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Abstract—This paper addresses the problem of visual-
inertial self-calibration while focusing on the necessity of
online IMU intrinsic calibration. To this end, we perform
observability analysis for visual-inertial navigation systems
(VINS) with four different inertial model variants contain-
ing intrinsic parameters that encompass one commonly
used IMU model for low-cost inertial sensors. The analysis
theoretically confirms what is intuitively believed in the
literature, that is, the IMU intrinsics are observable given
fully-excited 6-axis motion. Moreover, we, for the first
time, identify 6 primitive degenerate motions for IMU
intrinsic calibration. Each degenerate motion profile will
cause a set of intrinsic parameters to be unobservable
and any combination of these degenerate motions are
still degenerate. This result holds for all four inertial
model variants and has significant implications on the
necessity to perform online IMU intrinsic calibration in
many robotic applications. Extensive simulations and real-
world experiments are performed to validate both our
observability analysis and degenerate motion analysis.

I. INTRODUCTION

Cameras and IMUs are becoming ubiquitous, visual-
inertial navigation system (VINS) [11] has gained
great popularity in 6DoF pose tracking for autonomous
robots – such as micro aerial vehicles (MAV) [25],
autonomous-driving cars [7], and unmanned ground ve-
hicles (UGV) [32] – during the past decades. Many
efficient and robust VINS algorithms have been devel-
oped in recent years (e.g., [20, 14, 4, 21, 6, 3, 9]).
There are many factors attribute to VINS performance,
among which the sound and accurate sensor calibration
– including the rigid transformation between sensors,
time offset between IMU-camera, and camera and IMU
intrinsics – is crucial.

Extensive works have studied sensor calibration in
VINS, both offline and online. For instance, Mirzaei et
al. [19] performed the observability analysis for rigid
transformation between IMU and camera. They showed
that under certain motions, the rigid transformation are
not fully observable. Furgale et al. [5] designed Kalibr, a
continuous-time interpolation based batch estimator, for
IMU-camera extrinsics, time offset and camera intrinsics
calibration. Rehder et al. [22] extended Kalibr to in-
corporate IMU intrinsics (including scaling parameters,
axis misalignment, and g-sensitivity). However, most of

these approaches need calibration targets (e.g., marker
board) and are only suitable for offline non-real-time
calibration. Recently, Li et al. [17] incorporated IMU-
camera extrinsics, time offset, rolling-shutter read-out
time, camera and IMU intrinsics into the multi-state
constraint Kalman filter (MSCKF) framework [20]. They
showed that these parameters can converge in simulation
and demonstrated the system on a real-world experiment.
This work is closest to ours but did not provide any
observability or degenerate motion analysis, which is the
focus and contribution of our work along with extensive
validations.

Online sensor calibration in VINS has also attracted
significant attentions in recent years, due to its promise
to handle poor prior calibration and environmental ef-
fects such as varying temperature, humidity, vibrations,
non-rigid mounting, and other phenomenons which can
degrade the state estimates in the case that the calibration
is treated to be true. For example, Li. et al. [16, 15]
showed that online extrinsic and time offset calibration
within the MSCKF improves localization accuracy. Eck-
enhoff et al. [2] incorporated the IMU-camera extrinsics,
time offset and the camera intrinsic calibration into a
multi-camera VINS and showed that online calibration
improves estimation accuracy and robustness.

However, blindly performing online calibration is dan-
gerous, as in most cases domain knowledge on specific
motions and prior distribution choices are needed to
make sure consistent calibration. Schneider et al. [23]
introduced an information theoretic metric for selecting
the most informative parts of datasets for the task of
calibration to prevent uninformative motion segments
from degrading the calibration consistency, which is mo-
tivated by the fact that not all segments of the trajectory
are suitable for the calibration task. Yang et al. [29]
identified several degenerate motions for online IMU-
camera extrinsic and time offset calibration and these
degenerate motions should be avoided when operating
VINS for online calibration. In this work, however, we
investigate the degenerate motions when jointly estimat-
ing the IMU intrinsic parameters, in particular, when
deploying VINS on mobile robots which typically have
constrained motions. For example, aerial and ground ve-



Fig. 1: An IMU sensor composed of accelerometer and gyroscope.
The base “inertial” frame can be determined to coincide with either
accelerometer frame {a} or gyroscope frame {w}. {C} represents the
camera frame which has an additional translation.

hicles can only perform a few motion profiles due to their
under-actuation, and can easily “fall” into degenerate
conditions for calibration. By noting that most literature
on IMU intrinsic calibration is limited to either handheld
or trajectory segments involving rich motion information
[17, 23], this promotes an interesting question: What are
the degenerate motions for IMU intrinsic calibration,
and does it prohibit the online IMU intrinsic calibration,
especially for underactuated autonomous vehicles?

