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Abstract—We present a hybrid rigid-soft arm and manipulator
for performing tasks requiring dexterity and reach in cluttered
environments. Our system combines the benefit of the dexterity
of a variable length soft manipulator and the rigid support
capability of a hard arm. The hard arm positions the extendable
soft manipulator close to the target, and the soft arm manipulator
navigates the last few centimeters to reach and grab the target. A
novel magnetic sensor and reinforcement learning based control
is developed for end effector position control of the robot. A
compliant gripper with an IR reflectance sensing system is
designed, and a k-nearest neighbor classifier is used to detect
target engagement. The system is evaluated in several challenging
berry picking scenarios.

I. INTRODUCTION

Robots capable of dexterous manipulation in cluttered en-
vironments can significantly impact many applications. For
example, shortage of qualified human labor is a key challenge
facing US farmers [23, 15], leading to smaller profit margins,
and preventing the adoption of truly sustainable agricultural
practices [4, 12, 13]. The labor shortage critically affects berry
farms and orchards, because tasks such as picking berries
or pruning branches require significant dexterity. Simple au-
tomation approaches that are popular in row-crops such as
corn and soybean [3], do not work well in more complicated
perennial crop environment. In addition, traditional industrial
“hard” robot arms have been difficult to adopt for messy,
cluttered, and delicate plants [11]. It is believed that the
emerging field of pneumatically actuated soft robotics [22, 17]
could be the answer for implementing robotic automation in
challenging applications such as berry picking [5]. However,
soft-robot arms on their own have several challenges. The
primary one being low to moderate actuation powers available
in a mobile, untethered environment, coupled with the fact
that material flexibility of the robot arm significantly limits
payload capacity. Furthermore, payloads on these arms can
warp the workspace, making the control problem harder, and
the warping can worsen with increasing length thus affecting
accuracy and precision [24].

In this work, we present a new hybrid soft-rigid arm concept
system for applications requiring dexterity and reach. We term
this system SoftAgbot since our primary application is picking
berries in greenhouses, although SoftAgbot can be applied
to many applications beyond agriculture. Our concept system

Fig. 1. (a) SoftAgbot system (mounted on a TerraSentia mobile rover)
presented in this work picking a berry, (b) and (c) ability to reach bush interiors
using a flexible soft continuum arm.

combines the benefits of the dexterity of a soft manipulator
with the rigid support capability of a hard arm. The idea is
that the hard arm positions the extendable soft manipulator
close to the target, and the soft arm manipulator navigates the
last few centimeters (25 cm in the presented case) to reach
and grab the target.

A. Contributions and their significance

The main contributions of our work are:



Fig. 2. SoftAgbot system prototype showing different subsystems and components implemented on a smaller robot.

1) We present a novel hybrid soft-hard arm system with
a compliant gripping end effector that is capable of
reaching and manipulating soft objects at significant
distances from the robot.

2) The presented system is completely self-contained and
has been mounted on two robots, one of which is the
commercially available TerraSentia mobile rover (see
Figure 1, [16]).

3) We utilize a novel magnetic sensor and reinforcement
learning based control for end effector position control
of the robot.

4) We employ IR reflectance sensors mounted on the
gripper and a k-nearest neighbor classifier to predict the
success of a gripping action to better operate in occluded
environments.

5) We demonstrate that SoftAgbots have an unprecedented
ability to reach difficult targets and apply a wide range of
forces to achieve objectives that are very hard or nearly
impossible for traditional “rigid only” armed robots.

The significance of our contributions is in presenting a path-
way to creating robots capable of having the reach and
dexterity of soft robots without the drawbacks of lack of
strength and excessive workspace warping. In addition, our
robot can be position controlled in the task space either using a
set of end effector desired positions or a joystick that a human

can use to control the position. This significantly simplifies the
control of this pneumatically actuated soft robot, which would
otherwise require manipulating a number of valves. Note that
the SoftAgbot presented here is specific for berry harvesting,
but the same system, with modifications can also be used to
control weeds, detect insects and diseases by moving a camera
throughout the dense plant canopy, and prune or thin branches.

