
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Learning from Interventions:
Human-robot interaction as both explicit and implicit feedback

Jonathan Spencer1, Sanjiban Choudhury2, Matthew Barnes2, Matthew Schmittle2,
Mung Chiang1, Peter Ramadge1 and Siddhartha Srinivasa2

1Princeton University, 2University of Washington
j.spencer,chiangm,ramadge@princeton.edu; schoudhury,mbarnes,schmttle,sidd@cs.uw.edu

Abstract—Scalable robot learning from seamless human-robot
interaction is critical if robots are to solve a multitude of tasks
in the real world. Current approaches to imitation learning
suffer from one of two drawbacks. On the one hand, they rely
solely on off-policy human demonstration, which in some cases
leads to a mismatch in train-test distribution. On the other,
they burden the human to label every state the learner visits,
rendering it impractical in many applications. We argue that
learning interactively from expert interventions enjoys the best
of both worlds. Our key insight is that any amount of expert
feedback, whether by intervention or non-intervention, provides
information about the quality of the current state, the optimality
of the action, or both. We formalize this as a constraint on the
learner’s value function, which we can efficiently learn using
no regret, online learning techniques. We call our approach
Expert Intervention Learning (EIL), and evaluate it on a real
and simulated driving task with a human expert, where it learns
collision avoidance from scratch with just a few hundred samples
(about one minute) of expert control.

I. INTRODUCTION

A great many machines are designed for human control,
and expert humans have mastered incredibly complex control
tasks. However, as self-driving cars [1], autonomous heli-
copters [2], and robotic factory arms [3] have gradually de-
veloped controllers to automate simple tasks, the human’s role
has shifted to that of a supervisor that engages or disengages
the autopilot, assuming full control when necessary. This
mechanism of supervision and intervention is natural for the
expert because it mimics what often occurs in human-human
apprenticeship. We would like to similarly endow a robot with
all of the human’s expertise in a way that is both natural and
efficient for the expert human instructor.

Consider the example of learning high speed rallycar driving
(Fig. 1). While an expert human driver can easily demonstrate
this task by driving around a track, we may require long hours
of driving to cover all possible input conditions. Even so, the
slightest distribution mismatch between learner and expert can
result in compounding errors [4].

Another option is to interactively collect feedback [5]
from the expert driver while the learner is in control of
the car. While interactive learning addresses the distribution
mismatch problem, it is impractical due to several human-
robot-interaction issues. First, the learner needlessly queries
the expert in states that the expert, and ideally a good learner,
would never visit [6]. Secondly, the expert has no control of
the how the car moves and the consequences of the feedback.

Fig. 1: In intervention learning the expert trains a learner by
taking over only when needed, recovering the car and returning
control to the learner. A good learner can learn a lot from when
the expert does and doesn’t intervene.

This results in degraded feedback due to delayed response and
subsequent over-corrections [7].

On the other hand, what if we were to give the human
expert the freedom to intervene at will? How should the learner
correctly interpret such interventions? Consider the scenario
in Fig. 1 where the expert nominally monitors the car without
any input, similar to the way they might engage with cruise
control or an autopilot. As soon as the expert senses that the
learner is skidding off the track, they take over, recover the car
and toggle control back to the learner. This example illustrates
some important truths:
• Expert interventions are natural to provide, and yet con-

tain a lot of information.
• In many cases the expert simply wants the learner to per-

form well enough so the expert doesn’t have to intervene.
A good learner should now learn not only how to recover in
the future, but also the fact that driving near the middle of
the track is much more preferable than being near the edge.
Ideally the learner trajectories look something like Fig. 2; as
the learner improves, the expert needs to intervene less and
less.

Our key insight is that to learn a policy that is optimal
everywhere you must query the expert everywhere. If you
can settle for good enough, you can use implicit and explicit
feedback to quickly learn a level set of the value function.

We formalize this as Expert Intervention Learning (EIL).

Execute learner and
intervene if not “good enough”

Aggregate
all intervention data

Update
action-value function

Updated learner spends more time
being “good enough”

Fig. 2: Overview of EIL. It proceeds iteratively, using the current learner to collect intervention data and map said data to
constraints on learner value function. It then aggregates constraints and updates the learner on all of the data

When the expert is not in control of the robot, we assume that
the state-action pair is good enough. When the expert does
occasionally intervene, this provides both implicit feedback
about the current state being “bad” and a near-optimal trajec-
tory to return to a “good” state. Fig. 2 shows an overview
of the algorithm. At every iteration, we execute the learner,
collect intervention data, aggregate it, map to constraints on
the learner’s action-value function, and update the learner.

