
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Automated Synthesis of Modular Manipulators’
Structure and Control for Continuous Tasks around

Obstacles
Thais Campos

Cornell University
Email: tcd58@cornell.edu

Samhita Marri
Cornell University

Email: sm2733@cornell.edu

Hadas Kress-Gazit
Cornell University

Email: hadaskg@cornell.edu

Abstract—In this work, we describe an end-to-end system for
automatically synthesizing correct-by-construction structure and
controls for modular manipulators from high-level task speci-
fications. We define specifications that include both continuous
trajectories the end-effector must follow and constraints on the
physical space (obstacles and possible locations of the base of
the manipulator). In our formulation, trajectories are composed
of basic shape primitives (lines, arcs, and circles) and we avoid
discretizing the desired trajectory, as other approaches in the
literature do. We encode the task as a set of constraints on the
manipulator’s kinematics and return the manipulator’s structure
and associated control to the user, if a solution is found. By
solving for the continuous trajectory, as opposed to a discretized
one, we ensure that the original task is satisfied. We demonstrate
our approach on three different specifications, and present the
resulting physical robots tracing complex trajectories in the
presence of obstacles.

I. INTRODUCTION

For a given off-the-shelf robot, many of its capabilities, such
as its reachable space and maximum payload, are defined a
priori by its structure and actuators. Modular robots [1], on
the other hand, allow flexibility in the robot’s structure as their
components can be rearranged or replaced, thus composing a
new machine with new capabilities that can perform a new
set of tasks. Modular robots can be specifically designed for a
task, thereby guaranteeing its feasibility. However, deciding on
a modular robot’s structure and controls can be challenging.
Such a design process requires knowledge of kinematics,
dynamics and controls, and designing these robots manually
is a tedious and error prone process.

Serial chain robots are used in domains ranging from
maneuvering payloads in space [2] to assisting physicians in
surgeries [3]. With such different functions, their structure
can vary greatly; however, it follows a general template: a
sequence of rigid links connected by joints beginning at a base
and ending with an end-effector. The manipulator components,
their sizes, capacities and quantities, as well as its location
and the surrounding environment will govern its performance.
Thus, choosing the correct pieces and their arrangement is
crucial for the feasibility of a specific task, but this choice can
be difficult to reason about.

We propose an end-to-end system for automatically synthe-
sizing correct-by-construction modular manipulator structure
and controls from a high-level task specification. Here, tasks

are continuous trajectories in a 2D plane, constructed from
parameterized curves. These curves, which we refer to as
shape primitives, can be of three types: line segments, arcs and
circles. Furthermore, the workspace may include obstacles the
robot must avoid and there may be constraints on the position
of the manipulator’s base. In our approach, we define a set of
constraints representing the manipulator’s kinematics, which
guarantees that, if a design is found, the task is feasible. Users
specify a high-level task, such as the “rose” trajectory between
obstacles in Fig. 1, and our tool provides instructions for how
to construct a robot (link lengths, number of joints, etc.) as
well as the control inputs to perform the task.

The automated design of mechanisms based on a task
description has been studied in the past [5–25]. In [6–15], the
authors use optimization techniques to create a manipulator’s
structure able to reach a set of points in 3D. For works that
considered obstacles in the environment [6–9], a collision-
free path that drives the robot through all the task points was
computed. Other works [16–19] focus on designing a planar
linkage to trace a path that includes selected target points.
Other types of high-level tasks were also considered; in [25],
the optimization goal is to find a serial chain structure that
satisfies industrial requirements, such as level of accuracy.

For common robotic manipulator tasks, such as pick-and-
place, if the robot can visit the required points while avoiding
obstacles in the environment, then the trajectory performed
while executing the task is typically of lesser importance.
However, some tasks (e.g. painting, welding, or opening a
door) require the end-effector to follow a specified continuous
trajectory. If the robot has a fixed structure, motion planners
can be used to search for a path such that the end-effector
traces the required trajectory while avoiding obstacles. If no
path is found, fixed robots cannot accomplish the task. Here,
we leverage the configurability of modular robots to jointly
synthesize the structure of the robot and the required control
thereby enabling the system to achieve a variety of tasks.

Other works consider continuous trajectories as tasks; in
[20–22], given an input motion, a time varying rotation and/or
translation with respect to a reference point, the authors
present techniques for synthesizing mechanisms that display
desired output motion. These approaches accept a description
of the motion, for example, a rotation, and create a mechanism

Fig. 1: “Paint a rose”. (A) Task specified in the GUI. The red circles are obstacles, the gray line is the desired trajectory and
the black rectangle is a constraint on the location of the base (B) The synthesized manipulator executing the task. Reachable
space (light gray) of the solution obtained using (C) SV app and (D) SV over as approximations of the swept volume.

Fig. 2: Manipulator and task definitions. (A) Hebi Robotics X8-16 Module [4], link and tube adapters. (B) Visualization of
obstacle and manipulator parameters. (C) Scheme representing a manipulator and a task.

that maps it into another type of motion, such as linear. In these
works, a finite set of components were used to construct more
complex mechanisms able to perform the required motion.
While in [20], the authors used Simulated Annealing to find
the best design, in [21] they devised a synthesis methodology
based on a matrix representation of the motions, and in [22]
they synthesize a structure that implements a given motion
specification using constraint programming. In [23, 24], the
method takes an input curve and discretizes it to design a
device able to reach the points and follow the curve as closely
as possible. In [23], the goal was to create mechanical char-
acters capable of performing complex movements. For that,
the researchers used a library of parameterized mechanisms
to find a structure and its optimized parameters able to reach
the discretized points. Similarly, in [24], a library of modular
components was used to compose robotic devices to follow a
sequence of points selected from a given trajectory. As the set
of components in [24] is finite, the authors used A* to perform
the search in the design space.