In this paper, we aim to respond to these questions
by investigating in-depth the observability analysis for
visual-inertial self-calibration and performing degenerate
motion analysis for IMU intrinsic calibration. In partic-
ular, the main contributions of this work include:
• We propose four intrinsic model variants for IMU

calibration based on [23] and analytically derive
IMU integration and Jacobians .

• We provide observability analysis for these four
inertial intrinsic model variants and, for the first
time, offer an analysis of the degenerate motions
that cause IMU intrinsic parameters unobservable.

• We conduct extensive simulations to verify the
convergence of these intrinsic models in the case
of full 6-axis motion and validate the identified
degenerate motions. We also evaluate the proposed
method on different real-world datasets, each of
which is unique in its motion profile, allowing for
a further discussion on the necessity of online IMU
intrinsic calibration.

The paper is organized as follows: in Section II we
go over the four inertial model variants; in Section III
we derive the full system state transition, and then in
Sections IV and V we present the observability analysis
and the identified degenerate motions. Finally in Sections
VI and VII, we validate our findings and provide some
final remarks in Sections VIII and IX.

II. SYSTEM MODELS

A. IMU Intrinsic Model

We define an IMU as containing two separate frames
of reference (see Fig. 1): gyroscope frame {w}, ac-
celerometer frame {a}. The base “inertial” frame {I}
should be determined to coincide with either {w} or
{a}. Slightly different from the model defined in [23],
we define the raw angular velocity reading wωm from
the gyroscope and linear acceleration readings aam from

accelerometer as:
wωm = Tw

w
I RIω + bg + ng (1)

aam = Ta
a
IR
(
Ia + I

GRGg
)

+ ba + na (2)

where Tw and Ta are invertible 3 × 3 matrices which
represent the scale imperfection and axis misalignment
for {w} and {a}, respectively. Gg = [0, 0, 9.81]

>.
w
I R and a

IR denote the rotation from the gyroscope
frame and acceleration frame to base “inertial” frame
{I}, respectively. Note that, if we choose {I} coincides
with {w}, then w

I R = I3. Otherwise, aIR = I3. bg and
ba are the gyroscope and accelerometer biases, which
are both modeled as random walks, and ng and na
are the zero-mean Gaussian noises contaminating the
measurements. Inspired by [17, 23], we do not take
into account gravity sensitivity [17] and the translation
between the gyroscope and accelerometer frames. We
can write the true (or corrected) angular velocity Iω and
linear acceleration Ia as:

Iω = I
wRDw (wωm − bg − ng) (3)

Ia = I
aRDa (aam − ba − na)− I

GRGg (4)

where Dw = T−1w and Da = T−1a . In practice we
calibrate Da, Dw and I

aR (or IwR) to prevent the need to
have an unneeded matrix inversion in the measurement
equation. While the IMU reading is defined as Eq. (3)
and (4), we can only calibrate either I

wR or I
aR, since

the base “inertial” frame must coincide with either {w}
or {a}. Note that if both I

wR and I
aR are calibrated,

it will make the rotation between the IMU and camera
[17] unobservable. This is experimentally validated in
simulation in Section VI-D.

B. Four Variants of IMU Intrinsic Model
In the following, we present four different IMU in-

trinsic model variants among which each has 15 degrees
of freedom. We summarize them and evaluate their
performances in online filter-based VIO state estimation
in Section VI and VII. The four variants can be listed
as:
• imu1: Variant one includes 6 parameters for Dw6,

the rotation I
wR, and 6 parameters for Da6. Da6

and Dw6 are uptriangular matrices with the struc-

ture as D∗6 =

d∗11 d∗12 d∗13
0 d∗22 d∗23
0 0 d∗33

.

• imu2: Variant two contains Da6, the rotation I
aR,

and Dw6. We note that this coincides with the
model used in [23].

• imu3: Variant three combines Variant one’s Dw6

and I
wR into a general 3 × 3 matrix containing 9

parameters in total. Thus, in this variant we estimate
the upper-triangle Da6 and a full matrix Dw9 as

D∗9 =

d∗11 d∗12 d∗13
d∗21 d∗22 d∗23
d∗31 d∗31 d∗33

 (5)



• imu4: Variant four is an extension of variant two
with a combination of the Da6 and I

aR. Thus, in
this variant we estimate the upper-triangle Dw6 and
a full matrix Da9, as defined in Eq. (5).

We note that imu2 is used in the rest of paper for the
system derivations and observability analysis.