Our contributions and the organization of the remainder of
this paper are as follows:

1) In Section III, we formalize the notion of good enough
performance and frame the mixed control problem in the
context of existing work.

2) We introduce an algorithm in Section IV for solving
mixed implicit-explicit feedback problems and show that
it has desirable performance guarantees.

3) In Section V, we empirically demonstrate that our algo-
rithm reduces the number of explicit expert interactions
with the system compared to baseline methods both in
simulation and using a real robot.

II. RELATED WORK

Traditional imitation learning is known to require a large
amount (quadratic in trajectory length) of expert demonstration
trajectories in order to achieve expert performance [8, 9]
because learner policies invariably make mistakes and deviate
from expert, inducing a significantly different distribution
of states from what the expert originally modeled [10, 11].
DAGGER is a foundational algorithm which addresses that
problem in a provably efficient way by querying the expert
online [5]. In DAGGER, the learner rolls out their current
policy, then queries the expert for action labels corresponding
to each state visited by the learner. The learner aggregates
this set of learner-state, expert-actions with that of previous
iterations, trains a new policy on the combined dataset, and
iterates. This approach requires a number of expert labels
that is only linear in trajectory length, and has been success-
fully applied to autonomous flight [7] and visual navigation
[12, 13]. However, this remarkable improvement comes by
indiscriminately querying the expert for a label at every
state the learner visits, which typically happens off-line and
can be both cognitively demanding and unsafe [6], inspiring

alternative methods to introduce distributional diversity i.e. by
injecting noise [14]. In practice, many learner samples are also
redundant, leaving room for even greater sample efficiency by
intelligently limiting when the expert is queried.

Several DAGGER-style algorithms employ an active learn-
ing framework, where the learner only selectively queries the
expert. This decision can be based on a threshold of action-
classifier confidence [15, 16, 17], distributional distance or
discrepancy [18, 19], query by committee [20], or a combi-
nation of state novelty and historical error [21]. Theoretically,
many of these active learning frameworks can query the expert
in a batch setting off-line, however most (including DAGGER)
also query the expert at execution time, resulting in a mixed
control setting, where the executed trajectory switches back
and forth between the human and robot on a per-sample basis
and the gating (assignment of control) is done by the robot.

Robot-gated mixed control and online active learning in
robotics is problematic because the type of samples they
require are burdensome, especially in continuous control set-
tings. Humans are sensitive to latency and timing in mixed
control, and demanding sporadic samples in real-time is not
only more burdensome than uninterrupted trajectories, but
can also result in undesirable and unstable system dynamics
[22, 6]. To this end, we instead consider human-gated mixed
control, reducing (though not eliminating) the alertness burden
on the expert and allowing them to determine the exact timing
of handoff in a way that is more convenient and stable for
them. The Human Gated DAGGER algorithm (HG-DAGGER)
[22], shares this premise. They execute a human-gated mixed
control trajectory, and use the human labeled portions of the
trajectory (the orange portions of Fig. 2) as the online batch
update for DAGGER. In addition to reducing expert burden by
requiring less demanding samples, HG-DAGGER reduces the
number of samples required to achieve baseline performance
in driving tasks. Similar ideas have been successfully applied
to reduce effort in learning from kinesthetic corrections in the
manipulator control domain [23, 24, 25] or by monitoring a
buffer of future robot actions in social robotic teaching [26].
We build on this by also learning from times when the expert
is not in control (the green portions of Fig. 2).

Voluntary expert intervention permits the inference of
deeper meaning from the timing and nature of expert feedback.

Binary feedback has been used to learn a supervisor’s bias
towards positive/negative and exploit that to infer implicit
signaling from inaction [27], or that feedback can form an
advantage function for the current policy [28]. However, a
key difference between our work and most other interactive
learning [29] work is that we deal with demonstrations rather
than explicit positive/negative labels, instead inferring the ad-
ditional positive/negative based on the timing of interventions.
We limit the scope of this work to a coarse model of human
intervention that provides regret guarantees, leaving for future
work the intriguing questions of potential differences between
multiple experts, internal human state [30], trust [31], and
cooperation [32, 33] in this setting.