A tradeoff that needs to be considered when discretizing
a trajectory is the number of points used; there should be
enough to make sure that the curve is still recognizable, but
not too many to ensure the problem is still computationally
efficient to solve. Furthermore, even if the selected design can
reach all the extracted points, there are no guarantees that
it can execute the full trajectory, consequently, a discrepancy
between the original and the resultant curve might occur (as we
demonstrate in Section IV). In our approach, by defining the
set of allowable trajectories to be those composed of the shape

primitives, we solve for the continuous trajectory, ensuring that
the original trajectory is followed.

The main contributions of this paper are: (i) a novel
manipulator task formulation that allows a user to specify a
desired continuous trajectory in a workspace with obstacles
and constraints on the base, (ii) a framework for automatically
synthesizing correct-by-construction structure and controls for
modular manipulators from high-level tasks, (iii) a continuous
formulation of the problem that does not require discretization
of the desired trajectory, thereby guaranteeing the solution
satisfies the continuous task, and (iv) physical demonstration
of our approach on tasks that include complex trajectories
(drawing a rose), coverage tasks (wiping off a table) and
following a path around obstacles (cleaning a table).

II. DEFINITIONS

We use the . operator to refer to the parameters of a variable
in our formulation. For example, l.pi is the first end point of a
line segment l. We use [a, b] to denote continuous intervals and
{a, . . . , b} for discrete sets. All variables and parameters are
depicted in Fig. 2. We represent a line segment between points
u, v as uv, the vector as −→uv, and the vector’s length as ||−→uv||.
The distance between two curves h1 and h2 or a curve h1 and
a point p is represented by ||h1, h2|| and ||h1, p||, respectively.
||h1, h2|| is the minimum distance between two points on h1
and h2, and ||h1, p|| between a point on h1 and p.

A. Task
A shape primitive (SP) is a planar geometric shape char-

acterized by its features. We consider three types of shapes

(Fig. 2(C)): line segment (l), characterized by initial (l.pi) and
final (l.pf) points; circle (c), characterized by its center (c.cc),
radius (c.rc), and initial and final point (c.pc); and arc (a),
characterized by initial (a.pi) and final (a.pf) points, direction
(a.dir, clockwise or counterclockwise) and its center (a.ca).
All points are in a global reference frame. A task includes q
shape primitives, such that q = ql + qc + qa, where ql is the
number of lines, qc circles, and qa arcs.

The workspace of the manipulator may include a set of
nobs obstacles, O. An obstacle o ∈ O is modeled as a circle
described by its center’s position in the global reference frame
(o.co) and its radius (o.ro). Other obstacle shapes can be over
approximated by a circle. We assume that no obstacles are
inside the circles or circles defined by the arcs that compose
the desired trajectory. Constraints B on the location of the base
of the manipulator, if any, are defined as a set of rectangles
whose sides are parallel to the global reference frame axes.

A task T = (SPq, O,B) includes an ordered list of q
shape primitives, SPq , constituting a continuous trajectory
to be executed by the manipulator’s end-effector, the set of
obstacles O the manipulator must not collide with and the
constraints B on the location of the base. The shape primitives
are connected: the final point of the current shape primitive
coincides with the initial point of the next one. We refer to
the connection points as transition points.

B. Robot structure and control

A module mk, where k ∈ {1, . . . , nDOF } and nDOF is the
number of modules, is a unit of the manipulator that provides
one rotational degree-of-freedom (DOF) (actuator). We define
θk according to the Denavit-Hartenberg convention [26]. The
angle of the first module, θ1 is defined with respect to the
global z-axis.

A link is a rigid body with a fixed length r and diameter ∆
that connects two consecutive modules or a module and the
manipulator’s end-effector (EE).

A point sk ∈ R2 denotes the position of the center of
rotation of module mk in the task plane. We define the state
of the manipulator as S = {s1, . . . , snDOF

, snDOF+1}, where
snDOF+1 denotes the end-effector position. For example, in
Fig. 2(C), S = {s1, s2, s3, s4}. A manipulator state uniquely
defines the set of joint angles Θ, where Θ = {θ1, . . . , θnDOF

}.
Module m1 is fixed on the plane at point s1, the origin (base)
of the manipulator. The farthest point of a shape primitive from
snDOF−1 is referred to as pfarthest; and the closest, pclosest.
For nDOF = 2, snDOF−1 is the origin of the manipulator. The
state of the manipulator that places the EE at a certain point
pm of SPj is referred to as Sj,m.

For a 2 DOF planar arm, the shoulder joint is located at
the origin of the manipulator (s1), while the elbow joint, at
the end of the first link (s2). We refer to the angle between
the two links as β or the elbow angle, where β ∈ [0, π]. For
points in the reachable space that are not on its boundaries,
there are two solutions that place the EE at the point: upwards
and downwards elbow configurations. In the upwards config-
uration, the joint is located to the left of the line connecting

snDOF−1 and the EE (see Fig. 4(A-i)); in the downwards, to
the right (see Fig. 4(A-ii)). For points on the boundary, there
is only one solution where β is either 0 or π.

A structure D is a list of nDOF modules mk connected by
links with length rk such that m1 is fixed on the plane at point
s1. Here, we consider nDOF ∈ {2, 3}. The reachable space
(RS) is the set of points that the EE can reach.

