policy training using a two-step training

scheme. In the first step we generated a data set of 20 000

episodes with purely random actions. The data set was used to

train an initial policy. We repeated data generation for another

7 500 episodes, now under purely greedy action selection. The

final policy was then trained on the combined data set of

random and greedy episodes. Data generation and network

training for a single policy took approximately 24 h on a

desktop computer (Intel Core i7-7700, 3.6 GHz). We chose

the discount factor as γ = 0.98 and a learning rate of 0.0001.

Furthermore, we used the Adam optimizer [18] with l2 kernel

regularization (0.01).

Different tasks likely also require networks of different

depth. Hence, we make use of the ResNet [13] architecture,

which is able to emulate flatter networks if necessary. A

first dense layer with 64 outputs is followed by four ResNet

blocks. Each ResNet block consists of two dense layers (with

each 64 outputs) and ELU activations [7]. To avoid the inher-

ent overestimation of action values in Q-learning we make use

of a final Dueling-Layer [41] and double Q-learning [40].

B. Benchmark Problems

We evaluated the methods using the five benchmark scenar-

ios shown in Figure 6.

Peg-In-Hole: Peg-In-Hole is well studied since it represents

a large proportion of industrial assembly applications. The

present setting consists of a 7-axis redundant robot, which

holds a cubical peg. The matching counterpart lies flat on a

workspace. It is not fixed in any way. To solve the task, the

robot must avoid pushing the workpiece out of its reachable

workspace.

Bridge: In the BRIDGE benchmark, a 7-axis redundant

robot has to push a cube over a narrow passage into a small

hole. There is no way to recover if the cube falls off the

elevated surface. Improperly selected actions come at a high

risk, especially in the early stages of the task. To traverse the

narrow bridge, the cube must be well localized.

Bunny-Gap: In the BUNNY-GAP task, a 7-axis redundant

robot mounted on a linear axis must push a bunny (non-

convex, rigid object) across the table through a narrow gap.

The bunny fits through the opening lengthways and upright,

only. The robot must thus make use of the environment

geometry to carefully align the bunny. Early stage actions

should be carefully selected to prevent the bunny from being

knocked over.

PR2-Hammer: This task requires a PR2 robot to lift a

hammer from a table surface. The robot must localize the part

carefully to avoid the hammer from being pushed off the table.

Grasping and lifting is not enabled by means of a single high-

level command. The agent must learn the concept of grasping

through closing the finger joints and that the gripper needs to

remain closed during lifting. In order to enable a grasp, we

provide two versions for each of the n target controllers: one

that (in addition to accelerating towards the target) opens the

gripper and one that closes it.

The above four benchmarks terminate according to (8) with

target distances as depicted in Figure 6. The maximum number

of actions per episode was chosen as 100.
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Fig. 6. Benchmark problems from the domains of assembly (PEG-IN-HOLE),
non-prehensile pushing (BUNNY-GAP, BRIDGE), grasping (PR2-HAMMER),
and active perception (ACTIVE-LOCALIZATION). The yellow area indicates
the robot’s initial belief. The blue colored object denotes the sampled ground-
truth candidate. The robot only uses measurements of the joint position as
feedback.

Active-Localization: In this task, a cube must be localized.

The robot can make active use of the environment geometry

to quickly condense the belief, i. e., to reach an entropy

goal (9) with target entropy Hthresh = −8.0 nat. For the active

localization task, we abort episodes after 50 actions.

C. Experimental Setup

To assess the proposed method, we computed policies

for each of the benchmark problems. To evaluate individual

policies, we performed 100 episode rollouts, with a ground-

truth drawn from the respective initial belief b0. Episodes are

considered to have failed if the target is not reached within 100

high-level actions (50 s) or if the robot’s load limit is exceeded.

Due to the present variance, we report the results for 15

networks, each trained on individually generated data sets.

A central question is whether the proposed hierarchical

TABLE I
SUCCESS RATES - TASK BENCHMARKS

Benchmark PEG BRIDGE BUNNY PR2

proposed approach max 100% 79.0% 95.0% 100%

15 different DQNs median 99.0% 73.0% 90.0% 100%

mean 98.8% 71.2% 88.7% 98.6%

min 97.0% 46.0% 74.0% 85.0%

DQN+MLE max 67.0% 75.0% 93.0% 60.0%

15 different DQNs median 56.0% 64.0% 84.0% 53.0%

mean 53.9% 62.2% 71.9% 52.4%

min 30.0% 51.0% 29.0% 42.0%

p-value <10-2% 0.631% 1.39% <10-2%

random controllers 26.0% 0% 1.00% 8.00%

policy actually exploits the uncertainty information encoded in

the compressed belief and thereby improves the overall success

rate. Put differently: with regard to certainty equivalence,

would it be sufficient to separate estimation and control, i. e.,

to employ a deterministic policy together with the maximum

likelihood estimate of a Bayes filter? In this case, we would

expect similar results.

To address this, we compared the policies as obtained from

the proposed method to a DQN trained on a fully observable

environment, that during execution in the partially observable

setting, uses a Gaussian maximum-likelihood estimate of the

filter’s particle set (DQN+MLE).

D. Simulation Results

Table I reports the results for the PEG-IN-HOLE, BRIDGE,

BUNNY-GAP, and PR2-HAMMER benchmarks. Shown are the

success rates under the proposed approach, random controller

switching, and the DQN+MLE approach. We state the sig-

nificance of these results using Welch’s two-sided unequal

variance t-test, assuming normally distributed success rates.