This work lies at the intersection of Learning from Demon-
stration (LfD), and interactive learning. We differ from existing
corrective feedback algorithms and active learning DAGGER-
style algorithms because we aim to learn from the timing of the
expert correction in addition to copying the actions themselves.
Our use of a score function enables this flexible approach,
and distinguishes us from many interactive learning methods,
encoding multiple modes of feedback into a set of constraints
which help to quickly learn a level set dividing good and bad
state-actions. Our continuous training approach introduces a
scalable method of learning for many low-latency EdgeAI
scenarios. This approach to learning from both implicit and
explicit feedback in continuous real-time mixed-control setting
is novel, efficient, easy to implement, and natural, mimicking
the way that humans often teach one another.

III. PROBLEM FORMULATION

We introduce a modified formulation of imitation learning
where the robot tries only to be good enough such that
the expert doesn’t have to intervene. This is inspired by
practicalities of domains such as self-driving or manipulation
where there are several ways to accomplish the task, and the
user doesn’t really care to distinguish.

We model the problem as Markov Decision Process with
unspecified rewards (MDP\R). Let M(S,A, P, T, d0) be a
tuple consisting of a set of states S, a set of actions A, an
environment transition function P : S × A → ∆(S) where
∆(S) is a S-dimensional probability simplex, a fixed time
horizon T , and an initial state distribution d0 ∈ ∆(S). We
restrict the learner to a class of policies Π.

We have a human expert teaching the robot via interaction.
We assume the following interaction model:

1) The human deems a region of the state-action space
(s, a) ∈ G to be good enough.

2) When the robot is in G, the human does not intervene. The
robot remains in control even though it may select actions
different from what the human would have chosen.

3) As soon as the robot departs G, the expert takes over and
controls the system back to G.

While this is a natural human-robot interaction model, it
inextricably mixes state distributions induced by both expert
and learner. To circumvent this problem, we modify the MDP
M. If the expert intervenes at state st before the end of the

episode t < T , we mark st as an absorbing terminal state.
Let dtπ be the state distribution induced by following π for
t steps, then dπ = 1

T

∑T
t=1 d

t
π is the average distribution of

states induced by policy π. We wish to minimize the average
time spent out of good states, i.e. Es∼dπ [1{(s,π(s))/∈G}].

However, the objective above disregards the intervention
actions demonstrated by the expert. Even though such actions
are off-policy, they can help regularize learning and speed
up convergence. Let πE be the expert policy. Let dIπ be the
average distribution of intervention states induced by policy
π, i.e. states that the expert visits after π leaves G. We also
wish to minimize the average misclassification of intervention
actions EsI∼dIπ [1{π(sI)6=πE(sI)}].

We combine these objectives to define a modified imitation
learning problem.

Problem 1: Find a policy that minimizes both the average
time spent outside of good enough region and the average
misclassification of intervention actions on its own induced
distribution:

min
π∈Π

Es∼dπ [1{(s,π(s))/∈G}]︸ ︷︷ ︸
stay in good enough region

+ λEsI∼dIπ [1{π(sI) 6=πE(sI)}]︸ ︷︷ ︸
learn intervention actions

. (1)

where λ is a tuning constant.
We note that (1) is non-convex for two reasons. First,

the term inside the expectation is non-convex. Secondly, and
more importantly, the induced distributions dπ and dIπ are
non-convex (even for simple convex policy classes). In the
next section, we will discuss how we efficiently optimize
this objective. Finally, we emphasize that Problem 1 indeed
combines the best attributes of two extreme paradigms of
imitation learning:

1) Easy to provide labels as in Behavior Cloning [4]: In
fact, we argue it is even less burdensome to provide a
sparse set of interventions.

2) Correctly measures the learner induced loss as in DAG-
GER [5]: Moreover, we do so without having to require
the expert to provide labels in all the states the learner
visits.

IV. APPROACH

We present Expert Intervention Learning (EIL), a no-regret
online algorithm that learns from interventions alone. EIL
builds upon and further generalizes the key insight of DAG-
GER [5] – any imitation learning objective can be reduced to
an online, sequential game. Crucially, unlike DAGGER, EIL
does not require the expert to label every state the learner
enters. We show that EIL indeed enjoys the best of many
worlds - it is practical, requires minimal user effort and has
strong performance guarantees.