III. APPROACH

We formulate the problem of finding both the structure D
and controls θt (joint angles over time) as an optimization
problem where the constraints are the manipulator’s kinemat-
ics, and the cost is the sum of the link lengths, thus minimizing
the size of the manipulator. We are solving for feasibility, i.e.
all constraints are met, but the solution may not be globally
optimal. We prioritize solutions with less DOF so that the
design is less complex. Since the possible number of actuators
is small, nDOF ∈ {2, 3}, we explicitly enumerate over the
options: we first attempt solutions with nDOF = 2, and then
with nDOF = 3. In our optimization formulation, the decision
variables are the manipulator’s states Sj,u of specific points
on each shape primitive, and the link lengths rk. Given Sj,u,
we uniquely calculate θt necessary to achieve the desired
manipulator state and create the control. The optimization
problem we solve is:

min
nDOF∑
k=1

rk, Subject to

∀j ∈ {1, ..., q}, ∀u ∈ {i, f, closest, farthest}, eqs. (2) to (11)
(1)

The solution to the optimization problem is a candidate
structure and the configurations of the manipulator for the
specified points on the shape primitives. We add verification
steps, when necessary, to ensure the existence of collision-free
motion as discussed in Sections III-E and III-F.

In the following sections, we define the equations we use
to encode the synthesis problem and the methods we use to
verify the solution. We first address the main challenges of our
problem: how we ensure that the trajectory is collision-free and
continuous, which, in our context, means that the end-effector
does not deviate from the trajectory. Then, we introduce
self-collision avoidance constraints. Finally, we define the
constraints due to consistency of the structure.

A. Collision avoidance constraints

We address collision avoidance in two parts: during the ex-
ecution of shape primitives and during the transition between
them. For the first part, we use a method commonly employed
in continuous collision detection, which consists of calculating
the swept volume (SV) of the manipulator, the space the
manipulator moves through as it is executing a motion, and
checking for intersections with any obstacles [27–30]. As the
SV can be a complex shape, over approximations are used
to simplify its calculation. Bounding boxes [29] and convex
hulls and their variations [27, 28, 30, 31] are commonly used.

For a 2 DOF planar manipulator, for all points on a
shape primitive, there are at most two inverse kinematics (IK)

Fig. 3: Over approximation of the swept volume construction
for a line segment (i), a circle (ii), and an arc (iii).

solutions that place the EE at the point. However, as more links
are added to the manipulator, it becomes redundant, which
may result in an uncountable number of solutions for the IK.
Although this redundancy is beneficial when the manipulator
needs to avoid an obstacle, it increases the complexity of
calculating the SV . We simplify the SV calculation for a 3
DOF manipulator by only allowing the last two links (distal
links) to move during the execution of a shape primitive, while
the remaining one (proximal link) is static. To clarify the
nomenclature, a 2 DOF has only distal links.

We reduced the problem of finding a 3-link manipulator able
to perform the complete collision-free trajectory into finding a
2-link manipulator with a “changing origin”, which is the end
of the proximal link. Since only the distal links move during
the execution of a SP , the SV calculation can be performed by
predicting the boundary positions of each distal link for each
SP and bounding the motion by convex shapes. In our system,
we first attempt to find a solution by over approximating the
SV , SV over. If a solution is found, then it is correct and
collision-free. However, since SV over can be conservative, if
we cannot find a solution, we proceed to attempt to find a
solution by approximating the swept area, SV app, such that
it contains most of the SV . In this case, if we find a feasible
solution, the system verifies that it is indeed collision-free.

B. Calculation of SV over

The over approximation of the SV for tracing SPj , SV over
j ,

is composed of SV over
1,j for link nDOF − 1 and SV over

2,j for
link nDOF . Link nDOF − 1, for any SP , will always trace a
section of a circle, since it has only 1 DOF. This area is over
approximated by a circle SV over

1,j with origin at snDOF−1 and
radius rnDOF−1. The area swept by link nDOF will depend
on the arc traced by the elbow and the trajectory traced by the
EE, which is SPj itself. However, we can bound its motion by
calculating the tangents h1 and h2 from SV over

1,j to the SPj .
Then, SV over

2,j is the convex hull of the set of points composed
of the points where h1 and h2 meets SPj , as well as SPj end
points. Fig 3 shows SV over

2,j for each SP .

C. Critical points and reachability

We denote the points pi, pf , pclosest, and pfarthest of a
shape primitive as the critical points of lines and arcs, and

pclosest, and pfarthest as the critical points of a circle. If the
end-effector can reach these points, the whole shape primitive
is reachable if there are no obstacles. Intuitively, for a line,
pfarthest is one of the end points of the line segment and
pclosest is either the intersection point, if it exists, between
the line segment and the perpendicular line going through
snDOF−1 or one of the end points. For a circle, the critical
points are the intersection points between the circle and the
line defined by snDOF−1 and c.cc, in which pclosest is on
the line segment snDOF−1c.cc and pfarthest is outside of it.
Similarly, for an arc, the critical points might be the end points,
or the intersection points between the arc and the line defined
by snDOF−1 and a.cc. We present the equations of pfarthest
and pclosest in Table I.

The RS of a two-link planar manipulator is an annu-
lus, whose larger radius is rnDOF−1 + rnDOF

and smaller,
|rnDOF−1 − rnDOF

|. Thus, for all points v ∈ RS, Eq. 2 is
satisfied, where snDOF−1 is the origin of the 2 DOF distal-
links manipulator.

|rnDOF−1 − rnDOF | ≤ ||
−−−−−−−→vsnDOF−1|| ≤ rnDOF−1 + rnDOF (2)

If pfarthest and pclosest of a shape primitive SP satisfy Eq.
2, then all points on SP are reachable.

