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Abstract—In this paper, we present a new class of entropy-
regularized Markov decision processes (MDPs), which will be
referred to as Tsallis MDPs. that inherently generalize well-
known maximum entropy reinforcement learning (RL) by intro-
ducing an additional real-valued parameter called an entropic
index. Our theoretical result enables us to derive and analyze
different types of optimal policies with interesting properties
relate to the stochasticity of the optimal policy by controlling
the entropic index. To handle complex and model-free problems,
such as learning a controller for a soft mobile robot, we propose a
Tsallis actor-critic (TAC) method. We first observe that different
RL problems have different desirable entropic indices where
using proper entropic index results in superior performance
compared to the state-of-the-art actor-critic methods. To mitigate
the exhaustive search of the entropic index, we propose a quick-
and-dirty curriculum method of gradually increasing the entropic
index which will be referred to as TAC with Curricula (TAC2).
TAC2 shows comparable performance to TAC with the optimal
entropic index. Finally, We apply TAC2 to learn a controller of a
soft mobile robot where TAC2 outperforms existing actor-critic
methods in terms of both convergence speed and utility.

I. INTRODUCTION

Soft mobile robots have the potential to overcome chal-
lenging navigation tasks that conventional rigid robots are
hard to achieve, such as exploring complex and unstructured
environments, by using their high adaptability and robustness
against changes around them [18]. Especially, a soft mobile
robot using pneumatic actuators, which provide relatively high
force-to-weight ratios, have been widely developed [26, 17].
Despite the fact that the pneumatic actuators combined with
soft materials are beneficial to the adaptability and robustness
of soft mobile robots, their behaviors are often hard to be
modeled or controlled using a traditional method such as a
feedback control [31], due to their inherent stochasticity.

To handle the absence of a dynamic model, some researches
have employed a model-free reinforcement learning (RL) that
does not require prior knowledge of dynamics [31, 33, 15, 16].
A model-free RL algorithm aims to learn a policy to effectively
perform a given task through the trial and error without the
prior knowledge about the environment, such as the dynamics
of a soft robot, where the performance of policy is often
measured by the sum of rewards. The absence of environmental

information gives rise to an innate trade-off between exploration
and exploitation during a learning process. If the algorithm
decides to explore the environment, then, it will lose the chance
to exploit the best decision based on collected experiences and
vice versa. Such trade-off should be appropriately scheduled to
learn an optimal policy through a small number of interactions
with an environment. Especially, the efficiency of exploration
becomes more important when training a soft mobile robot, as
the properties of soft material can be changed or degraded if
a robot exceeds its durability.

In this paper, we present a generalized framework for entropy-
regularized RL problems with various types of entropy. The
proposed framework is formulated as a new class of Markov
decision processes with Tsallis entropy maximization, which is
called Tsallis MDPs. The Tsallis entropy inherently generalizes
a class of entropies, including the standard Shannon-Gibbs (SG)
entropy by controlling a parameter, called an entropic index and
Tsallis MDP introduces a unifying view on the use of various
entropies in RL. We provide a comprehensive analysis of how
different entropic indices in Tsallis MDPs result in different
types of optimal policies and Bellman optimality equations.

Our theoretical results allow us to interpret the consequences
of different types of entropy regularizations in RL. Specifically,
different optimal policies resulting from entropic indices
provide different exploration-exploitation trade-off behaviors as
the entropic index affects the stochasticity of the corresponding
optimal policy. This feature is often highly desirable in practice
as sample complexity is highly affected by the exploration-
exploitation trade-off and we could provide a systematic control
over the trade-off by controlling the entropic index.

We empirically show that there exists an appropriate entropic
index for each task and solving TAC with a proper entropic
index outperforms existing actor-critic methods. Furthermore,
we also propose quick-and-dirty curriculum learning of grad-
ually increasing the entropic index to alleviate the demand
of an exhaustive search of a suitable entropic index, which
we call TAC with Curricular (TAC2). We demonstrate that
the proposed TAC2 outperforms existing methods and even
achieves a comparable performance compared to TAC with
the optimal entropic index found from the exhaustive search



in terms of both utility and sample-efficiency. This superior
sample-efficiency allows us to successfully learn the controller
of the soft mobile robot within moderate time.

II. BACKGROUND

A. Markov Decision Processes

A Markov decision process (MDP) is defined as a tuple
M = {S,A, d, P, γ, r}, where S is the state space, F is the
corresponding feature space, A is the action space, d(s) is
the distribution of an initial state, P (s′|s, a) is the transition
probability from s ∈ S to s′ ∈ S by taking a ∈ A, γ ∈ (0, 1)
is a discount factor, and r is the reward function defined
as r(s, a, s′) , E [R|s, a, s′] with a random reward R. In
our paper, we assume that r is bounded. Then, the MDP
problem can be formulated as: maxπ∈Π Eτ∼P,π [