II. SYSTEM OVERVIEW

The robot design is guided by the need to maximize dexter-
ity, adaptability and safety while also increasing accuracy, and
load bearing ability. The robot consists of a mobile platform
with a three-link rigid manipulator. The third link has the
capability to deploy a Variable Length Nested Soft (VaLeNS)
arm [29] that can be extruded in and out of the link. The end
of the soft arm has a compliant gripping end effector. The
details of the design are presented below.

A. Robot arm and degrees of freedom

The robot arm is a three-link rigid arm as shown in Figure
3. The arm sits on a rotating base (θ1) and has two revolute
joints (θ2 and θ3). The third link is capable of axial rotation
(θ4).

1) VaLeNS arm: The third link is a hollow 3D-printed shell
that houses a compliant soft arm. The soft arm can extrude
out of the shell to provide additional dexterity, reachability,



Fig. 3. Degrees of freedom of the robot (a) the rigid arm has three (θ1 to θ3)
d.o.f and the hybrid rigid soft arm has five (θ4, ∆L, ∆B, ∆R1 and ∆R2).
The deformation of BR2 soft continuum arm with (b) ∆B,∆R1, (c) ∆B and
(d) ∆B,∆R2 actuation respectively.

and compliance. The 3D-printed shell encloses a NEMA 17-
size hybrid bipolar stepper motor that has an integrated 28
cm threaded rod as its output shaft (Pololu). This arrangement
converts the motor into a linear actuator to extrude the soft
arm in and out of the shell. Such a configuration is known as
the VaLeNS arm and its workspace and dexterity were studied
in [29].

2) Soft Continuum Arm: The BR2 Soft Continuum Arm
(SCA) consists of a parallel combination of three pneu-
matically actuated Fiber Reinforced Elastomeric Enclosures
(FREEs) [30, 24] that can bend (B), and rotate in clockwise
and counterclockwise directions (R2) respectively. A combi-
nation of spatial bending and axial twist or rotation results in
a spiral deformation mode [28], which yields a large spatial
workspace and dexterity (its deformation modes are shown
in Figure 3(b)-(d)) with a compact design. Furthermore, the
BR2 design can achieve variable stiffness in its pure bending
configuration by differential pressurization of the bending and
rotating FREEs.

Thus the three link rigid arm with the appended VaLeNS
arm has a total of eight actuated degrees of freedom: θ1− θ4,
∆L, B (bending of the soft arm), and R2 (clockwise and
counterclockwise rotation of the arm). The ensuing dexterity
enables the arm to approach a plant precisely and deploy the
dexterous SCA as needed to explore the internal regions of
the plant.

B. Mobile platform

The robot arm is mounted on a mobile platform as shown
in Figure 2. The mobile platform encompasses a set of
accessories and controllers to control the wheels, three-link
rigid arm and the VaLeNS arm. We use a National Instru-
ments myRIO to send the commands to the four pressure
regulator valves (SMC, ITV0031-2UBL), RoboClaw motor

Fig. 4. A block diagram of the robot systems and control

controller, portable pneumatic compressor (Parker Hannifin,
D1008-23-01, 50 psi maximum operating pressure, 12 V
operating voltage), stepper motor and to the high torque servos
(Servocity, CM-D950TW-400 Servo Gearbox). The overall
communication of the robot system is shown in Figure 4. In
addition, the myRIO also communicates with the Raspberry
Pi 3 in order to facilitate the control of the soft arm which
will be detailed in Section III. These components can be
used to deploy the presented hybrid soft-rigid arm design
on any field or mobile robot and can be used for myriad of
applications like surveying, mining, disaster response to name
a few other than the berry harvesting application focused on in
this paper. To demonstrate the compatibility of the arm design
with different mobile platforms, we successfully retrofitted
the arm and the control components on TerraSentia [16], a
commercially available agriculture robot platform (see Figure
1).

C. Sensing

The distal end of the BR2 SCA can be appended with
a modular end effector like a gripper (presented in II-D),
suction cup, or camera to name a few. However, to control
the end effector of the arm, we need to accurately sense its
end position. This is challenging as the SCA has complex de-
formation modes such as bending, twisting and spiralling (see
Figure 3) [27]. Past research in soft robotics has demonstrated
various concepts including resistive [7], inductive [8], liquid
metals [19], and more recently embedded magnets [21] to
sense the deformed shape. Most of these methods are limited
to simplified deformations such as contraction, extension, and
planar bending at relatively small length ranges (< 5 cm).
Techniques involving vision such as motion capture [1] cannot
be easily transferred to a field environment, especially with the
end of the arm occluded inside a bush.