A. Modelling interventions as action-value constraints

We restrict the learner to a policy class Π of greedy poli-
cies with respect to differentiable action-value cost functions
Qθ(s, a) such that

π(s) = arg min
a
Qθ(s, a) (2)

(s, a) 2 G(s, a) 2 G (s, a) 2 I

Fig. 3: Given a learner and human intervention trajectory, we
can flag the data with three potential categories based on the
timing of the correction - good enough state-actions G, bad
state-actions G and intervention state-actions I

Here we minimize cost, so higher Qθ(s, a) indicates an
undesirable state-action pair. Hence, we can model a good
enough state-action pair (s, a) ∈ G as a threshold constraint
on the action-value

Qθ(s, a) ≤ B ∀(s, a) ∈ G (3)

where B is a scalar threshold. The precise value of B is
irrelevant as it can be thought of as a way of offsetting the
action-value estimator (we use B = 0 for our experiments).

Let an episode be represented by the learner’s trajectory
ξL = (s0, a0, · · · , sf , af) and the subsequent expert interven-
tion trajectory ξE = (sE0 , a

E
0 , · · · , sEf , aEf). Fig. 3 illustrates

such an episode. Let [α, β)◦ξ represent a snippet of trajectory
ξ from fraction α up to β where α, β ∈ [0, 1], α ≤ β. We map
snippets of ξL and ξE to three non-exclusive categories

1) Good enough state-actions: By not intervening during the
beginning portion of ξL, the expert has implicitly labeled
those actions as good enough, thus we label the beginning
1− αL fraction of ξL as such.

(s, a) ∈ G ∀(s, a) ∈ [0, 1− αL) ◦ ξL (4)

2) Bad state-actions: Upon intervention, the learner policy
has clearly failed, bringing the robot into a bad state. As
such, the last αL fraction of ξL we label as bad states.
Although the human expert chooses good actions we will
learn to emulate, the state at which they take over may
be undesirable. In such cases, we can choose to label the
first αE fraction of ξE as undesirable state-actions.

(s, a) /∈ G ∀(s, a) ∈ [1−αL, 1] ◦ ξL ∪ [0, αE) ◦ ξE (5)

3) Intervention state-actions: All (s, a) pairs in ξE are
labeled as intervention pairs.

(s, a) ∈ I ∀(s, a) ∈ ξE (6)

We discuss how to choose αL and αE in Section V.
We then map each of these categories to constraints on the

action-value function
1) Good enough state-actions map to values below a thresh-

old
Qθ(s, a) ≤ B ∀(s, a) ∈ G. (7)

2) Bad state-actions map to values that are above a threshold

Qθ(s, a) > B ∀(s, a) ∈ G. (8)

3) Intervention state-actions map to a relative action-value
constraint requiring we emulate the expert in that state

Qθ(s, a) < Qθ(s, a
′) ∀(s, a) ∈ I, a′ 6= a. (9)

Combining these constraints, we can reexpress Problem 1
as an optimization over action-value estimates

min
θ

∑
(s,a)∈G

1{Qθ(s,a)>B} +
∑

(s,a)∈G

1{Qθ(s,a)≤B}

+ λ
∑

(s,a)∈I

∑
a′ 6=a

1{Qθ(s,a)≥Qθ(s,a′)}.
(10)

B. Reduction to online, convex optimization

The objective in (10) is non-convex in Qθ. To prove
performance guarantees, we need to apply convex relaxations
to each of the terms1 which we do using a convex hinge
penalty.

1) Good enough state-actions corresponding to upper bound
constraint (7) relax to

`1B(s, a, θ) = max(0, Qθ(s, a)−B) ∀(s, a) ∈ G. (11)

2) Bad state-actions corresponding to upper bound con-
straint (8) relax to

`2B(s, a, θ) = max(0, B −Qθ(s, a)) ∀(s, a) ∈ G. (12)

3) Intervention state-actions correspond to a relative action-
value constraint (9) relax to

`C(s, a, θ) =
∑
a′

max(0, Qθ(s, a)−Qθ(s, a′)) ∀(s, a) ∈ I.

(13)
We combine the first two loss functions as a bounds loss

`B(·) = `1B(·)+ `2B(·). We can think of this as an implicit loss
inferred from when the expert chooses to intervene. The loss
`C(·) is a classification loss. We can think of this an an explicit
loss which uses the actual actions executed by the expert. The
total loss is a weighted sum of losses `(·) = `B(·) + λ`C(·).

We now formally state the relaxed convex optimization
problem using dπθ (s, a) and dIπθ (s, a), the distributions in-
duced by πθ of nominal learner and expert intervention state,
respectively. The objective is to minimize the expected loss
over these induced distributions

min
θ

E(s,a)∼dπθ (s,a)`B(s, a, θ) + λE(s,a)∼dIπθ (s,a)`C(s, a, θ).