∑∞
t γtRt],

where
∑∞
t γtRt is a discounted sum of rewards, also called

a return, Π = {π|∀s, a ∈ S × A, π(a|s) ≥ 0,
∑
a π(a|s) =

1} is a set of policies, and τ is a sequence of state-action
pairs sampled from the transition probability and policy, i.e.,
st+1 ∼ P (·|st, at), at ∼ π(·|st) for t ∈ [0,∞] and s0 ∼ d .
For a given π, we can define the state value and state-action
(or action) value as V π(s) , Eτ∼P,π [

∑∞
t=0 γ

tRt|s0 = s] and
Qπ(s, a) , Eτ∼P,π [

∑∞
t=0 γ

tRt|s0 = s, a0 = a], respectively.
The solution of an MDP is called the optimal policy π?. The
optimal value V ? = V π

?

and action-value Q? = Qπ
?

satisfy
the Bellman optimality equation as follows: For ∀s, a,

Q?(s, a) = E
s′∼P

[
r(s, a, s′) + γV ?(s′)

]
,

V ?(s) = max
a′

Q?(s, a′), π? ∈ argmax
a′

Q?(s, a′),
(1)

where arg maxa′ Q
?(s, a′) indicates a set of the policy π

satisfying Ea∼π[Q?(s, a)] = maxa′ Q
?(s, a′) and a ∼ π?

indicates a ∼ π?(·|s). Note that there may exist multiple
optimal policies if the optimal action value has multiple maxima
with respect to actions.

B. Related Work

Recently, regularization on a policy function has been widely
investigated in RL [3, 22, 29, 23, 13, 24, 14, 9, 7, 19, 6, 11, 4].
The main purpose of regularizing a policy is to encourage
exploration by inducing a stochastic policy from regularization.
If a policy converges to a greedy policy before collecting
enough information about an environment, its behavior can
be sub-optimal. This issue can be efficiently handled by a
stochastic policy induced from a regularization.

The SG entropy has been widely used as a policy regular-
ization. It has been empirically shown that maximizing the SG
entropy of a policy along with reward maximization encourages
exploration since the entropy maximization penalizes a greedy
behavior [22]. In [9], it was also demonstrated that maximizing
the SG entropy helps to learn diverse and useful behaviors. This
penalty from the SG entropy also helps to capture the multi-
modal behavior where the resulting policy is robust against
unexpected changes in the environment [13]. Theoretically,
[29, 23, 13, 14] have shown that the optimal solution of
maximum entropy RL has a softmax distribution of state-action

values, not a greedy policy. Haarnoja et al. [14] showed that
the SG entropy has the benefits over exploring a continuous
action space, however, the performance of SAC is sensitive
to a regularization coefficient. Furthermore, the maximum SG
entropy in RL provides the connection between policy gradient
and value-based learning [29, 25]. Dai et al. [7] have also
shown that maximum entropy induces a smoothed Bellman
operator and it helps stable convergence of value function
estimation.

While the SG entropy in RL provides better exploration,
numerical stability, and capturing multiple optimal actions, it
is known that the maximum SG entropy causes a performance
loss since it hinders exploiting the best action to maximize the
reward [19, 6]. Such drawback is often handled by scheduling
a coefficient of the SG entropy to progressively vanish [5].
However, designing a proper decaying schedule is still a
demanding task in that it often requires an additional validation
step in practice. Grau-Moya et al. [12] handled the same issue
by automatically manipulating the importance of actions using
mutual information. On the other hand, Lee et al. [19] and
Chow et al. [6] have proposed an alternative way to handle
the exploitation issue of the SG entropy using a sparse Tsallis
(ST) entropy, which is a special case of the Tsallis entropy
[32]. The ST entropy encourages exploration while penalizing
less on a greedy policy, compared to the SG entropy. However,
unlike the SG entropy, the ST entropy may discover a sub-
optimal policy since it enforces the algorithm to explore the
environment less [19, 6].

Recently, an analysis of general concave regularization of a
policy function has been investigated [3, 24, 11]. Azar et al.
[3] proposes dynamics programming for regularized MDPs and
provides theoretical guarantees for finite state-action spaces.
While the theory was derived for general concave regularizer,
only SG entropy-based algorithm is demonstrated on a simple
grid world example [3]. Neu et al. [24] also applied an SG
entropy-based algorithm to a simple discrete action space. In
contrast to prior work [3, 24, 11], we focus on analyzing the
Tsallis entropy in MDPs and RL1. We derive unique properties
of the Tsallis entropy such as performance bounds. We also
propose two dynamic programming algorithms and extend it to
a continuous actor-critic method and empirically show that the
proposed method outperforms the SG entropy-based method.

C. q-Exponential, q-Logarithm, and Tsallis Entropy

Before defining the Tsallis entropy, let us first introduce
variants of exponential and logarithm functions, which are
called q-exponential and q-logarithm, respectively. They are
used to define the Tsallis entropy and defined as follows2:

expq(x) , [1 + (q − 1)x]
1
q−1

+ , lnq(x) , (xq−1 − 1)/(q − 1), (2)

where [x]+ = max(x, 0) and q is a real number. Note that,
for q = 1, q-logarithm and q-exponential are defined as

1Note that the Tsallis entropy also provides concave regularization.
2Note that the definition of expq , lnq , and the Tsallis entropy are different

from the original one [2] but those settings can be recovered by setting
q = 2− q′, where q′ is the entropic index used in [2].



their limitations, i.e., ln1(x) , limq→1 lnq(x) = ln(x) and
exp1(x) , limq→1 expq(x) = exp(x). Furthermore, when
q = 2, exp2(x) and ln2(x) become a linear function. This
property gives some clues that the entropy defined using lnq(x)
will generalize the SG (or ST) entropy and, furthermore, the
proposed method can generalize an actor critic method using
SG entropy [14] and ST entropy [19, 6].