Fig. 5. Three fruits selected as the basis for gripper designs ((a) cherry
tomato (b) miracle berry (c) small fig) (d)-(f) specialized grippers designed
for each fruit. Gripper bases are 3.8cm in diameter.

In this work, we use electromagnetic tracking (Patriot SEU,
Polhemus) with a short range source (TX1, tracking area 2 to
60 cm) and a micro flexible sensor as shown in Figure 2(d).
This system is not constrained by a line of sight requirement.
Furthermore, the sensor is flexible, lightweight (< 2 g) and
does not hinder or alter the performance of the SCA. The
electromagnetic source is mounted on the 3D-printed rigid
enclosure and the sensor is inserted into a slot in the gripper
base. The sensor has a positional accuracy of less than 1
mm. The signal from the sensor provides the real time spatial
coordinates of the soft arm end, which is then used for the
soft continuum arm control (elaborated in Section III).

D. Gripper system

1) Gripper Design: We have designed three modular, pneu-
matically actuated, soft, compliant (3D-printed with TPU
material) grippers as shown in Figure 5(d)-(f) to grasp three
targeted fruits: Miracle berries, cherry tomatoes, and small
figs (Figure 5(a)-(c)). These fruits were selected to explore
a range of challenges related to mechanical harvesting. This
pneumatically actuated gripper design was selected because of
the limitations imposed by the soft arm. The gripper needed
to be light weight due to the small payload of the arm.
A gripper driven by servos and gears would significantly
reduce the payload available for picking the fruit and add
to the complexity of the design. A wire driven design was
also explored, but due to the potential for interference with
the performance of the soft arm, it was not selected. The
pneumatic design also lent itself well to the existing equipment
needed to control the soft arm.

The modular gripper system is attached to the soft arm via
a simple mechanical catch and held in place with a screw.
The air and sensor connections are accomplished via barbed
nipples and DuPont style connectors respectfully.

The miracle berry is a firm fruit that sits close to the stem.
As such, its gripper (Figure 5(d)) is designed to grip the

Algorithm 1: Grip success prediction algorithm

Load training data (System Start-up);
...
Approach the fruit;
while Grip Prediction 6= Success do

Read the three sensor values;
Calculate the Euclidean distances to all the training

data points;
Predict the success of the gripper based on votes

from 5 nearest neighbors;
if Grip Prediction = Success then

Close the gripper;
else

Re-position the end effector;
end

end

fruit directly. The fingers of this gripper were inspired by the
FinGripper [9, 10] developed by Festo and are designed to
conform to the shape of the fruit using the Fin Ray R© effect [6]
and evenly distribute the applied forces. By directly gripping
the fruit, it is also possible to apply a twisting motion to
aid in its removal. The fig is very soft and sits on a long
stem. Direct gripping would damage the fruit, so instead the
fig gripper (Figure 5(f)) was designed to enclose the fruit.
Tabs on the gripper fingers close behind the fruit and when a
pulling force is applied, it is directed axially along where the
fig is attached to the stem. Once detached, it stays entrapped
within the fingers until released into a storage container. The
cherry tomato is also a soft fruit that sits on a stem, but like the
miracle berry, it requires the application of a moment to detach
it from the stem. As in the fig design, the gripper (Figure
5(d)) is designed to entrap the tomato and apply force behind
the fruit. Because the fruit is soft, care must be taken when
gripping it. The tabs prevent too much pressure from being
applied and the finger’s deformable shape evenly distributes
the force over the surface of the fruit. This gripping style
allows for a simultaneous pulling and twisting motion, which
easily separates the tomato from the plant without damaging
it.

2) Gripper Sensing: Operating within occluded environ-
ments, makes it challenging to determine if the end effector is
positioned correctly to successfully grip a fruit. To overcome
this and move toward autonomy, a sensing system has been
incorporated into the gripper. The goal was to determine if the
end effector is positioned correctly for a successful grip prior
to closing the gripper. Previous work on object classification
with a soft gripper has been done by Homberg et al. [14] and
grasp success by Zimmer et al. [32]. These focused on tactile
sensing and required contact with the fruit.