C. System Dynamic Model
The state vector x, containing the IMU state xI , IMU

intrinsics xin and feature state xf , is described as:

x =
[
x>I x>in x>f

]>
(6)

xI =
[
I
Gq̄
> Gp>I

Gv>I b>g b>a
]>

(7)

xin =
[
x>Dw x>Da

I
aq̄
>]> (8)

where I
Gq̄ denotes quaternion with JPL convention [26]

and corresponds to the rotation matrix I
GR, which rep-

resents the rotation from {G} to {I}. GpI and GvI
denote the IMU position and velocity in {G}. xDw and
xDa represent the column-wise non-zero IMU intrinsic
parameters, see II-B. Specifically, they are both defined
as xD∗ = [d∗11 d∗12 d∗22 d∗13 d∗23 d∗33]>. The
corresponding error states can be defines as x̃ = x− x̂,
where x̂ denotes the current best estimate. Note that
for quaternion, we use the quaternion left multiplicative
error q̄ ≈

[
1
2δθ

> 1
]>⊗ ˆ̄q, where ⊗ denotes quaternion

multiplication [26].
The evolution of this system can be written as [26]:

I
G

˙̄q =
1

2
Ω(Iω)IGq̄,

GṗI = GvI ,
Gv̇I = G

I RIa (9)

ḃg = nwg, ḃa = nwa, ẋin = 015×1, ẋf = 03×1 (10)

where nwg and nwa are zero-mean Gaussian noises
driving bg and ba, respectively.

D. Camera Measurement Model
Leveraging a simplified model from OpenVINS

project [6] with the global 3d point representation (i.e.
xf = Gpf ), the feature measurements can be written:

zc =

[
Cpfx/

Cpfz
Cpfy/

Cpfz

]
+ nc (11)

Cpf = C
I RI

GR
(
Gpf − GpI

)
+ CpI (12)

where nc is the Gaussian image noise and the measure-
ment Jacobian is: H = HπHc:

Hπ =
1

C p̂2
fz

[
C p̂fz 0 −C p̂fx

0 C p̂fz −C p̂fy

]
(13)

Hc = C
I R̂I

GR̂
[
bGp̂f − Gp̂IcGI R̂ −I3 03×24 I3

]
(14)

III. ANALYTIC IMU INTEGRATION WITH STATE
TRANSITION MATRIX

In the following section, the analytic IMU integration
and corresponding error state transition matrix are pre-
sented. To simplify, we define wω̂ and aâ as:

wω̂ = wωm − b̂g =
[
wŵ1

wŵ2
wŵ3

]>
(15)

aâ = aam − b̂a =
[
aâ1

aâ2
aâ3
]>

(16)

Note that wω̂ and aâ are assumed to be constant between
time interval tk to tk+1. Hence, we can have:

Iω̂ = D̂w
wω̂, I â = I

aR̂D̂a
aâ (17)

A. Analytic State Integration
Based on the above assumption, we can compute the

integration of IMU state from tk to tk+1 as:
Ik+1

G R̂ =
Ik+1

Ik
R̂Ik
G R̂ ' exp

(
−Ik ω̂∆tk

)
Ik
G R̂ (18)

Gp̂Ik+1
' Gp̂Ik + Gv̂Ik∆tk + G

Ik
R̂Ξ2

Ik â− 1

2
Gg∆t2k (19)

Gv̂Ik+1
' Gv̂Ik + G

Ik
R̂Ξ1

Ik â− Gg∆tk (20)

where ∆tk = tk+1 − tk. We also have the following
preintegration terms Ξ1 and Ξ2 defined as:

Ξ1 =

∫ tk+1

tk

Ik
Iτ

Rdτ, Ξ2 =

∫ tk+1

tk

∫ s

tk

Ik
Iτ

Rdτds (21)

B. State Transition Matrix
We now define the linearized error state system as:

δθk+1 '
Ik+1

Ik
R̂δθk + Jr (tk) ∆tk

Ik ω̃ (22)
GṽIk+1

' GṽIk − G
Ik

R̂bΞ1cδθk + G
Ik

R̂Ξ1
Ik ã (23)

− G
Ik

R̂Ξ3
Ik ω̃

Gp̃Ik+1
' Gp̃Ik + Gṽk∆tk − G

Ik
R̂bΞ2cδθk (24)

+ G
Ik

R̂Ξ2
Ik ã− G

Ik
R̂Ξ4

Ik ω̃

where Jr (tk) , Jr
(
Ik ω̂k∆tk

)
[4] denotes the SO(3)

right Jacobian. The Ik ω̃, Ik ã, HDw and HDa terms are
defined as:

Ik ω̃ = −D̂wb̃g + HDwx̃Dw − D̂wng (25)
Ik ã = bIk âcδθa + I

aR̂HDax̃Da − I
aR̂D̂a(b̃a + na) (26)

HDw =
[
wŵ1e1

wŵ2e1
wŵ2e2

wŵ3I3
]

(27)
HDa =

[
aâ1e1

aâ2e1
aâ2e2

aâ3I3
]

(28)

The integrated components Ξ3 and Ξ4 are as follows:

Ξ3 =

∫ tk+1

tk

Ik
Iτ

RbIτacJr (τ) ∆τdτ (29)

Ξ4 =

∫ tk+1

tk

∫ s

tk

Ik
Iτ

RbIτacJr (τ) ∆τdτds (30)

where ∆τ = τ − tk and the integration terms Ξi, i =
1 . . . 4 can be computed analytically assuming constant
measurements, see [28]. Once computed, they can be
used repeatedly for state transitions matrices and Jaco-
bians. Finally, we have the overall linearized error state
system:

x̃k+1 ' Φ(k+1,k)x̃k + Gkndk (31)

Φ(k+1,k) =

ΦI(k+1,k) ΦI,in 015×3
015×15 Φin 015×3
03×15 03×15 Φf

 (32)

where Φin = I15, Φf = I3, ΦI(k+1,k), ΦI,in and Gk

can be found in supplementary materials [30]. , and ndk
is the discrete-time IMU noises.



IV. OBSERVABILITY ANALYSIS

Observability analysis plays an important role in state
estimation for VINS [10, 18]. This analysis allows
for determining the minimum measurements needed to
uniquely determine the state and identify degenerate
motions which can possibly hurt system performance.
To the best of our knowledge this is the first time that
the observability properties and degenerate motions of
IMU intrinsic calibration within the VINS framework
has been investigated. Following the logic of [8], we
can construct the observability matrix as:

M =


M1

M2

...
Mk

 =


H1

H2Φ(2,1)

...
HkΦ(k,1)

 (33)

Without loss of generality, the k-th row of Mk is:

Mk = Hπ
C
I R̂Ik

G R̂× (34)[
Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9

]
where:

Γ1 = bGp̂f − Gp̂I1 − Gv̂I1∆tk +
1

2
Gg∆t2kcGI1R̂

Γ2 = −I3, Γ3 = −I3∆tk, Γ5 = Hp
a
I
aR̂D̂a

Γ4 = −(bGp̂f − Gp̂IkcGIkR̂Jr (tk) ∆tk + Hp
w)D̂w

Γ6 = (bGp̂f − Gp̂IkcGIkR̂Jr (tk) ∆tk + Hp
w)HDw

Γ7 = −Hp
a
I
aR̂HDa, Γ8 = −Hp

abIk âc, Γ9 = I3

where Hp
a = G

Ik
R̂Ξ2 and Hp

w = G
Ik

R̂Ξ4.
Given general random motion, one can easily find

four unobservable directions, which are typical for VINS
system [8]. However, Γ6, Γ7 and Γ8 are heavily motion
affected and time-varying, complicating the analysis.
Combined with our numerical simulations of a monoc-
ular camera and IMU, Section VI, intrinsic parameters
are observable give fully-excited motions. While we omit
the derivations and simulation results here due to space,
the other three intrinsic model variants are also fully
observable in the case of random motion.

V. DEGENERATE MOTION ANALYSIS

From the above analysis, it is clear that since Γ6, Γ7

and Γ8 are heavily motion affected, and thus, they are ex-
tremely susceptible to being unobservable under certain
motions. Since bias terms and IMU intrinsics are tightly-
coupled, through observation of the observability matrix
M, we provide a selection of basic motion types which
can cause the IMU intrinsics to become unobservable
with the given imu2. While we only provide the results
for imu2, the results are applicable to the other three.

1) ww1 constant: If ww1 is constant, da11 will be
unobservable with unobservable directions as:

Nw1 =
[
01×9 (D̂−1w e1)>ww1 01×3 1 01×17

]> (35)

TABLE I: Summary of basic degenerate motions for online IMU
intrinsics calibration (imu2).