Now, we define the Tsallis entropy using lnq(x).

Definition 1 (Tsallis Entropy [2]). The Tsallis entropy of
a random variable X with the distribution P is defined as
Sq(P ) , EX∼P [− lnq(P (X))]. q is called an entropic-index.

The Tsallis entropy can represent various types of entropy by
varying the entropic index. For example, when q → 1, S1(P )
becomes the Shannon-Gibbs entropy and when q = 2, S2(P )
becomes the sparse Tsallis entropy [19]. Furthermore, when
q →∞, Sq(P ) converges to zero. We would like to emphasize
that, for q > 0, the Tsallis entropy is a concave function with
respect to the density function, but, for q ≤ 0, the Tsallis
entropy is a convex function. Detail proofs are included in the
supplementary material [20]. In this paper, we only consider
the case when q > 0 since our purpose of using the Tsallis
entropy is to give a bonus reward to a stochastic policy.

III. MAXIMUM TSALLIS ENTROPY IN MDPS

In this section, we formulate MDPs with Tsallis entropy
maximization, which will be named Tsallis MDPs. We mainly
focus on deriving the optimality conditions and algorithms
generalized for the entropic index so that a wide range
of q values can be used for a learning agent. First, we
extend the definition of the Tsallis entropy so that it can
be applicable for a policy distribution in MDPs. The Tsallis
entropy of a policy distribution π is defined by S∞q (π) ,
Eτ∼P,π [

∑∞
t=0 γ

tSq(π(·|st))]. Using S∞q , the original MDPs
can be converted into Tsallis MDPs by adding S∞q (π) to the
objective function as follows:

max
π∈Π

E
τ∼P,π

[
∞∑
t

γtRt

]
+ αS∞q (π), (3)

where α > 0 is a coefficient. A state value and state-action
value are redefined for Tsallis MDPs as follows: V πq (s) ,

Eτ∼P,π [
∑∞
t=0 γ

t (Rt + αSq(π(·|st))|s0 = s] and Qπq (s, a) ,
Eτ∼P,π [R0 +

∑∞
t=1 γ

t (Rt + αSq(π(·|st))|s0 = s, a0 = a],
where q is the entropic index. The goal of a Tsallis MDP is
to find an optimal policy distribution that maximizes both the
sum of rewards and the Tsallis entropy whose importance is
determined by α. The solution of the problem (3) is denoted
as π?q and its value functions are denoted as V ?q = V

π?q
q and

Q?q = Q
π?q
q , respectively. In our analysis, α is set to one,

however one can easiliy generalize the case of α 6= 1 by
replacing r, V , and Q with r/α, V/α, and Q/α, respectively.
In the following sections, we first derive the optimality
condition of (3), which will be called the Tsallis-Bellman
optimality (TBO) equation. Second, dynamic programming
to solve Tsallis MDPs is proposed with convergence and

optimality guarantees. Finally, we provide the performance
error bound of the optimal policy of the Tsallis MDP, where
the error is caused by the additional entropy regularization
term. The theoretical results derived in this section are
extended to a practical actor-critic algorithm in Section V.

A. q-Maximum Operator

Before analyzing an MDP with the Tsallis entropy, we
define an operator, which is called q-maximum. A q-maximum
operator is a bounded approximation of the maximum operator.
For a function f(x), q-maximum is defined as follows:

q-max
x

(f(x)) , max
P∈∆

[
E

X∼P
[f(X)] + Sq(P )

]
, (4)

where ∆ is a probability simplex whose element is a probability.
The following theorem shows the relationship between q-
maximum and maximum operators.

Theorem 1. For any function f(x) defined on a finite input
space X , the q-maximum satisfies the following inequalities.

q-max
x

(f(x)) + lnq (1/|X |) ≤ max
x

(f(x)) ≤ q-max
x

(f(x)) , (5)

where |X | is the cardinality of X .

The proof can be found in the supplementary material
[20]. The proof of Theorem 1 utilizes the definition of q-
maximum. This boundedness property will be used to analyze
the performance bound of an MDP with the maximum
Tsallis entropy. The solution of q-maximum is obtained as
P (x) = expq (f(x)/q − ψq (f/q)) , where ψq(·) is called a
q-potential function [2], which is uniquely determined by the
normalization condition:∑

x∈X

P (x) =
∑
x∈X

expq (f(x)/q − ψq (f/q)) = 1. (6)

A detail derivation can be found in the supplementary material
[20]. The property of q-maximum and the solution of q-
maximum plays an important role in the optimality condition
of Tsallis MDPs.