The proposed approach performed well on all four bench-

marks. The BRIDGE task proved to be particularly troublesome

whenever the cube was initialized along the edge facing the

robot. Due to the robot’s kinematic limitations, the robot was

then unable to push the object towards the center of the

elevated surface.

The proposed approach performs significantly better

(p-value < 5%) than DQN+MLE on all tasks. We were able

to observe that many of the failure cases of DQN+MLE

stem from unrecoverable mistakes during the early localization

phase, such as the robot pushing the cube off the elevated sur-

face (BRIDGE) or the hammer off the table (PR2-HAMMER).

The proposed method showed less aggressive behaviors in

these early stages. Further failure cases of DQN+MLE arose

due to its inability to handle multi-modal belief distributions.

The formation of multi-modal beliefs was distinctly present on

the PEG-IN-HOLE problem. The above results demonstrate

that the proposed policy actually exploits the uncertainty

information encoded in the compressed belief.

We also evaluated our method’s applicability to the task

of active localization. Table II shows the success rate (lo-



TABLE II
SUCCESS RATES & COST - ACTIVE PERCEPTION

filter noise σnom 2σnom

success cost success cost

proposed approach max 90.0% 48.0 87.0% 49.0

15 different DQNs median 82.0% 11.0 76.0% 15.0

mean 79.1% 12.9 75.0% 17.1

min 56.0% 3.00 46.0% 5.00

random controllers 77.0% 23.0 51.5% 34.0

calized according to (9) in less than 25 s) and the cost of

successful attempts (time spent), under the proposed policy

and random interactions, for two levels of measurement un-

certainty. Under nominal measurement noise Σenc = σ2
nom Inr

,

the filter quickly condensed the belief and both the pro-

posed method and random actions w.r.t. the modes of the

distribution performed well at localizing the cuboid. How-

ever, 14/15 of our learned policies localized the object sig-

nificantly (p-value < 5%) faster. With more measurement

noise (Σenc = (2σnom)
2
Inr

), we were able to observe a drop

in the success rate when employing random actions w.r.t. the

modes of the distribution. The proposed method maintained

a high success rate even under the much more conservative

measurement update. All of the learned policies performed the

task significantly (p-value < 5%) quicker. This demonstrates

the proposed method’s ability to act purposefully based on

the current shape of the belief distribution. We found that

for a typical failure case, the policy was unable to condense

the belief at all. The entropy remained at the initial level.

This happens whenever the upper layer gets stuck, repeatedly

selecting non-informative actions. Other failure cases were

caused by particle starvation. As a result of too forceful

interactions, the particle filter can deplete to a single, highly

peaked (< Hthresh), yet incorrect hypothesis. To guard the

system from such situations, one could introduce a penalty

cost for particle starvation during the training phase. This way,

a policy can be trained to actively avoid actions that cause

impoverished particle sets.

E. Real-World Experiment

As we aim for a model-based approach, we derive our

policy only from synthetic data, based on a simulated model of

contact dynamics. The policies were executed on real hardware

without further processing steps.

Parameters such as surface friction, contact hardness, and

models thereof are only a rough approximation. Hence, we

expect a gap between the simulated and the real-world environ-

ment. To evaluate the impact of this simulation-reality gap, we

conducted 60 real-world experiments. Figure 7 shows the ex-

periment platform for the PEG-IN-HOLE benchmark. We used

an impedance-controlled KUKA iiwa R800 redundant 7-axis

robot. Of the 60 policy executions, 41 succeeded (68.3 %).

Many of the failures were caused by particle depletion. The

depletion mainly occurred during very forceful interactions,

e. g., when the robot scraped the peg along the surface of

the hole. During this phase, multiple friction and contact

Fig. 7. Real-world experiment platform for the PEG-IN-HOLE benchmark,
with an impedance-controlled KUKA iiwa R800 redundant 7-axis manipula-
tor. The clearance between the cubical peg and the hole is 5 mm.

parameters (peg-hole, hole-table) come to play simultaneously

and the motion of the real object started to diverge from that

of the simulated particles.

We believe that we can further improve the success rate

by enhancing the model’s accuracy and by using advanced

resampling-schemes that reduce particle starvation. The par-

ticle filter could also be extended to provide a continuous

estimate of physical coefficients such as friction.

VI. DISCUSSION

Conclusion: In this paper we proposed an integrated

system for contact-rich object manipulation under uncertainty.

Our method closes the loop from sparse internal sensor feed-

back to high-frequency, directly executable motion commands.

By taking into account the full dynamics, our method is able to

consider the kinematic and dynamic limits of the manipulator

and can learn to avoid actions associated with a high risk of

failure, e. g., dropping or knocking over the object.

We model manipulation under uncertainty as a POMDP and

use a particle filter to track the belief. A compressed repre-

sentation of this belief provides the input to our hierarchical

control policy. In this policy, an upper layer situation classifier

switches between local motion controllers. These provide the

reference for an impedance-controlled robot.

Extensive simulated and real-world experiments based on

five different benchmark scenarios demonstrate that the pre-

sented approach solves challenging tasks from the domains of

active localization, grasping under uncertainty, assembly, and

non-prehensile object manipulation.

Limitations & Future Work: The proposed approach

draws on methods that limit the scope for a more detailed, for-

mal analysis. These include the approximate belief dynamics

of the particle filter, belief compression using an insufficient

statistic, and a DQN as Q-function approximation. Further-

more, the simulated particle filter rollouts make the generation

of the training-data computationally expensive. Finally, the

grid of targets for the local motion controllers requires some

domain-knowledge. A promising avenue for future work could

therefore be to adapt the discrete set of local motion controllers

towards a continuous action space for the high-level policy.
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