Motion Types Nullspace Dim. Unobservable Parameters

constant wω1 1 dw11

constant wω2 2 dw12, dw22

constant wω3 3 dw13, dw23, dw33

constant aa1 3 da11, pitch and yaw of I
aR

constant aa2 3 da12, da22, roll of I
aR

constant aa3 3 da13, da23, da33

2) ww2 constant: If ww2 is constant, da12 and da22
will be unobservable with unobservable directions as:

Nw2 =
[
01×9 (D̂−1w e1)>ww2 01×4 1 01×16
01×9 (D̂−1w e2)>ww2 01×5 1 01×15

]>
(36)

3) ww3 constant: If ww3 is constant, da13, da23 and
da33 are unobservable with unobservable directions as:

Nw3 =

01×9 (D̂−1w e1)>ww3 01×6 1 01×14
01×9 (D̂−1w e2)>ww3 01×7 1 01×13
01×9 (D̂−1w e3)>ww3 01×8 1 01×12

> (37)

4) aa1 constant: If aa1 is constant, da11, pitch and
yaw of I

aR are unobservable with unobservable direc-
tions as:

Na1 =



012×1 012×1 012×1
D̂−1a e1

aa1 D̂−1a e2d̂a11
aa1 D̂−1a e3d̂a11d̂a22

aa1
06×1 06×1 06×1

1 0 0

0 d̂a22 0

0 −d̂a12 0

0 d̂a23 −d̂a33d̂a22
0 −d̂a13 d̂a12d̂a33
0 0 d̂a13d̂a22 − d̂a12d̂a23

03×1
I
aR̂e3

I
aR̂(e1d̂a12 + e2d̂a22)

03×1 03×1 03×1


5) aa2 constant: If aa2 is constant, da12, da22 and roll

of IaR are unobservable with unobservable directions as:

Na2 =



012×1 012×1 012×1
D̂−1a e1

aa2 D̂−1a e2
aa2 D̂−1a e3d̂a22

aa2
06×1 06×1 06×1

0 0 0
1 0 0
0 1 0
0 0 0

0 0 d̂a33
0 0 −d̂a23

03×1 03×1
I
aR̂e1

03×1 03×1 03×1


(38)

6) aa3 constant: If aa3 is constant, da13, da23 and
da33 are unobservable with unobservable directions as:

Na3 =

01×12 (D̂−1a e1)>aa3 01×9 1 01×8
01×12 (D̂−1a e2)>aa3 01×10 1 01×7
01×12 (D̂−1a e3)>aa3 01×11 1 01×6

> (39)

From the analysis, the IMU intrinsic calibration is
sensitive to sensor motion and thus all 6 axes need to be
excited to make sure all IMU intrinsics can be calibrated.
The findings are summarized in Table I. Note that any
combination of these basic motions is still degenerate



TABLE II: Simulation parameters and prior standard deviations that
perturbations of measurements and initial states were drawn from.

Parameter Value Parameter Value

IMU Scale 0.005 IMU Skew 0.002
Rot. atoI (rad) 0.001 Rot. wtoI (rad) 0.001

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3
Focal Len. (px/m) 0.35 Cam. Center (px) 0.45

d1 and d2 0.01 d3 and d4 0.001
Rot. CtoI (rad) 0.001 Pos. IinC (m) 0.01
Pixel Proj. (px) 1 Timeoff (s) 5e-4
Cam Freq. (hz) 20 IMU Freq. (hz) 200

Avg. Feats 50 Num. SLAM 25
Num. Clones 11 Feat. Rep. GLOBAL

Fig. 2: The 216 meter long sinusoidal simulation trajectory. Starting
location denoted with the green square and ending location denoted
with the red diamond.

and causes all related parameters to be unobservable.
The degenerate motion analysis can also be extended to
other 3 model variants, which we omit here for brevity.

VI. SIMULATION VALIDATIONS

A. Simulation with Fully-Excited Motion

We leverage the OpenVINS [6] framework to verify
our observability analysis under different conditions. The
basic configurations for our simulator are listed in Table
II. In the following general trajectory simulation, we per-
form full calibration (including IMU-camera extrinsics,
time offset, both camera and imu2 IMU intrinsics) for
VINS with a single monocular camera. We refer the
reader to the OpenVINS [6] for details on how this
changes the state.

The trajectory, shown in Fig. 2, is a general 3D sinu-
soid with full excitation of all 6 axes. From the results
shown in Fig. 3, the estimation errors and 3σ bounds for
all the intrinsic parameters of imu2 can converge quite
nicely, verifying that the analysis for general motion
holds true. We plot six different realizations of the initial
calibration guesses based on the specified priors, and it
is clear that all are able to converge from different initial
guesses to a small error.

B. Comparison of Different Inertial Model Variants

We next compare these four proposed model variants.
The sinusoidal trajectory, see Fig. 2, is used but online
camera intrinsics, extrinsics, and IMU-CAM time offset
calibration is disabled. Shown in Table III, it is clear that
the choice between these four variants has little impact
on estimation accuracy which indicates they provide
almost the same amount of correction to the inertial

TABLE III: Average ATE and NEES over 10 runs with true or bad
calibration, with and without online IMU intrinsic calibration. This
used the sinusoidal trajectory with 6-axis excitation and only calibrated
the IMU intrinsics. The notation “true” means we use the groundtruth
calibration, while “bad” means we use the perturbed calibration states.
Note that we only report a single configuration when we use the true
parameters and don’t calibrate.