B. Tsallis Bellman Optimality Equation

Using the q-maximum operator, the optimality condition of
a Tsallis MDP can be obtained as follows.

Theorem 2. For q > 0, an optimal policy π?q and optimal
value V ?q sufficiently and necessarily satisfy the following
Tsallis-Bellman optimality (TBO) equations:

Q?q(s, a) = E
s′∼P

[r(s, a, s′) + γV ?q (s
′)|s, a],

V ?q (s) = q-max
a

(Q?q(s, a)),

π?q (a|s) = expq
(
Q?q(s, a)/q − ψq

(
Q?q(s, ·)/q

))
,

(7)

where ψq is a q-potential function.

The proof can be found in the supplementary material [20].
The TBO equation differs from the original Bellman equation
in that the maximum operator is replaced by the q-maximum
operator. The optimal state value V ?q is the q-maximum of
the optimal state-action value Q?q and the optimal policy π?q



is the solution of q-maximum (4). Thus, as q changes, π?q
can represent various types of q-exponential distributions. We
would like to emphasize that the TBO equation becomes the
original Bellman equation as q diverges into infinity. This is a
reasonable tendency since, as q →∞, S∞ tends zero and the
Tsallis MDP becomes the original MDP. Furthermore, when
q → 1, q-maximum becomes the log-sum-exponential operator
and the Bellman equation of maximum SG entropy RL, (a.k.a.
soft Bellman equation) [13] is recovered. When q = 2, the
Bellman equation of maximum ST entropy RL, (a.k.a. sparse
Bellman equation) [19] is also recovered. Moreover, our result
guarantees that the TBO equation holds for all q > 0.

IV. DYNAMIC PROGRAMMING FOR TSALLIS MDPS

In this section, we develop dynamic programming algorithms
for a Tsallis MDP: Tsallis policy iteration (TPI) and Tsallis
value iteration (TVI). These algorithms can compute an optimal
value and policy. TPI is a policy iteration method which consists
of policy evaluation and policy improvement. TVI is a value
iteration method that computes the optimal value directly. In the
dynamic programming of the original MDPs, the convergence is
derived from the maximum operator. Similarly, in the MDP with
the SG entropy, log-sum-exponential plays a crucial role for the
convergence. In TPI and TVI, we generalize such maximum or
log-sum-exponential operators by the q-max operator, which
is a more abstract notion and available for all q > 0. Note
that proofs of all theorems in this section are provided in the
supplementary material [20].

A. Tsallis Policy Iteration

We first discuss the policy evaluation method in a Tsallis
MDP, which computes V πq and Qπq for fixed policy π. Similar
to the original MDP, a value function of a Tsallis MDP can
be computed using the expectation equation defined by

Qπq (s, a) = E
s′∼P

[r(s, a, s′) + γV πq (s′)|s, a],

V πq (s) = E
a∼π

[Qπq (s, a)− lnq(π(a|s))],
(8)

where s′ ∼ P indicates s′ ∼ P (·|s, a) and a ∼ π indicates
a ∼ π(·|s). Equation (8) will be called the Tsallis Bellman
expectation (TBE) equation and it is derived from the definition
of V πq and Qπq . Based on the TBE equation, we can define the
operator for an arbitrary function F (s, a) over S ×A, which
is called the TBE operator,[

T πq F
]
(s, a) , E

s′∼P
[r(s, a, s′) + γVF (s

′)|s, a],

VF (s) , E
a∼π

[F (s, a)− lnq(π(a|s))].
(9)

Then, the policy evaluation method for a Tsallis MDP can be
simply defined as repeatedly applying the TBE operator to an
initial function F0,i.e., Fk+1 = T πq Fk.

Theorem 3 (Tsallis Policy Evaluation). For fixed π and q >
0, consider the TBE operator T πq , and define Tsallis policy
evaluation as Fk+1 = T πq Fk for an arbitrary initial function
F0 over S × A. Then, Fk converges to Qπq and satisfies the
TBE equation (8).

The proof of Theorem 3 relies on the contraction property
of T πq . The contraction property guarantees the sequence of Fk
converges to a fixed point F∗ of T πq , i.e., F∗ = T πq F∗ and the
fixed point F∗ is the same as Qπq . The value function evaluated
from Tsallis policy evaluation can be employed to update the
policy distribution. In the policy improvement step, the policy
is updated to maximize

∀s, πk+1(·|s) = arg max
π(·|s)

E
a∼π

[Qπkq (s, a)− lnq(π(a|s))|s]. (10)

Theorem 4 (Tsallis Policy Improvement). For q > 0, let πk+1

be the updated policy from (10) using Qπkq . For all (s, a) ∈
S ×A, Qπk+1

q (s, a) is greater than or equal to Qπkq (s, a).

Theorem 4 tells us that the policy obtained by the maxi-
mization (10) has performance no worse than the previous
policy. From Theorem 3 and 4, it is guaranteed that the Tsallis
policy iteration gradually improves its policy as the number of
iterations increases and it converges to the optimal solution.