D. Calculation of SV app

We define ej as an approximation of the arc traced by the
elbow during the execution of the shape primitive SPj . This
arc is used in the calculation of SV app and is characterized by
its end points (ej .p1 and ej .p2), direction (ej .dir, clockwise or
counterclockwise) and its center (snDOF−1). Given the critical
points, rnDOF−1, rnDOF

, and snDOF−1, we apply the IK
equations to calculate the elbow position at the critical points,
which are then used to define ej . Fig. 4(A) shows the elbow
positions at the critical points for each SP . Both ej .p1 and
ej .p2 are approximations of the end points of the arc traced
by the elbow, used to bound the SV , but the elbow may reach
points outside ej while tracing SPj .

We calculate SV app
j , the approximation of the volume swept

by the manipulator to trace SPj , by separating it into two
convex polygons SV app

1,j and SV app
2,j . SV app

1,j is a pentagon
over approximation of the section defined by snDOF−1 and
arc ej , as shown in Fig. 4(B).

To construct SV app
2,j , we first compute the lines g1 and g2

such that the over approximation of ej and SPj are to the
right of g1 and to the left of g2. Intuitively, g1 connects the
left-most points on SPj and the over approximation of ej ; and
g2, the right-most points. For a line segment l, g1 connects the
left-most end point of l and the left-most end point of the over
approximation of ej . Similarly, we construct g2 by replacing
the left-most points with the right-most. Fig. 4(B-i) shows g1
and g2 for a line segment l. For a circle c, as it has no end
points, g1 and g2 are lines that are tangents to both c and the
over approximation of ej (Fig. 4(B-ii)). Similarly, for an arc a,
g1 and g2 are either the external tangents of SPj and the over
approximation of ej , if the tangency points lie on a; and/or

SP Line segment Circle Arc

Equation ∀l.p ⊂ l,∀t ∈ [0, 1],
l.p = l.pi + (l.pf − l.pi)t

∀c.p ⊂ c, ∀t ∈ [0, 2π],
c.p = c.cc + c.rc[cos(t), sin(t)]

∀a.p ⊂ a, ∀t ∈ [ti, tf]
where ti and tf are the angles to
reach a.pi and a.pf , respectively,
a.p = a.cc + a.rc[cos(t), sin(t)]

pfarthest l.pi or l.pf c.cc −
c.rc(snDOF −1−c.cc)

||−−−−−−−−−−→snDOF −1c.cc||
a.cc −

a.rc(snDOF −1−a.cc)

||−−−−−−−−−−→snDOF −1a.cc||
or a.pi or a.pf

pclosest
l.pi + (l.pf − l.pi)

−−−−−−−−−−→
snDOF −1l.pi·

−−−−−→
l.pf l.pi

||
−−−−−→
l.pf l.pi||

or l.pi or l.pf
c.cc +

c.rc(snDOF −1−c.cc)

||−−−−−−−−−−→snDOF −1c.cc||
a.cc +

a.rc(snDOF −1−a.cc)

||−−−−−−−−−−→snDOF −1a.cc||
or a.pi or a.pf

TABLE I: Shape primitive equations, pfarthest and pclosest for each type.

Fig. 4: SV app construction. We do not allow obstacles inside
circles or circles defined by arcs. (A) Elbow position at critical
points and (B) swept volume for a line segment (i), a circle (ii)
and an arc (iii). Critical states are in dark blue (Sj,f), light blue
(Sj,closest) and red (Sj,farthest). The SV is decomposed into
the SV of the nDOF –1 link, a pentagon over approximation
of a sector, and the nDOF link, the convex hull of the elbow
and EE boundary positions.

the line connecting the left and/or right-most end point of a
and the over approximation of ej (Fig. 4(B-iii)).

Finally, SV app
2,j is the convex hull of the set of points

composed of the points where g1 and g2 meets SPj , as well
as SPj end points, and the points that form the quadrilateral
that contains ej , as seen in Fig. 4(B).

E. Collision avoidance constraint encoding

We enforce that SVj ∩ O = ∅, where SVj can be either
SV app

j or SV over
j . This requirement is encoded in two parts.

First, we guarantee that ∀o ∈ O, their centers are outside SVj .
Thus, there cannot be any obstacles fully inside SVj .

∀j ∈ {1, ..., q},∀o ∈ O, o.co 6∈ SVj (3)

However, even if Eq. 3 holds, part of the obstacles can still
be inside SVj , which occurs when they intersect any edge
E of SVj . Thus, the second part guarantees that the distance
between any edge of SVj and any obstacle center is larger
than the obstacle’s radius, as encoded in Eq. 4.

∀j ∈ {1, ..., q},∀E ∈ SVj ,∀o ∈ O, ||E, o.co|| > o.ro (4)

When SVj is SV app
j , this constraint is not sufficient to

guarantee collision-free motion. Thus, after obtaining a candi-
date solution, we verify that the motion while executing SPj

is in fact collision-free. This verification step is performed
as follows. First, we use the IK equations to calculate the
joint angles of the candidate structure so the EE traces SPj .
Second, using the joint angles, we calculate the actual SV of
the candidate manipulator. Then, we verify that it does not
intersect any obstacle. If it does, we restart the optimization
with a new initial guess.

F. Continuity constraints

We separate the continuity constraints into two parts: during
the execution of SP and during the transition between them.