IMU Model ATE (deg) ATE (m) Ori. NEES Pos. NEES

true w/ calib imu1 0.182 0.060 1.969 0.953
true w/ calib imu2 0.184 0.063 1.978 1.046
true w/ calib imu3 0.183 0.060 1.967 0.948
true w/ calib imu4 0.184 0.063 1.977 1.045

bad w/ calib imu1 0.182 0.061 1.977 0.984
bad w/ calib imu2 0.179 0.063 1.978 1.091
bad w/ calib imu3 0.181 0.060 1.974 0.976
bad w/ calib imu4 0.178 0.063 1.979 1.093

true w/o calib vio 0.173 0.059 1.968 0.981

bad w/o calib imu1 0.259 0.213 9.655 15.457
bad w/o calib imu2 0.260 0.190 9.181 12.310
bad w/o calib imu3 0.275 0.214 9.446 15.601
bad w/o calib imu4 0.269 0.200 9.337 14.248

readings. Note that we perturb each model based on
which parameters it estimates and use the priors specified
in Table II.

Also seen is the accuracy of the standard VIO system
which does not calibrate any parameters online and uses
the groundtruth calibration values. As expected this has
the best accuracy due to the use of the true parameters.
The VIO system which does not estimate the IMU
intrinsics but instead treats the perturbed states as being
true is inconsistent, as seen by the large Normalized
Estimation Error Squared (NEES), and has the largest
estimation error. As compared to online IMU intrinsic
calibration, there is only a small loss in estimation
accuracy which is far smaller in magnitude than if we
were to treat these bad calibration values as being true.

C. Simulation with Degenerate Motion

We now verify the identified degenerate motions and
present results for two special motions: 1-axis rotation
(see Fig. 4) and constant local ax (see Fig. 5). In both
simulations, we only calibrate the IMU intrinsics and
omit the results of full system calibration as they give
the same conclusion. We modify the same sinusoidal
trajectory, see Fig. 2, by removing roll and pitch ori-
entation changes for the first degenerate motion (with
only yaw rotation) and removed the pitch and made the
current yaw angle tangent to the trajectory in the x-y
plane for the second degenerate motion (with constant
local acceleration along x-axis).

Shown in Fig. 4, the first 3 parameters dw11, dw12

and dw22 for Dw did not converge at all (the 3σ bounds
are almost straight lines), which matches our analysis,
see Table I, which says these should be unobservable in
the case that wwx (roll) and wwy (pitch) are constant
as in this 1-axis case. Fig. 5 shows where we have
enforced that the local acceleration along the x-axis, ax,
is constant. The da11 and the pitch and yaw of IaR terms
do not converge, thus validating our analysis.



Fig. 3: 3 sigma bounds and estimation errors for six different runs with different realization of the measurement noise for fully excited motion
(using imu2). All the IMU intrinsic parameters converge nicely. Note that all parameters, including camera intrinsics, extrinsics, time offset, and
IMU intrinsic parameters are calibrated.

Fig. 4: 3 sigma bounds and estimation errors for six different runs with different realization of the measurement noise and initial calibration
states for 1-axis rotation trajectory (using imu2). dw11, dw12, and dw22 (the first 3 parameters from Dw) are not observable and they did not
converge. Note that only the IMU intrinsic parameters are calibrated.

Fig. 5: 3 sigma bounds and estimation errors for six different runs with different realization of the measurement noise and initial calibration
states for degenerate motion with constant acceleration on x-axis (using imu2). da11 and the pitch and yaw of I

aR are not observable and they
did not converge. Note that only the IMU intrinsic parameters are calibrated.

D. Simulation with Over Parameterization

As we mentioned in Section II-A, if we calibrate
both 9 parameters for gyroscope and accelerometer, the
rotation between IMU and the camera will be affected. If
we calibrate all three relative rotations, the intermediate
inertial frame {I} is not constrained. If we change the
relative rotation from ItoC, then this perturbed rotation
can be absorbed into the atoI and wtoI terms, and thus
means we have an extra 3DoF rotation not constrained by
our measurement. As shown in Fig. 6, when using the

full 6-axis excitation sinusoidal trajectory, see Section
VI-A, the convergence of C

I R becomes much worse if
we calibrate IMU-CAM extrinsics and all 18 parameters
for the IMU intrinsics even when the same priors and
measurements are used.