Theorem 5 (Optimality of TPI). When q > 0, define the Tsallis
policy iteration as alternatively applying (9) and (10), then πk
converges to the optimal policy.

The proof is done by checking if the converged policy
satisfies the TBO equation. In the next section, Tsallis policy
iteration is extended to a Tsallis actor-critic method which is
a practical algorithm to handle continuous state and action
spaces in complex environments.

B. Tsallis Value Iteration

Tsallis value iteration is derived from the optimality condi-
tion. From (7), the TBO operator is defined by

[TqF ] (s, a) , E
s′∼P

[
r(s, a, s′) + γVF (s)

∣∣s, a] ,
VF (s) , q-max

a′

(
F (s, a′)

)
.

(11)

Then, Tsallis value iteration (TVI) is defined by repeatedly
applying the TBO operator,i.e., Fk+1 = TqFk.

Theorem 6. For q > 0, consider the TBO operator Tq, and
define Tsallis value iteration as Fk+1 = TqFk for an arbitrary
initial function F0 over S ×A. Then, Fk converges to Q?q .

Similar to Tsallis policy evaluation, the convergence of
Tsallis value iteration depends on the contraction property
of Tq , which makes Fk converges to a fixed point of Tq . Then,
the fixed point can be shown to satisfy the TBO equation.

C. Performance Error Bounds and q-Scheduling

We provide the performance error bounds of the optimal
policy of a Tsallis MDP which can be obtained by TPI or TVI.
The error is caused by the regularization term used in Tsallis
entropy maximization. We compare the performance between
the optimal policy of a Tsallis MDP and that of the original
MDP. The performance error bounds are derived as follows.

Theorem 7. Let J(π) be the expected sum of rewards of
a given policy π, π? be the optimal policy of an original
MDP, and π?q be the optimal policy of a Tsallis MDP with an



Algorithm 1 Tsallis Actor Critic (TAC)
1: Input: Total time steps tmax, Max episode length lmax, Memory size N ,

Entropy coefficient α, Entropic index q (or schedule), Moving average
ratio τ , Environment env

2: Initialize: ψ,ψ−, θ1, θ2, φ, D : Queue with size N , t = 0, te = 0
3: while t ≤ tmax do
4: at ∼ πφ and rt+1, st+1, dt+1 ∼ env where dt+1 is a terminal

signal.
5: D ← D ∪ {(st, at, rt+1, st+1, dt+1)}
6: te = te + 1, t = t+ 1
7: if dt+1 = True or te = lmax then
8: for i = 1 to te do
9: Randomly sample a mini-batch B from D

10: Minimize Jψ , Jθ1 , Jθ2 , and Jφ using a stochastic gradient
descent

11: ψ− ← (1− τ)ψ− + τψ
12: end for
13: Reset env, te = 0
14: if Schedule of q exists then
15: Update qt
16: end if
17: end if
18: end while

entropic index q. Then, the following inequality holds: J(π?) +
(1 − γ)−1 lnq (1/|A|) ≤ J(π?q ) ≤ J(π?), where |A| is the
cardinality of A and q > 0.

The proof of Theorem 7 is included in the supplementary
material [20]. Here, we can observe that the performance gap
shows a similar property of the TBO equation. We further verify
Theorem 7 on a simple grid world problem. We compute the
expected sum of rewards of π?q obtained from TVI by varying
q values and compare them to the bounds in Theorem 7. Notice
that lnq (1/|A|) ∝ 1/|A|q−1 converges to zero as q →∞. This
fact supports that π?q converges to the greedy optimal policy
in the original Bellman equation when q → ∞. Inspired by
Theorem 7, we develop a scheduled TPI by linearly increasing
qk from zero to infinity during Tsallis policy iteration. From
the following theorem, we can guarantee that it converges to
the optimal policy of the original MDP.

Theorem 8 (Scheduled TPI). Let T PIq be the Tsallis policy
iteration operator with an entropic index q. Assume that a
diverging sequence qk is given, such that limk→∞ qk = ∞.
For given qk, scheduled TPI is defined as T PIqk , i.e., πk+1 =
T PIqk(πk). Then, πk → π? as k →∞.

V. TSALLIS ACTOR CRITIC FOR MODEL-FREE RL

We extend Tsallis policy iteration to a Tsallis actor-critic
(TAC) method, which can be applied to a continuous action
space. From our theoretical results, existing SG entropy-based
methods can be freely extended to utilize a Tsallis entropy
by replacing the SG entropy term. In order to verify the pure
effect of the Tsallis entropy, we modified the soft actor critic
(SAC) method by employing lnq(π(a|s)) instead of ln(π(a|s))
and compare to the SAC method.