1) During execution of a SP: The elbow positions at the
critical points must be such that the manipulator maintains
continuous motion of the EE in tracing the trajectory. As
previously discussed, the IK equations for a given point inside
the RS of the manipulator can return up to two solutions, in
which the elbow is up or down, or, if the point lies on the RS
boundary, the elbow is fully extended or fully retracted. Thus,
if, for example, the elbow up configuration was returned as
a solution for reaching a critical point, then the elbow must
remain upwards for the entire motion unless it fully extends
while still tracing the path. In our constraint formulation,
the elbow is not allowed to change its direction during the
execution of the shape primitive. If the elbow position (snDOF

)
of the distal arm is to the left of the vector connecting snDOF−1

and snDOF+1, then the cross product between the vectors

−−−−−−−−−−−−→snDOF−1snDOF+1 and −−−−−−−−−−→snDOF−1snDOF
is positive; if it is to

the right, negative. Thus, for any two critical points of a shape
primitive, the product between these cross products should be
positive so that the elbow maintains its relative position. This
constraint is encoded in Eq. 5.

∀j ∈ {1, ..., q}, ∀u1, u2 ∈ {i, f, closest, farthest},
−−−−−−−−−−−−−−−−−−−→
Sj,u1 .snDOF Sj,u1 .snDOF−1 ×

−−−−−−−−−−−−−−−−−−−−−→
Sj,u1 .snDOF+1Sj,u1 .snDOF−1·

−−−−−−−−−−−−−−−−−−−→
Sj,u2 .snDOF Sj,u2 .snDOF−1 ×

−−−−−−−−−−−−−−−−−−−−−→
Sj,u2 .snDOF+1Sj,u2 .snDOF−1 ≥ 0

(5)
2) During transition between SP: When at a transition

point, the manipulator must move from the final state of
SPj (the state for reaching pf), Sj,f into the initial state
of SPj+1 (the state for reaching pi), Sj+1,i. Since the EE
remains fixed at the transition point, the manipulator forms a
closed kinematic chain with nDOF +1 links: the manipulator
links in addition to a “ground” link which connects s1 to the
EE. This constraint reduces the total number of DOF of the
system. For example, for a 3 DOF manipulator, we need to
specify its three joint angles for its state to be fully known.
However, for a 4-link closed loop chain, the state is determined
by one joint angle. To determine how many DOF a closed
loop linkage has, we use the Mobility Formula [32], which
determines the number of independent parameters (here, joint
angles) that need to be specified for the state to be fully known.
The mobility formula for a single loop planar linkage [32] is
F = n − 3, where F is the number of DOF of the single
loop planar linkage and n the number of links. The transition
motion must ensure that the loop stays closed. We present
constraints for this motion separately for each nDOF .

a) 2 links: Since n = 3 (2 links from the manipulator
plus the ground link), the mobility F is zero. This means that
this linkage has no DOF, thus Sj,f and Sj+1,i must coincide,
as no motion can be created.

b) 3 links: Since F = 1, given an input joint angle,
the remaining ones can be determined, if they exist. For the
transition motion to exist, we calculate the limits of the range
of motion for θ1 and θ3, the first and third joint angles,
respectively, as explained in [32], and replicated in Eqs. 6 and
7. We calculate the angles at the beginning of the transition
from SPj to SPj+1, referred to as θ1,trj ,i and θ3,trj ,i, and
at the end of the transition, θ1,trj ,f and θ3,trj ,f . The range of
motion depends, exclusively, on the dimensions of the linkage,
in which rg,j is the ground link length or the distance between
s1 and the respective transition point.
∀j ∈ {1, ..., q − 1},∀u ∈ {i, f},
r2g,j + r21 − (r2 − r3)2

2r1rg,j
≤ cosθ1,trj ,u ≤

r2g,j + r21 − (r2 + r3)
2

2r1rg,j
(6)

(rg,j + r3)
2 − (r2 − r1)2

2r3rg,j
≤ cosθ3,trj ,u ≤

(rg,j + r3)
2 − (r2 + r1)

2

2r3rg,j
(7)

This constraint is necessary but not sufficient for motion
to exist, as during the transition motion, θ1 may reach a

value that yields no solution for θ3. Thus, when synthesizing
a 3 DOF solution to the task, we first obtain a candidate
solution and then verify that the transition motions exist and
are collision-free. The verification step is performed in two
steps. First, we generate a linearly spaced set of θ1, in which
the limits are θ1,trj ,i and θ1,trj ,f . For each θ1 in the set, we
attempt to calculate the resultant joint angles by using the IK
equations. If the joint angles exist such that the closeness of
the linkage is satisfied, we generate a set of transition states for
the manipulator. Second, for each state, we certify that there
are no collisions with obstacles by calculating the distance of
each link to each obstacle and checking that it is larger than
the obstacle’s radius plus the link radius. If the verification
step fails, we restart the optimization with a new initial guess.

G. Self-collision Constraint

Due to the geometry of the components and the constraints
we are imposing on the structure, all links are parallel to
each other along the z-axis and are stacked, such that the
links closer to the origin are closer to the plane of the task.
Therefore, the only possible self-collision is if the EE, which
is connected to the end of the last link and extends to the task
plane, collides with one of the other links. If the links had no
thickness, the EE would collide with the first link of the distal
arm only if β = 0 and rnDOF−1 > rnDOF

. Since β ∈ [0, π],
if β is equal to zero for a point on the shape primitive, then
this point is pclosest. Thus, the minimum distance between
the EE and the link should be larger than zero when the EE
reaches pclosest. However, since the links have thickness, the
minimum distance should be larger than the diameter of the
links (∆), if rnDOF−1 > rnDOF

. Eq. 8 guarantees that this
minimum distance is satisfied.
∀j ∈ {1, ..., q}, u = closest,

||Sj,u.snDOF−1Sj,u.snDOF
, Sj,u.snDOF+1|| > ∆ (8)

Now, we need to consider the possible collision of the EE and
the first link for a 3 DOF arm. Since during the execution of
the SP , the first link is static, the collision will happen only if
the distance between it and the shape primitive itself is smaller
than ∆. This constraint is represented in Eq. 9.