VII. REAL-WORLD EXPERIMENTS

We further evaluate IMU intrinsic calibration on 3
real-world datasets with different motion/actuation pro-
files: TUM VI datasets with general handheld motion,



Fig. 6: Camera to IMU orientation errors when using IMU imu2 (left)
and the over paramterized imu5 (right). Note that imu5 uses Dw9 and
Da9. Only the IMU intrinsics and relative pose between IMU and
camera were online calibrated.

EuRoc MAV datasets with underactuated 3D motion and
KAIST dataset with planar motion.

A. TUM-VI Dataset: General Handheld Motion

We first evaluate on the handheld real-world TUM
VI benchmark [24] which provides grayscale stereo
images at 20 Hz, a time-synchronized 200Hz IMU,
and accurate pose groundtruth from an external motion
capture system. We initialized Da, Dw,

I
aR,

I
wR as

identity matrices since these are unknown values, with
inflated priors to account that these are unknown on
startup. Only the IMU intrinsics are calibrated while the
rest of the parameters are set to their values provided
by the dataset. While the filter employs First-Estimates
Jacobains (FEJ) [12], in practice we do not FEJ the
intrinsic calibrations to prevent large linearization errors.
We track a maximum of 200 features with a max of 30
SLAM features being kept in the state vectors and only
use the left camera image as our input monocular camera
feed.

As shown in Table IV, we evaluate the Absolute Tra-
jectory Error (ATE) [33] for the proposed IMU intrinsic
model variants and standard VIO without online IMU
intrinsic calibration. We can see an improvement due to
the estimation of the IMU intrinsics, while it is important
to note that, as shown in the simulation, there is little
difference between the four variants. This shows that
if the trajectory has full excitation, as in the case for
handheld trajectories, the estimator accuracy improves
due to online IMU intrinsic calibration.

B. EuRoC MAV Dataset: Under-actuated Motion

The EuRoC MAV dataset [1] contains a series of
trajectories from a MAV with a visual-inertial sensor
attached and provides 20 Hz grayscale stereo images
and 200 Hz inertial readings in addition to an external
groundtruth motion capture system. We use the same
estimator as in the TUM VI datasets (see Sec. VII-A)

and report the ATE results in Table V, which clearly
differ from the results of the handheld datasets. This is
primarily due to the fact that an underactuated MAV can-
not fully excite its 6DoF motion for a given small time
interval and thus undergoes (nearly) degenerate motions
locally (for imu2), hurting the sliding-window filter (i.e.,
MSCKF). To see this, we have computed the sample
standard deviations of IMU readings for both MAV and
TUM datasets and found that the MAV datasets demon-
strate significantly smaller ω and a changes in local
time windows than the TUM datasets (see supplementary
materials [30] for details).

C. KAIST Complex Urban Dataset: Planar Motion

We now evaluate the performance of online intrin-
sic calibration on the very common motion profile of
planar motion. As in the Table I, planar motion is
the combination of three degenerate motions and in
the case of imu2 6 parameters are unobservable. We
leverage the KAIST Complex Urban dataset [13], which
provides stereo grayscale images at 10 Hz and a 200
Hz IMU. They additionally provide a batch-optimized
groundtruth which can be used as a reference to compare
against. As compared to the previous experiments, we
use the stereo pair as our camera along with the IMU to
remove the scale ambiguity for monocular VINS caused
by constant acceleration [27, 31] and also enabled all
online calibration to handle inaccuracies in the dataset’s
provided transforms and measurement times.

Shown in Fig. 7, the system with IMU intrinsic
calibration has larger drift on the Urban 39 dataset. When
looking at the Root Mean Squared Error (RMSE) in
respect to the dataset’s groundtruth, for the standard VIO
is 1.58 degrees with 13.03 meters (0.12%), while with
imu2 online IMU intrinsic calibration it is 1.41 degrees
with 23.13 meters (0.22%). We propose that this larger
error is due to the introduced unobservable directions
in online IMU intrinsic calibration when experiencing
planar motion.

VIII. DISCUSSION: NECESSITY OF ONLINE IMU
CALIBRATION?

Recall the question raised in the introduction was
whether or not we should calibrate IMU intrinsics on-
line, and if this is not the case, under what conditions
does online calibration fail. As shown in our degenerate
motion analysis, there are a large number of motion types
that prohibit accurate calibration of the IMU intrinsics. In
the general case with random motion such as in the TUM
VI datasets, we are able to improve accuracy by online
estimating these parameters since they are all observable.