Similarly to SAC, our algorithm maintains five networks to
model a policy πφ, state value Vψ , target state value Vψ− , two
state action values Qθ1 and Qθ2 . We also utilize a replay buffer
D which stores every interaction data (st, at, rt+1, st+1). To

update state value network Vψ, we minimize the following
loss,

Jψ = E
st,at∼B

[
(yt − Vψ(st))2/2

]
(12)

where B ⊂ D is a mini-batch and yt is a target value defined
as yt = Qmin(st, at) − α lnq(πφ(at|st), and, Qmin(st, at) =
min[Qθ1(st, at), Qθ2(st, at)]. The technique using the mini-
mum state action value between two approximations of Qπ is
known to prevent overestimation problem [10] and makes the
learning process numerically stable. After updating ψ, ψ− is
updated by an exponential moving average with a ratio τ . For
both θ1 and θ2, we minimize the following loss function,

Jθ = E
bt∼B

[
(Qθ(st, at)− rt+1 − γVψ−(st+1))

2/2
]
, (13)

where bt is (st, at, st+1, rt+1). This loss function is induced
by the Tsallis policy evaluation step.

When updating an actor network, we minimize a policy
improvement objective defined as

Jφ = E
st∼B

[
E

a∼πφ
[α lnq(πφ(a|st))−Qθ(st, a)]

]
. (14)

Note that a is sampled from πφ not a replay buffer. Since
updating Jφ requires to compute a stochastic gradient, we
use a reparameterization trick similar to Haarnoja et al. [14]
instead of a score function estimation. In our implementation,
a policy function is defined as a Gaussian distribution defined
by a mean µφ and variance σ2

φ. Consequently, we can rewrite
Jφ with a reparameterized action and a stochastic gradient is
computed as

∇φJφ = E
st∼B

[
E
ε∼Pε

[α∇φ lnq(πφ(a|st))−∇φQθ(st, a)]

]
,

where a = µφ+σφε and ε is a unit normal noise. Furthermore,
we present TAC with Curricular (TAC2) that gradually increase
the entropic index q based on Theorem 8. While it is optimal
to search the proper entropic index given an RL problem, the
exhaustive search is often impractical due to prohibitive high
sample complexity. The entire TAC and TAC2 algorithms are
summarized in Algorithm 1.

VI. EXPERIMENTS SETUP

A. Simulation Setup

To verify the characteristics and efficiency of our algorithm,
we prepare four simulation tests on continuous control problems
using the MuJoCo simulator: HalfCheetah-v2, Ant-v2, Pusher-
v2, and Humanoid-v2. For each task, a robot with multiple
actuated joints is given where the number of joints is different
from each task. Then, a state is defined as sensor measurements
of actuators and an action is defined as torques. The goal of
each task is to control a robot with multiple actuated joints to
move forward as fast as possible. More detailed definition can
be found in [8].

In the first simulation, to verify the effect of the entropic
index q, we conduct experiments with a wide range of q values
from 0.5 to 5.0 and measure the total average returns during



(a) Tripod Mobile Robot (b) Training System
Fig. 1. (a) A soft mobile robot used in experiment. (b) A diagram for training system. The position of robot is measured by using blob detection from a RGB
image ofr RealSense d435.

the training phase. We only change the entropic index and
fix an entropy coefficient α to 0.05 for Humanoid-v2 and
0.2 for other problems. We run entire algorithms with ten
different random seeds. Second, to verify the effect of α, we
run TAC with different q values (including SAC) for three α
values: 0.2, 0.02, and 0.002 on the Ant-v2 problem. Third, we
test the variant of TAC by linearly scheduling the entropic
index. From the results of the first simulations, we observe
that there exists a numerically stable region of 1 < q < 2,
which will be explained in Section VII-A. We schedule q to
linearly increase from 1 to 2 for every 5000 steps and we
run TAC with q schedule for three α values: 0.2, 0.02, and
0.002 on the Ant-v2 problem. Finally, we conduct a compare
our algorithm to the existing state-of-the-art on-policy and
off-policy actor-critic methods. For on-policy methods, trust
region policy optimization (TRPO) [27] and proximal policy
optimization (PPO) [30] are compared where a value network
is employed for generalized advantage estimation [28]. For
off-policy methods, deep deterministic policy gradient (DDPG)
[21] and twin delayed DDPG which is called TD3 [10] are
compared. We also compare with the soft actor-critic (SAC)
method [14] which employs the SG entropy for exploration.
Since TAC can be reduced to SAC with q = 1 and algorithmic
details are the same, we denote TAC with q = 1 as SAC.
We utilize OpenAI’s implementations [1] and extend the SAC
algorithm to TAC. To obtain consistent results, we run all
algorithms with ten different random seeds. While we compare
various existing methods, results of TRPO, PPO, and DDPG
are omitted here due to their poor performance and the entire
results can be found in the supplementary material [20]. The
source code is publicly available3.

B. Hardware Platform Setup

To test our algorithm on a soft mobile robot, we use a tripod
mobile robot that consisted of three pneumatic soft vibration
actuators, a direct current (DC) motor, and an equilateral
triangle body plate as shown in Figure 1(a). Each actuator
can independently vibrate continuously and robustly regardless
of contact with external objects by using the nonlinear stiffness
characteristic of hyperelastic material (Eco-flex 30). In addition,
the vibration frequency of the actuator can be controlled by
the input pressure. In order to control the direction of rotation

3https://github.com/rllab-snu/tsallis actor critic mujoco

of the robot, a direct current (DC) motor was installed at the
center of the robot combined with a rotating plate. As a result,
the mobile robot is capable of making various motions, such
as translation and rotation, with a combination of the three
vibration modes of the actuator and the rotation of the rotating
plate.