∀j ∈ {1, ..., q}, ||SPj , Sj .s1Sj .s2|| > ∆ (9)

H. Constraints on the structure

We require the structure, i.e. the link lengths and origin, to
be identical for all states of the manipulator.

1) Origin: The origin of the manipulator, s1, must be inside
B. If B is not specified, s1 can be anywhere on the plane.
∀j1, j2 ∈ {1, ..., q},∀u1, u2 ∈ {i, f, closest, farthest},

Sj1,u1
.s1 ≡ Sj2,u2

.s1, s1 ∈ B (10)

2) Consistent link lengths: The distance between two con-
secutive points in S is equal to the corresponding link length.
∀j ∈ {1, ..., q},∀u ∈ {i, f, closest, farthest},∀k ∈

{1, ..., nDOF },

||Sj,u.sk, Sj,u.sk+1|| = rk (11)

I. Implementation

We solve the constrained optimization problem for the
design and control of a manipulator using Sequential Quadratic
Programming (SQP) where we solve for a feasible solution.
We use the fmincon function in MATLAB R2019a. In this
method, an initial guess is required, and the final result can
change drastically depending on it. To identify an initial guess
that will more likely yield a solution, we first solve a simpler
version of the problem and use that as our initial guess.
Initial guess: To initialize the optimization, we choose points
along the trajectory and solve for a manipulator that can reach
these points while avoiding obstacles, similar to [6, 7]. For
computational efficiency, we do not solve for a collision-free
trajectory connecting these points, and the number of points
selected is small (2 to 5 for each shape primitive). To increase
the likelihood of finding a solution to the full optimization,
we require for all consecutive EE positions, if an elbow up
solution is chosen for a certain point, then it is also selected
for the next one (or a solution where the arm is fully extended),
and the same for elbow down.

IV. DEMONSTRATIONS

The results provided by our framework are general enough
to be implemented by any kind of module that provides one
rotational DOF. In our demonstrations, we used the HEBI
Robotics X8-Series Actuators with 110 mm x 73 mm x 45
mm dimensions [4]. They are equipped with sensors that allow
position, velocity and torque control. Each module provides
one DOF and can rotate continuously. We controlled each
separately, via Ethernet, using a 64 bit desktop computer
running Ubuntu 14.04 with 8 GB RAM and 3.6 GHz processor.

We used aluminum tubes with 31.75 mm diameter as links
and cut them to the required length based on the synthesis
results. To connect a link and an actuator, we used tube
adapters manufactured by HEBI Robotics to provide zero
degrees link twist and result in a planar manipulator. Fig.
2(A) shows each component. We drilled the tube connected
to the end-effector to accommodate a 9.5 mm diameter rod
that ends with the EE, responsible for interacting with the
task plane. The type of the end-effector used depended on the
task: sponges for wiping the table and a brush to paint a rose.

Our approach outputs a design and the associated joint an-
gles required for the task. We used an open-loop proportional
controller based on the actuator position. The actuators used
have position sensors, so no external sensors are needed.

A. Physical Demonstrations

In this section we demonstrate our approach to manipulator
synthesis from high-level specifications. We implemented a
Graphical User Interface (GUI) to facilitate the specification
of high-level tasks. We show the task as defined by the user in
our GUI, the resulting synthesized solution and the physical
implementation of the task using Hebi robotics modules and
a variety of end effectors.

Table 2 presents the task name, the shape primitive types
used to create the task, the resultant manipulator and the total

computational time to find a solution. Fig. 1 and Fig. 5 show
the task definitions in the GUI, the solutions obtained and the
physical implementations. All the solutions we fabricated were
obtained using the SV app approximation of the SV . Using
SV over, we only found a solution for the rose task (Fig. 1
(D)). For the tasks in Fig. 5, the manipulator is required to go
around obstacles and therefore it is not surprising that an over
approximation of the swept area is too restrictive.

A video depicting the simulations and the physical demon-
strations is available at https://youtu.be/9Uvyu2FJtVM.

B. Comparison to discretized solutions

In previous works (e.g. [23, 24]) the desired trajectory is
discretized by choosing a set of points that are then used
to find a robot design. Similarly, in [6, 9], the manipulator’s
structure is synthesized based on a task composed of a set
of points and a trajectory connecting them is computed using
sampling-based techniques. To illustrate the benefit of solving
for a continuous trajectory, as opposed to a discretized one, we
revisit our “paint a rose” task, and compare the synthesized
solutions and their resulting trajectories.

We discretize the required curve using 25 equidistant points
and calculate a solution in MATLAB using a modification
of the formulation presented in [6]. Specifically, since the
manipulator is planar, we enforce α to be zero. Furthermore,
it is important to find the configurations to reach each selected
point that are more likely to yield a continuous and smooth
trajectory as similar as possible to the original. For that, we
added the elbow consistency constraint, used also for the initial
guess for the continuous solution, and we implemented a cost
function to minimize the distance between the states of two
consecutive poses. We used RRT [33] with bias towards the
next point as the motion planner.