(14)
Even though the losses are convex, the optimization is still

non-convex because of how θ affects dπθ (s, a) and dIπθ (s, a).
We leverage a key insight from DAGGER [5] – reduce the
non-convex imitation learning objective (14) to a sequence of
convex games.

The game occurs between an adversary that creates loss
functions and a learner that selects parameters. We define
the game as follows: At round i, let θi be the parameters
of the current learner. Let di = dπθi and dIi = dIπθi

be

1While we assume Qθ(·) is convex to prove regret guarantees, the update
can be applied to non-convex function classes like neural networks as done
in similar works [34]

Algorithm 1 Expert Intervention Learning (EIL)

Initialize data sets G, G and I as {}
Initialize π1 to any policy in Π
for n = 1, . . . , N do

Execute learner policy πθi .
Get learner trajectory ξL and subsequent
intervention trajectory ξE (if any).
Aggregate (s, a) pairs to datasets G, G and I.
Minimize `B(s, a, θ) + λ`C(s, a, θ) on total dataset
to compute new parameter θi+1.

return best parameter from θ1, . . . , θN on validation.

the induced distributions. The adversary chooses a convex
loss `i(θ) = E(s,a)∼di`B(s, a, θ) + λE(s,a)∼dIi `C(s, a, θ). The
learner proposes a parameter θi+1. The average regret is
defined as

γN =
1

N

N∑
i=1

`i(θi)−min
θ

1

N

N∑
i=1

`i(θ). (15)

As long as the learner chooses an update that drives regret
γN → 0 as N →∞ (no regret), we show in Section IV-E that
the learner finds a near-optimal solution to (14). We choose
Follow-the-Leader (FTL) [35]:

θi+1 = min
θ

N∑
i=1

`i(θ)

= min
θ

N∑
i=1

E(s,a)∼di`B(s, a, θ) + λE(s,a)∼dIi `C(s, a, θ).

(16)
FTL updates guarantee γN = Õ(1

N) for strongly convex `i,
and can be realized by simply aggregating data as it is col-
lected. Alternately, one can apply online gradient descent [36]
where one need not store data.

C. Algorithm

Algorithm 1 describes EIL. At each iteration i, the learner is
executed to collect trajectories ξL and ξE . These trajectories
are then mapped to the 3 dataset buckets described in Sec-
tion IV-A. These are then aggregated with previous datasets
and the learner is trained to solve (16). The intution is that over
iterations, we are building up the set of inputs the learner is
likely to experience during its execution. Doing well on this
dataset amounts to doing well on (14) – a concept we explore
further in Section IV-E.

D. Comparison to other imitation learning frameworks

Table I places EIL with other comparable imitation learning
algorithms. BC never lets the learner be in control, leading to
issues such as covariate shift. DAGGER lets the learner be
in control, but requires the expert to label the learner states,
which the authors report to be challenging [7]. HG-DAGGER,
closest to EIL, uses intervention, but only optimizes `C(·). As
we discuss in Section IV-E, this results in the learner only
learning recovery behaviors rather than learning to stay in G.

TABLE I: Different imitation learning algorithms

Algorithm Intervention Rule Loss Function

EIL (ours) Intervene if (s, a) /∈ G `B(·) + λ`C(·)
BC [4] Expert in control `C(·)
DAGGER [5] Learner in control `C(·)†
HG-DAGGER [22] Intervene if (s, a) /∈ G `C(·)

EIL gets the best of all worlds - the minimal user burden of
HG-DAGGER, with DAGGER like performance guarantees.

E. Analysis

We briefly state the main results deferring the reader to
supplementary materials for proofs and counter examples.

Let i = 1, · · · , N denote the rounds of the online game.
Let θ1, · · · , θN be the learner parameters in each round. Let
`i(θ) be the loss function for round i. We build on [5] to
show that any no-regret algorithm can achieve near-optimal
performance.

Theorem 1: Let `i(θ) = E(s,a)∼dπθi
`(s, a, θ). Let εN =

minθ
1
N

∑N
i=1 `i(θ) be the loss of the best parameter in

hindsight after N iterations. Let γN be the average regret of
θ1:N . There exists a θ ∈ θ1:N s.t.

E(s,a)∼dπθ [`(s, a, θ)] ≤ εN + γN (17)

Theorem 1 is a simple, but powerful generalization because
it extends for any loss function `(s, a, θ) and induced distri-
bution dπθ (s, a). Because our objective is separable, we can
also use this to prove a set of corollaries for variants of the
EIL algorithm.