To predict success prior to contact, we used optical sensors
in this work. Three IR reflectance sensors (Adafruit) were
arranged around the edge of the gripper body, between the
gripper fingers (Figure 2(c)). They are aimed to the center of



the space between the gripper fingers where it is most likely for
a body to be gripped successfully (Approximately 20 mm from
the base of the fingers). The closer an object is to the sensor
the higher the sensor output. To make a prediction from these
three signals, Scikit-learn’s k-nearest neighbor (kNN) classifier
[20] was used. Training was done with the gripper attached
to a UR3 robotic arm (Universal Robots) to take advantage of
the speed and precise positioning. To collect training data, a
3D-printed fruit was mounted on a flexible shaft and attached
to the table surface. A random sample of the 400 points in and
around the gripper was created and the gripper was moved so
that the center of the fruit sits at one of the training points.
The sensor readings were recorded, the gripper was closed and
the success or failure state was logged manually. This data set
is then used to predict the outcome of a grip attempt using
a kNN classifier with k = 5 as seen in Algorithm 1. This
prediction is then sent to the operator to help them decide
whether or not to grip or readjust the end effector position.

III. CONTROL OF THE BR2 SCA AND TELEOPERATION

A. Learned Feedback Planning via Deep RL
Given a desired reach point provided by a human op-

erator, the BR2 SCA system must choose a sequence of
pressure change actions corresponding to bending and rotation
(∆Pb,∆Pr) of the continuum body to efficiently guide the
end effector. Due to the highly nonlinear relationship between
pressure changes and the end effector position, we would like
to choose a general control strategy that may accommodate
such a mapping and be executed in real-time. Rather than
performing some system identification for specific arm settings
and loading, we use a Kirchhoff rod model [2] of the soft arm
to train a control policy directly from experience [24, 25].
Virtually any arm configuration and simulated loading can be
trained using an existing reinforcement learning (RL) strategy
called Deep Deterministic Policy Gradient (DDPG) introduced
by Lillicrap et al. [18]. Our aim is to ultimately deploy the
learned policy on the BR2 SCA system, and hence we address
the challenge of inevitable simulation model mismatch. We
will show that defining an error state with respect to the
end effector as an implicit feedback mechanism as well as
operating in a quasi-static setting enables a useful policy in
the real environment without further tuning.

1) Soft Arm MDP Formulation: Classically these problems
are formulated as an infinite horizon discounted Markov
decision process described by the tuple M = (S,A,P,R, γ)
where the state transition probability P is unknown. We aim
to find a policy π which maximizes the expected discounted
reward with trajectory distribution ρπ(τ).

π∗ = arg max
π

Eτ∼ρπ(τ)
[ ∞∑
t=0

γtR(st, at)
]

We define the state s ∈ S by the current pressure states
(Pb, Pr), extensions length L and the vector between the
current measured end effector position x̂ ∈ R3 and the desired
position xd.

s := (x̄, Pb, Pr, L)

Where x̄ = xd − x̂. The policy chooses normalized pressure
differences as actions a := (∆Pb,∆Pr) ∈ A = [−1, 1]2. The
reward function R : S×S → R is defined as in Satheeshbabu
et al. [24] to achieve the desired end effector position in
minimum time. We denote ST as the set of terminal states (i.e.
pressure constraints). This reward function provides incentive
to make progress towards the goal at each step and achieve
a successful reach in minimal time. Note that reward func-
tion arguments R(st, at) can implicitly represent arguments
R(st, st+1).

R(st, st+1) =


−2 + (||x̄t||2 − ||x̄t+1||2) st+1 /∈ ST
−100− ||x̄t+1||2 st+1 ∈ ST
100 ||x̄t+1||2 ≤ ε

Where ε defines a ball in which the end effector is sufficiently
close to the target and is deemed successfully reached (ε = 2
cm in this case). There is a large penalty for exceeding the
pressure constraints and not achieving a successful reach after
each quasi-static pressure command with an additional penalty
based on how far away the constraint violation occurred from
the goal. Other reward functions may be considered such as
ones that encourage energy efficiency using minimal pressure
actuation. However, in the quasi-static setting achieving the
goal in minimum number of steps is a reasonable heuristic for
using minimum energy. A control policy can be learned based
on this objective which we will now briefly describe.