The computation time for our approach is 0.5min, using
SV over, and for the discretized approach, it is 6.8min. Both
approaches result in a 2 DOF solution. Fig. 6(A) presents
the RS of the synthesized manipulator using the discretized
approach. Although all discretized points are reachable, the re-
quired curve is not. Fig. 6(B) shows a region of the task curve
located outside the RS (black curve identifying the boundary).
Fig. 6(C) shows the collision-free trajectory performed by both
synthesized manipulators. Although the path obtained with
the sampling-based motion planner is close to the required
curve, they are not identical. Thus, an additional step needs to
be included to recalculate the path after the selection of the
structure, so it is closer to the original, or more points need
to be added. Such steps are not necessary in our approach.

V. CONCLUSIONS

Summary. In this work, we defined a novel, high-level,
manipulator task formulation, and created a framework to
automatically synthesize a manipulator’s structure and controls
from the task, presenting an end-to-end system from user task
definition to hardware implementation. We demonstrated the
versatility of our approach by synthesizing and implementing
manipulators for three different tasks and we compared our

Task name Types and number
of SP of the task

Number of
Obstacles

Resulting
manipulator

Computational
Time (min)

Figure
reference

Paint a “rose” 7 - All types 3 2 DOF 2.7 (SV app) and 0.5 (SV over) Fig. 1
Wipe off a table 3 - Line segments 2 3 DOF 9.6 Fig. 5(A)

Clean a table 5 - Line segments and arcs 2 3 DOF 7.5 Fig. 5(B)

TABLE II: Tasks and results. The types of SP used to construct the task are specified as well as the number of obstacles, the
resulting manipulator, and the computational time to obtain it.

Fig. 5: Task definition, solution and physical implementation of two different tasks. (A) Wipe off a table; (B) Clean a table.
(i) Task definition (grey trajectory and red obstacles) and solution (black) and (ii) physical implementation.

Fig. 6: Reachable space and path of solution obtained by discretizing the original curve. (A) Obstacles in red, trajectory in
gray and obstacle-free reachable space in black of the design for a task containing 25 target points obtained by discretizing
the original curve. (B) Zoom in showing the curve is outside the reachable space of the solution obtained with discretization.
(C) The task performed with the solution synthesized based on the approach in this paper (solid grey) and with the approach
of [6] (dashed black) with RRT [33].

approach with previous method that discretize the trajectory
and showed the advantage of specifying and synthesizing for
continuous tasks. The tasks demonstrated include complex tra-
jectories in constrained environments, coverage of area while
avoiding obstacles and circumvention of obstacles. By creating
a high-level task specification formalism and automatically
synthesizing a correct-by-construction solution, we allow non-
expert users to develop and manufacture their own robots
based on their needs. The solutions returned by our approach
are designed specifically for the task and are therefore less
complex than off the shelf manipulators that are typically
6 or 7 DOF. Moreover, by implementing the results with
modular robots, it is easy to replace if a piece is broken
and to reassemble if the task changes. Future Work. There
are several directions for future work: First, in this work, we
consider trajectories that lie on a 2D plane. We will extend
this approach to include trajectories in 3D, possibly with
more DOF, by modifying the SV representation from convex
polygons to convex polyhedrons and adding new constraints
in the robot’s configurations (similar to the static proximal

link constraint). Second, while our approach produces correct
solutions, manipulators that can achieve the desired task, it
is not complete. There might exist a solution that is not
found. We will develop both automated ways to increase the
likelihood of finding a solution, for example by iteratively
increasing the number of iterations of the optimizer and trying
out different initial guesses, and ways to provide feedback
to the users regarding infeasible tasks, similar to [6]. Such
feedback could be in the form of suggested changes to the
task, relaxation of constraints, or parts of the task that are
particularly difficult to achieve. Third, we will explore physical
limitations on the resulting behavior. For example, in the tasks
presented in this paper, the manipulator was required to press
the end-effector on the table, generating friction, which might
deform the original trajectory.

ACKNOWLEDGMENTS

This work was funded by NSF CNS-1837506.

REFERENCES

[1] Mark Yim, Ying Zhang, and David Duff. Modular robots.
IEEE Spectrum, 39(2):30–34, 2002.

[2] Dan King. Space servicing: past, present and future.
In Proceedings of the 6th International Symposium on
Artificial Intelligence and Robotics & Automation in
Space: i-SAIRAS, pages 18–22, 2001.

[3] Simon DiMaio, Mike Hanuschik, and Usha Kreaden. The
da vinci surgical system. In Surgical Robotics, pages
199–217. Springer, 2011.

[4] HebiRobotics. URL https://www.hebirobotics.com/
x-series-smart-actuators.

[5] Chris Leger and John Bares. Automated task-based
synthesis and optimization of field robots. 1999.

[6] Thais Campos, Jeevana Priya Inala, Armando Solar-
Lezama, and Hadas Kress-Gazit. Task-based design of
ad-hoc modular manipulators. In 2019 International
Conference on Robotics and Automation (ICRA), pages
6058–6064. IEEE, 2019.

[7] Julian Whitman and Howie Choset. Task-specific ma-
nipulator design and trajectory synthesis. IEEE Robotics
and Automation Letters, 4(2):301–308, 2018.

[8] EJ Van Henten, DA Van’t Slot, CWJ Hol, and
LG Van Willigenburg. Optimal manipulator design for a
cucumber harvesting robot. Computers and electronics
in agriculture, 65(2):247–257, 2009.

[9] Cenk Baykal and Ron Alterovitz. Asymptotically opti-
mal design of piecewise cylindrical robots using motion
planning. In Robotics: Science and Systems, 2017.

[10] Sarosh Patel and Tarek Sobh. Task based synthesis of
serial manipulators. Journal of advanced research, 6(3):
479–492, 2015.