More importantly, in the motion cases most commonly
seen in aerial and ground vehicles, there is typically
at least one unobservable direction due to these robots
traveling with either underactuated 3D motion or planar
motion. The impact on performance was shown in the



TABLE IV: Absolute Trajectory Error (ATE) on TUM VI room equences (with units degrees/meters). imu1 denotes Da6,Dω6, IwR; imu2
denotes Da6,Dω6, IaR; imu3 denotes Da6,Dω9; imu4 denotes Da9,Dω6.

IMU Model dataset-room1 dataset-room2 dataset-room3 dataset-room4 dataset-room5 dataset-room6 Average

VIO 1.430 / 0.089 1.173 / 0.064 1.934 / 0.088 1.333 / 0.054 1.140 / 0.092 0.888 / 0.056 1.317 / 0.074

imu1 0.954 / 0.066 1.153 / 0.059 1.809 / 0.074 1.175 / 0.038 1.028 / 0.073 1.017 / 0.033 1.189 / 0.057

imu2 0.877 / 0.077 1.170 / 0.051 1.974 / 0.076 1.148 / 0.039 0.950 / 0.081 0.825 / 0.038 1.157 / 0.060

imu3 0.957 / 0.065 1.142 / 0.058 1.836 / 0.075 1.211 / 0.039 1.006 / 0.073 1.021 / 0.034 1.196 / 0.057

imu4 0.893 / 0.077 1.173 / 0.052 1.896 / 0.076 1.134 / 0.038 1.259 / 0.097 0.823 / 0.038 1.196 / 0.063

TABLE V: Absolute Trajectory Error (ATE) on EuRoC MAV Vicon room sequences (with units degrees/meters). imu1 denotes Da6,Dω6, IwR;
imu2 denotes Da6,Dω6, IaR; imu3 denotes Da6,Dω9; imu4 denotes Da9,Dω6.

IMU Model V1 01 easy V1 02 medium V1 03 difficult V2 01 easy V2 02 medium V2 03 difficult Average

VIO 0.657 / 0.043 1.805 / 0.060 2.437 / 0.069 0.869 / 0.109 1.373 / 0.080 1.277 / 0.180 1.403 / 0.090

imu1 0.601 / 0.055 1.924 / 0.065 2.334 / 0.073 1.201 / 0.115 1.342 / 0.086 1.710 / 0.168 1.519 / 0.094

imu2 0.552 / 0.054 1.990 / 0.062 2.197 / 0.083 0.960 / 0.107 1.453 / 0.085 1.666 / 0.216 1.470 / 0.101

imu3 0.606 / 0.055 1.905 / 0.065 2.359 / 0.073 1.180 / 0.114 1.335 / 0.088 1.640 / 0.167 1.504 / 0.094

imu4 0.569 / 0.056 1.969 / 0.069 2.165 / 0.076 0.846 / 0.127 1.636 / 0.094 1.577 / 0.195 1.461 / 0.103

EuRoC MAV and KAIST Urban datasets where the
use of online IMU intrinsic calibration hurts estimator
accuracy! This leads to our recommendation and answer
to the question: due to the high likelihood of (or even
almost sure) experiencing degenerate motions for some
short of period of time in most robotic applications,
we do not recommend performing online IMU intrinsic
calibration during real-time operations. The exception
to this is the handheld sensor or mobile device case,
which often exhibit full 6DoF motions and thus is rec-
ommended to perform online IMU calibration to improve
estimation accuracy. For both of these applications, we
still recommend using an offline batch optimization to
calibrate the IMU intrinsics as an initial guess for the
filter or to treat the intrinsics as true if one knows they
are going to experience degenerate motions.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the problem of
online IMU calibration for visual-inertial navigation, and
presented four IMU intrinsic model variants derived
from one commonly used inertial model in practice.
Based on the observability analysis, we have identified
six basic degenerate motion patterns, of which, any
combination results in unobservable directions of IMU
intrinsic parameters. Extensive validation on simulated
and real-world datasets were performed to verify both
the observability and degenerate motion analysis. As
shown through our experiments, online IMU intrinsic
calibration is risky due to its dependence on the motion
profile to ensure observability. In the case of autonomous
(ground) vehicles, most trajectories would have degener-
ate motion, thus resulting in us not recommending online
calibration of IMU intrinsics for these types of robots.
In the case of handheld motion, however we found that
the estimation of IMU intrinsics improved performance

Fig. 7: Trajectory plots for the KAIST Urban 39 dataset 10km in total
length. Figure is best seen in color.

as expected. In the future, we will investigate a com-
plete degenerate motion analysis and different ways to
selectively perform online calibration to avoid additional
unobservable direction caused in degenerate motions.
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