2) DDPG Continuous Control Policy Optimization: With
the objective of choosing actions that maximize the long term
expected rewards through interacting with environment, it is
useful to define an optimal value function conditioned on a
particular action or a Q-function and can be written recursively
with respect to a given policy π. We further assume that the
current policy π is a deterministic function of state as in
Lillicrap et al. [18], where ξ is some state distribution in the
given MDP environment with reward map R.

Qπ(st, at) = ER, st∼ξ
[
R(st, at) + γQπ(st+1, π(st+1))

]
In Deep Deterministic Policy Gradient (DDPG), the Q-
function is parameterized as a fully-connected neural network,
Qθ, with parameters θ. It also utilizes an actor-critic architec-
ture with actor network πφ and parameters φ which will serve
as the control policy. The recursive definition of thr Q-function
yields the following loss function given the current Q-function
and observed reward r at time t used to optimize Qθ.

L(θi) =
[
rt + γQθi−1

(st+1, πφ(st+1))︸ ︷︷ ︸
target

−Qθi(st, at)
]2

DDPG uses the previous network parameters as a loss target,
and then performs a weighted “soft update” to the target Q-
function parameters. The policy gradient for updating the actor
network πφ may be computed using the critic Qθ, all of which
is described in detail in Lillicrap et al. [18]. DDPG enjoys the
benefits of being off-policy meaning that the policy may be
updated even from state-action trajectories from another policy
(e.g. a random policy), allowing stable learning by sampling
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Fig. 6. 100-reward average training curves are displayed over 30K reach
episodes for lengths 9, 15 and 20 cm of the extruded soft continuum arm.
These curves are an average over 5 independent complete training trials from
random initial policy networks. The shaded regions denote the variance over
each these training trials at each length.

Fig. 7. Picking cherry tomatoes (a) with soft continuum arm retracted and
(b) with extruded soft continuum arm in the presence of obstacles in the path.
Cherry tomatoes are approximately 2.5cm in diameter.

from a large experience buffer. As shown in Figure 6, training
from simulation of various physical configurations are stable
and consistent.

B. Control and Teleoperation

The rigid arm is controlled in task space by user supplied
∆X , ∆Y , and ∆Z. This is accomplished through analytically
derived inverse kinematics [26].

The soft arm is also controlled in the task space by user
supplied ∆x, ∆y, and ∆z. This is accomplished via the RL
policy described above. The user also controls ∆L (extrusion
length) and ∆θ4 (axial rotation of the VaLeNS arm).

IV. VALIDATION AND FIELD TRIALS

A. Validation of gripper sensing system

The gripper sensing system was validated both prior to
implementation into the system and after. Prior to implement-
ing, the training data set was validated by testing it on a
UR3 arm (Universal Robots). Using 80 test points, it was
able to achieve 88% precision in predicting success correctly
and 100% precision in predicting failure correctly. As seen in
Figure 8, the distinction between success and failure sensing
output is strong and lends itself to robust results.

Fig. 8. A 3D representation of gripper success as a function of the IR sensor
readings based on the training data showing the separation of the success and
failure.

B. Picking maneuvers

There are two main tasks in order to successfully pick a
berry. First, the gripper has to reach the berry successfully
and grip it softly. Second, it should be able to sever the berry
from the branch. Although these tasks appear trivial when
done by humans, it involves a combination of dexterous hand
motions. While past research on rigid link robots have tackled
this problem, the most notable being a blade that attaches to
the gripper to shear the branch by Xiong et al. [31], these
strategies may not be compatible for a soft manipulator. In
this paper we will explore severing the berries by multiple
maneuvers involving griping and pulling. It is to be noted that
once the gripper successfully grips the berry, the grip remains
intact even after removing the air pressure in SCA. Here we
list down the different feasible maneuvers with the current arm
design. Each of them are tested after the gripper senses the
berry.

• SCA retraction: Where the SCA is retracted by 7 cm as
shown in Figure 3(a) represented by ∆L.

• Rigid link retraction: In this maneuver, the rigid arm is
retracted backwards from the plant. It maps to a change
in the θ2 angle in Figure 3(a) marked as 2.

• Hybrid arm twist: The θ4 angle (in Figure 3(a) marked as
4) which corresponds to an axial rotation of the VaLeNS
arm by 60 degrees.