C. Real Robot Experiment Setup

We apply the proposed algorithm to a soft mobile robot and
compare the proposed method to SAC with α = 0.01 and SAC
with automatic entropy adjustment (SAC-AEA) [15] which
automatically adjusts α to maintain the entropy to be greater
than a predefined threshold δ. In experiment, we heuristically
set δ to − ln(d) as proposed in [15] where d is a dimension
of the action space. In [15], since SAC-AEA shows efficient
performances for learning quadrupedal locomotion, we try to
check whether SAC-AEA can be applied to a soft mobile robot
while comparing their performance to the proposed method.
We would like to note that TAC2 only schedule q with fixed
α and SAC-AEA only changes α with fixed q = 1.0. From
this comparison, we can demonstrate which factor is more
important to achieve efficient exploration.

In this task, our goal is to train a feedback controller of a
soft mobile robot where a controller makes a robot move in a
straight line towards a goal position (xg, yg) with a heading
θg := arctan(yg−yt, xg−xt) where xt, yt is a current position
of the robot. Note that if a robot’s heading is aligned to its
moving direction, then, θg = θt.

The robot has three soft membrane vibration actuators and
one motor for controlling the angular momentum of the robot.
Hence, an action is defined as a four dimensional vector as
at = ( p1, p2, p3, δΩ)t, where pi is an input pressure of each
vibration actuator and δΩ is the change in the motor speed. Note
that, if we directly change the motor signal, it may generate
unstable motion and inconsistent movements due to the delay
of the motor. Hence, by controlling a difference of the motor
signal, we can generate a smooth change of motor speed.

Then, a state of a robot is defined as st := (∆θt, dt,Ωt),
where ∆θt := θg−θt is a difference between heading and goal
direction, dt :=

√
(xt − xg)2 + (yt − yg)2, is the Euclidean

distance to the desired position, and Ωt is the current motor
speed.

A reward function r(st) assigns a higher score as a control
minimizes the gap between robot’s current state and desired

https://github.com/rllab-snu/tsallis_actor_critic_mujoco


(a) HalfCheetah-v2 (b) Ant-v2 (c) Pusher-v2 (d) Humanoid-v2

Fig. 2. Average training returns of TAC with different q values on four MuJoCo tasks. A solid line is the average return over ten trials and the shade area
shows one variance.

(a) Ant-v2, α = 0.02 (b) Ant-v2, α = 0.002 (c) Ant-v2, Scheduled qk (d) Ant-v2, Comparison

Fig. 3. (a), (b) Average returns of different α = {0.02, 0.002} and different q. (a) and (b) share the legend with Figure 2(d). (c) Average returns of scheduling
qk with different α. Linear indicates linear curriculum of qk . (d) Comparison of all variants of TAC.

state: r(st) := −dt−|∆θt|+2, which is a decreasing function
of dt and ∆θt where 2 is added to give a positive reward near
the goal position. γ is set to 0.99. The entire training system
is illustrated in Figure 1(b).

For a fair comparison, we evaluate each algorithm every
500 steps. In evaluation, we control a robot using only the
mean value of the trained policy without sampling. We run all
algorithms with 2500 steps for five trials.

VII. RESULT

A. Effect of Entropic Index q

The results are shown in Figure 2. We realize that the
proposed method performs better when 1 ≤ q < 2 than when
0 < q < 1 and q ≥ 2, in terms of stable convergence and final
total average returns. Using 0 < q < 1 generally shows poor
performance since it hinders exploitation more strongly than
the SG entropy. For 1 ≤ q < 2, the Tsallis entropy penalizes
less the greediness of a policy compared to the SG entropy (or
q = 1). From a reparameterization trick, the gradient of the
Tsallis entropy becomes Ea∼πφ [πφ(a|s)q−2∇φπφ(a|s)]. For
q ≥ 2, the gradient is proportional to πφ(a|s), thus, if πφ(a|s)
is small, then, the gradient becomes smaller and it leads to early
convergence to a locally optimal policy. For 0 < q < 2, the
gradient is proportional to 1/πφ(a|s), thus, if πφ(a|s) is small,
the gradient becomes larger, which encourages exploration of
the action with a small probability. For 0 < q < 1, since
πφ(a|s)q−2 is more amplified than when 1 ≤ q < 2, the
penalty of greediness is stronger than when 1 ≤ q < 2. Thus,
when 0 < q < 1, it penalizes the exploitation of TAC more and
hinders the convergence to an optimal policy. In this regard,
we can see TAC with 1 ≤ q < 2 outperforms TAC with q ≥ 2.
Furthermore, in HalfCheetah-v2 and Ant-v2, TAC with q = 1.5

shows the best performance and, in Humanoid-v2, TAC with
q = 1.2 shows the best performance. Furthermore, in Pusher-
v2, the final total average returns of all settings are similar,
but TAC with q = 1.2 shows slightly faster convergence. We
believe that these results empirically show that there exists an
appropriate q value between one and two depending on the
environment while q ≥ 2 has a negative effect on exploration.