[11] Wan Kyun Chung, Jeongheon Han, Youngil Youm, and
SH Kim. Task based design of modular robot manipula-
tor using efficient genetic algorithm. In Proceedings of
International Conference on Robotics and Automation,
volume 1, pages 507–512. IEEE, 1997.

[12] J-O Kim and Pradeep K Khosla. A formulation for task
based design of robot manipulators. In Proceedings of
1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’93), volume 3, pages 2310–
2317. IEEE, 1993.

[13] I-Ming Chen and Joel W Burdick. Determining task
optimal modular robot assembly configurations. In
proceedings of 1995 IEEE International Conference on
Robotics and Automation, volume 1, pages 132–137.
IEEE, 1995.

[14] Saleh Tabandeh, William Melek, Mohammad Biglar-
begian, Seong-hoon Peter Won, and Chris Clark. A
memetic algorithm approach for solving the task-based
configuration optimization problem in serial modular and
reconfigurable robots. Robotica, 34(9):1979–2008, 2016.

[15] M Althoff, A Giusti, SB Liu, and A Pereira. Effort-
less creation of safe robots from modules through self-
programming and self-verification. Science Robotics, 4

(31):eaaw1924, 2019.
[16] JA Cabrera, A Ortiz, F Nadal, and JJ Castillo. An

evolutionary algorithm for path synthesis of mechanisms.
Mechanism and Machine Theory, 46(2):127–141, 2011.

[17] JA Cabrera, A Simon, and M Prado. Optimal synthesis
of mechanisms with genetic algorithms. Mechanism and
machine theory, 37(10):1165–1177, 2002.

[18] Suwin Sleesongsom and Sujin Bureerat. Four-bar linkage
path generation through self-adaptive population size
teaching-learning based optimization. Knowledge-Based
Systems, 135:180–191, 2017.

[19] M Khorshidi, M Soheilypour, M Peyro, A Atai, and
M Shariat Panahi. Optimal design of four-bar mecha-
nisms using a hybrid multi-objective ga with adaptive
local search. Mechanism and Machine Theory, 46(10):
1453–1465, 2011.

[20] Shean-Juinn Chiou and Kota Sridhar. Automated con-
ceptual design of mechanisms. Mechanism and machine
theory, 34(3):467–495, 1999.

[21] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping
Wang, and Baining Guo. Motion-guided mechanical toy
modeling. ACM Trans. Graph., 31(6):127–1, 2012.

[22] Devika Subramanian et al. Kinematic synthesis with
configuration spaces. Research in Engineering Design, 7
(3):193–213, 1995.

[23] Stelian Coros, Bernhard Thomaszewski, Gioacchino
Noris, Shinjiro Sueda, Moira Forberg, Robert W Sumner,
Wojciech Matusik, and Bernd Bickel. Computational
design of mechanical characters. ACM Transactions on
Graphics (TOG), 32(4):83, 2013.

[24] Sehoon Ha, Stelian Coros, Alexander Alspach, James M
Bern, Joohyung Kim, and Katsu Yamane. Computational
design of robotic devices from high-level motion spec-
ifications. IEEE Transactions on Robotics, 34(5):1240–
1251, 2018.

[25] Anna Valente. Reconfigurable industrial robots: A
stochastic programming approach for designing and
assembling robotic arms. Robotics and Computer-
Integrated Manufacturing, 41:115–126, 2016.

[26] Peter I Corke. A simple and systematic approach to
assigning denavit–hartenberg parameters. IEEE trans-
actions on robotics, 23(3):590–594, 2007.

[27] Holger Täubig, Berthold Bäuml, and Udo Frese.
Real-time continuous collision detection for mobile
manipulators-a general approach. In 2012 12th IEEE-
RAS International Conference on Humanoid Robots (Hu-
manoids 2012), pages 461–468. IEEE, 2012.

[28] Andre Gaschler, Ronald Petrick, Torsten Kröger, Ous-
sama Khatib, and Alois Knoll. Robot task and motion
planning with sets of convex polyhedra. In Robotics:
Science and Systems (RSS) Workshop on Combined
Robot Motion Planning and AI Planning for Practical
Applications, 2013.

[29] Stephane Redon, Ming C Lin, Dinesh Manocha, and
Young J Kim. Fast continuous collision detection for
articulated models. 2005.

https://www.hebirobotics.com/x-series-smart-actuators
https://www.hebirobotics.com/x-series-smart-actuators

[30] Jing Xia, Zainan Jiang, Hong Liu, Hegao Cai, and
Guangxin Wu. A manipulator’s safety control strat-
egy based on fast continuous collision detection. In
2013 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 2380–2385. IEEE, 2013.

[31] Holger Täubig, Berthold Bäuml, and Udo Frese. Real-
time swept volume and distance computation for self
collision detection. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
1585–1592. IEEE, 2011.

[32] J Michael McCarthy and Gim Song Soh. Geometric
design of linkages, volume 11. Springer Science &
Business Media, 2010.

[33] Steven M LaValle. Rapidly-exploring random trees: A
new tool for path planning. 1998.

	Introduction
	Definitions
	Task
	Robot structure and control

	Approach
	Collision avoidance constraints
	Calculation of SVover
	Critical points and reachability
	Calculation of SVapp
	Collision avoidance constraint encoding
	Continuity constraints
	During execution of a SP
	During transition between SP

	Self-collision Constraint
	Constraints on the structure
	Origin
	Consistent link lengths

	Implementation

	Demonstrations
	Physical Demonstrations
	Comparison to discretized solutions

	Conclusions