• Sideward flick: In this maneuver, the rigid arm is moved
in a sidewards direction (x or y axis movement) which
corresponds to a change in the θ1 angle shown in Figure
3(a) marked as 5.

• Downward flick: Similar to the sideward flick, the rigid
arm is moved downwards (-z direction) which corre-
sponds to change in the θ3 angle shown in Figure 3(a)
marked as 3.

• SCA twist: The rotating actuators of BR2 SCA are



actuated in order to obtain the twist motion of the BR2

SCA.
The efficacy of each of these picking maneuvers is evaluated

in two different scenarios. In the first scenario, there is no
obstacle in between the berry and the approach path of the arm.
In the second scenario, an obstacle (as shown in Figure 7(b))
is placed in the path of the arm. In each scenario, the berry
is securely gripped by the gripper and the above maneuvers
are implemented in order to see the efficacy of the picking
maneuvers. Furthermore, these experiments are conducted
under two sub cases. The first sub case is with the SCA fully
retracted (as shown in Figure 7(a)), which corresponds to the
case when berries are picked from the periphery. The second
sub case is when the extruded length is greater than 7 cm
(10 cm, 15 cm and 20 cm) (as shown in 7(b)) to include the
scenario when the berries are inside the bush. Table I and
Table II shows the success of different maneuvers for each
sub case. It can be observed from the results that retracting
the SCA works for all the tested lengths except when there
is zero extrusion. Retraction using rigid links, sideward flick
and downward flick are also successful for most of the cases.
However these are contingent on the surrounding environment
and possible damage caused to neighboring berries. From
Table I and Table II it is also evident that twist using hybrid
arm and twist using SCA rotation are successful in only a few
cases. The berry was successfully picked only when the SCA
and hybrid arm rotation are repeated 3 times on an average.

TABLE I
SCENARIO 1: PICKING MANEUVERS WITH NO OBSTACLE

Extruded Length of the SCA
Maneuver 0 cm 10 cm 15 cm 20 cm

SCA retraction x X X X
Rigid link retraction X X X X

SCA twist X∗ X∗ X∗ X
Hybrid arm twist X x x X

Sideward flick X X X X
Downward flick X X X X

∗ more than three rotations X successful x unsuccessful

TABLE II
SCENARIO 2: PICKING MANEUVERS WITH SINGLE OBSTACLE

Extruded Length of the SCA
Maneuver 0 cm 10 cm 15 cm 20 cm

SCA retraction x X X X
Rigid link retraction x X X X

SCA twist x X∗ X∗ x
Hybrid arm twist x x x X

Sideward flick x X+ X+ X+

Downward flick x X+ X+ X+

+ setup dependent X successful x unsuccessful

C. Soft arm control

In section III we described a DDPG planning and control
algorithm that is trained from a simulated Kirchhoff rod model
of the soft arm. Although the control operates in a quasi-static
setting, it is expected for the true SCA mechanics and actuation
to differ from that of the simulation. To evaluate the controller
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Fig. 9. In order to evaluate the DDPG policy on the BR2 SCA system, for
each length we select 15 reach points in the workspace when the arm is in
the neutral position. For each point the arm is given 10 steps to reach the goal
and stops once the error becomes less than 1 cm. In practice 2 cm tolerance
is acceptable. The orange line indicate the median final error distance which
is under the desired threshold for all extension lengths.

we examine the ability of the BR2 SCA to reach various points
in the feasible workspace at 3 extrusion lengths (9, 15, 20
[cm]) keeping the rigid arm position fixed. The points are
chosen by discretizing the the bending and rotating pressure
value (Pb, Pr), setting the SCA to those pressures and then
recording the delta x̄ via the electromagnetic sensor. Then,
given the same initial conditions (i.e. position and pressures),
we provide the DDPG algorithm the prescribed delta. Then
one of the three following cases occurs:

1) the error to the point exceeds a 1 centimeter lower
tolerance so that ||x̄||2 < 1 [cm]. Control terminates
and the reach is deemed successful.

2) After 10 controller steps the final error is within the
upper 2 centimeter tolerance so that 1 ≤ ||x̄||2 ≤ 2
[cm] and the reach is deemed successful.