B. Effect of Coefficient α

As shown in Figure 2(b),3(a) and 3(b). For all α values, q =
1.5 (purple circle line) always shows the fastest convergence
and achieves the best performance among tested q values This
result tells us that TAC with the best q value is robust to
change α. For q = 1.2 (or q = 1.7), the average return of
TAC with q = 1.2 (or q = 1.7) is sensitive to α, respectively,
where q = 1.7 has the best average return at α = 0.002, and
q = 1.2 has the best value at α = 0.02. However, TAC with
q = 1.5 consistently outperforms other entropic indices while
α is changed.

C. Curriculum on Entropic Index q

Figure 3(c) shows the performance of TAC2 with different
α and Figure 3(d) illustrates the comparison to TAC with fixed
q. From this observation, it is shown that TAC2 achieves a
similar performance of the best q value without using a brute
force search.

D. Comparative Evaluation

Figure 4 shows the total average returns of TAC and other
compared methods. We use the best combination of q and α
from the previous experiments for TAC with q 6= 1 and SAC
(TAC with q = 1). SAC and TAC use the same architectures for
actor and critic networks. TAC and TAC2 indicates TAC with



(a) HalfCheetah-v2 (b) Ant-v2 (c) Pusher-v2 (d) Humanoid-v2

Fig. 4. Comparison to existing actor-critic methods on four MuJoCo tasks. SAC (red square line) is the same as TAC with q = 1, TAC and TAC2 indicates
TAC with fixed q 6= 1 and scheduled q, respectively.

the fixed best q and linearly scheduled q, respectively. First,
TAC with a proper q outperforms all existing methods in all
environments. Furthermore, TAC achieves better performance
with a smaller number of samples than SAC and TD3 in all
problems. Especially, in Ant-v2, TAC improves the performance
from SAC by changing q = 1.5. Furthermore, in Humanoid-v2
which has the largest action space (17D), TAC with q = 1.2
outperforms all the other methods. Finally, TAC2 consistently
shows similar performances to TAC, except Humanoid-v2.

E. Real Robot Experiment

Figure 5 shows the results of compared algorithms including
the proposed method. TAC2 shows the best performance in
terms of the convergence speed and the sum of rewards
compared to other algorithms. In particular, the policy trained
by TAC2 could reach any goal point with only about 1500 steps
(≈30 minutes) of training. Furthermore, TAC with q = 1.5
shows the second-best performance.

For SAC and SAC-AEA, while SAC-AEA shows slower
convergence than SAC due to the constraint to keep the
entropy of the policy above the threshold, it achieves higher
performance than SAC at the end of the training. This result
demonstrates that maintaining the entropy of the policy helps
exploration and leads to better final performance, however, it
hampers the exploitation.

While both TAC2 and SAC-AEA control the exploration-
exploitation trade-off by scheduling the level of regularization,
the empirical result shows that scheduling q instead of adjusting
α shows better performance in terms of both convergence speed
and final average return. While adjusting α in SAC-AEA only
rescales the magnitude of the gradient of the entropy, scheduling
q can change both the scale and direction of the gradient of the
entropy, similarly to the results in Section VII-A. Specifically,
in TAC2, the regularization effect is gradually reduced as the
entropic index q increases while SAC-AEA keeps the level of
the Shannon entropy. Hence, scheduling q helps exploitation at
the end of the training. Thus, TAC2 shows not only the highest
final average performance but also a much smaller variance than
other algorithms, which is a highly preferred feature for training
a soft mobile robot. Especially, a low variance of the final
performance supports that TAC2 successfully overcome the
unknown stochasticity in the dynamic model of the soft mobile
robot. Consequently, we can conclude that TAC2 efficiently
learns a feedback controller of a soft mobile robot and achieves

(a) Evaluation (b) Final Performance

Fig. 5. Comparison to existing actor-critic methods on training a Tripod
mobile robot. (a) Average returns over five trials. (b) Final average performance.
The number in parentheses is a standard deviation.

the best performance with the minimum interactions.

VIII. CONCLUSION

We have proposed a unified framework which allows using
a class of different Tsalli entropies in RL problems, which
we call Tsallis MDPs, and its application to soft robotics.
We first provide the full theoretical analysis about Tsallis
MDPs including guarantees of convergence, optimality, and
performance error bounds. and have extended it to the Tsallis
actor-critic (TAC) method to handle a continuous state-action
space. It has been observed that there exists a suitable entropic
index for each different RL problem and TAC with the opti-
mal entropic index outperforms existing actor-critic methods.
However, since finding an entropic index with the brute force
search is a demanding task, we have also present TAC2 that
gradually increases the entropic index and empirically show that
it achieves comparable performances with TAC with the optimal
entropic index found from an exhaustive search in simulation
environments. We have applied TAC2 on real-world problems
of learning a feedback controller for soft mobile robots and
demonstrated that TAC2 shows more efficient exploration
tendency than adjusting the regularization coefficient.
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