3) After 10 controller steps the final error is ||x̄||2 ≥ 2
[cm] and the reach is considered a failure.

Then the final error is recorded. We choose 15 points for
each length and disregard pressure configurations that purely
rotate the SCA, as the resulting delta is very small and not
meaningful. For each Pb state of (20, 30, 40)psi we consider
the rotation pressures Pr states (−40,−20, 0, 20, 30, 40)psi
giving us the 15 corresponding workspace points at a given
length. In Figure 9 we display the box plots of those reach
trials. We note that for length 9 and 15 centimeters, every
reach point achieved below the desired 2 centimeter threshold.
However for 20 centimeters extension, 4/15 points exceeded
the threshold, 3 of which points were at high bending pressures
(30 psi or 40 psi). We suspect that for the longest length of
20 centimeters, the model mismatch of simulation and the real
BR2 SCA system are emphasized. A possible way to mitigate
these failed reaches is to fine tune the DDPG controller on
additional additional real reach experiences.



Fig. 10. System validation trial: (a) approaching the plant (b) reaching for a fruit on the periphery (no soft arm extrusion) (c) grasping the fruit (d) picking
the fruit with rigid arm flick maneuver (e) depositing the fruit in a collection bin (f) reaching for a fruit in the interior of the plant (g) using soft continuum
arm (SCA) extrusion to reach the fruit (h) grasping the fruit (i) picking the fruit with SCA retraction maneuver and (j) depositing the fruit in a collection bin.

D. System validation

In order to validate the entire system, the robot is controlled
by the user to pick berries on the periphery and at different
interior depths of the plant. Cherry tomatoes on a vine are
attached to the branches of the plant in different locations.
Figure 10 shows the different steps in successfully picking
the berries. Figure 10(a)-(e) show picking a berry from the
periphery of the plant whereas Figure 10(f)-(h) show picking
a berry from the internal depth of the plant. It can be observed
in Figure 10(b)-(d) that in the case where berries are picked
from the periphery of the plant, the task is performed with
almost negligible extrusion of the SCA. Whereas, for the case
when the berry is inside the bush, the SCA is extruded to reach
the berry and to ensure soft interaction with the plant. In Figure
10(c) and (h) it is shown how the gripper successfully grips
the berry. In Figure 10(d) and (i) rigid arm retraction and soft
arm extrusion maneuvers are used respectively to sever the
berry from the branch and finally place it in the cart attached
to the robot in Figure 10(e) and (j). The video of the robot
performing several tasks is included in a supplementary video
file 1.

E. Discussion

It is observed that the picking of peripheral berries was
straightforward, relatively simple and efficient with the task
space control presented in this work. This is because peripheral
berries required actuation of the rigid links alone. Although
this system possesses the required capabilities to successfully
pick berries from the inside of a bush, the current task space
control renders this operation to be slow. For example, a
berry located 15 cm inside the bush required approximately
4 minutes to reach, grip and pick. This required 12 user
commands (5 for the rigid arm and 7 for the soft arm) to
accomplish. The two main challenges observed involve the

1https://youtu.be/0hFTP0UUaIE

issue of perception and convergence of SCA control. The issue
of perception is the difficulty to visually perceive the location
of the berry by the user. The IR reflectance sensor on the
gripper aided in overcoming perception challenges, but is only
effective during the final stages of approach towards the berry.
Furthermore, this sensor did experience some false positive
readings when chunks of leaves rather than a berry entered
the gripping space.

V. FUTURE WORK AND CONCLUSIONS

We have presented a hybrid rigid-soft arm and manipulator
for performing tasks requiring dexterity and reach in cluttered
environments. We validated the system in the challenging
agricultural problem of picking berries. The system however
can be modified for use in other applications requiring dex-
terity and reach. Future work can include improving gripper
sensing and utilizing it in the control loop to fine tune to
positioning of the gripper and achieve better gripping results.
The training can also be made more robust by training it in
the full environment and developing the ability to differentiate
between target fruits and other materials such as branches and
leaves. Our system as presented uses reinforcement learning to
track desired task-space trajectories by controlling pneumatic
pressures in the arm. This makes the system easy for a human
to operate, but it is not yet fully autonomous. However, the
system will allow users to demonstrate feasible trajectories for
the future development of a fully autonomous berry picking
systems.
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