Consider the case where we use only the implicit bounds
loss, i.e. only a flag to indicate whether (s, a) is good enough.

Corollary 1: Let `i(θ) = E(s,a)∼dπθi
`B(s, a, θ). Let εBN

and γBN be the best loss in hindsight and average regret
respectively. ∃θ ∈ θ1:N s.t. E(s,a)∼dπθ [`B(s, a, θ)] ≤ εBN +γBN ,
i.e. we can use EIL to learn a near-optimal policy with as little
as Boolean feedback, e.g. from only e-stop disengagements as
long as we employ FTL.

Now consider the case where we use only the intervention
loss, i.e. the HG-DAGGER [22] algorithm.

Corollary 2: Let `i(θ) = E(s,a)∼dIπθi
`C(s, a, θ). Let εIN

and γIN be the best loss in hindsight and average regret
respectively. ∃θ ∈ θ1:N s.t. E(s,a)∼dIπθ

[`C(s, a, θ)] ≤ εIN +γIN ,
i.e. we can learn to be near-optimal w.r.t mimicking interven-
tion recovery. However, such a policy may perform arbitrarily
poorly when it comes to avoiding intervention in the first
place, staying inside (s, a) ∈ G. We bolster this with a counter
example (refer to supplementary) and empirical observations.

Finally, EIL combines both bound and intervention losses
Corollary 3: Let `i(θ) = E(s,a)∼dπθi

`B(s, a, θ) +

λE(s,a)∼dIπθi
`C(s, a, θ). Let εN and γN be the best loss in

hindsight and average regret respectively. ∃θ ∈ θ1:N s.t.
E(s,a)∼dπθ [`B(s, a, θ)] + λE(s,a)∼dIπθ

[`C(s, a, θ)] ≤ εN + γN ,
i.e. it performs near-optimally on the combination of the
induced bounds and intervention loss.

(a) MuSHR driving platform (b) MPC discrete action set (blue)
and chosen action (red)

(c) Generic rectangular track mission

Fig. 4: The Multi-agent System for non-Holonomic Racing (MuSHR) robot is a driving platform that uses model predictive
control over a discrete library of possible trajectories (b), but permits takeover from human supervisor. Our mission is to
complete collision free laps around a rectangular track (c).

V. EXPERIMENTS

We test EIL in a robot driving task where the goal is to
track a coarse reference path in a way that is good enough (i.e.
collision free, smooth) so the expert need not intervene. The
reference path (Fig. 4b,c) may have sharp turns or pass through
obstacles - hence we wish to learn a controller than can track
it appropriately. We focus on repeated training episodes at
specific locations (right turn, straight hallway) to benchmark
how quickly the robot learns that specific skill from scratch.

A. Experimental Setup
Robot Agent – All robot experiments (sim and real) use

the Multi-agent System for non-Holonomic Racing (MuSHR)
driving and simulation platform [37], a 1/10 scale car equipped
with: short range lidar, RGBD camera, IMU and NVIDIA
Jetson Nano (Fig. 4a). We use lidar to manually create a
prior map, which we localize against at run-time. Because of
the onboard EdgeAI computer, both safety override controls
and policy updates are low latency, making it a very natural
candidate for training with EIL (Fig. 4b). Sim and real use an
identical model predictive controller (MPC) where:
• State st ∈ S – localized pose and velocity.
• Low-level Control ut – steering angle φt and acceleration.
• Action space A – a fixed library of 64 motion primitives

(see Fig. 4b). Each action a(i) is a sequence of pre-defined
control and resulting predicted states a(i)

t = (u
(i)
1:H , s

(i)
t:t+H).

• Feature function f : s, a → Rd – for action primitive
a we compute the average over states in the primitive
horizon st:t+H for each of: 0-1 boundary violation, absolute
curvature to next step, distance to nearest obstacle, and
distance to goal path. (We also include unity bias feature.)

• Score function Qθ(s, a) = θTf(s, a) – linear in features.
• Policy πθ – greedy cost minimizer (red path in Fig. 4b)
πθ(s) = arg mina∈A Qθ(s, a).

• Trajectory ξ = {(st, at, ut)}Tt=1 – a sequence of at most T
state-action-control samples of either/both robot or human.

At timestep t, the controller evaluates the policy at = πθ(st),
executes the first control ut of at, and the process repeats.

Expert and Hyperparameters – In simulation, the ex-
pert uses a set of manually tuned optimal feature weights
θE , over the same score and policy classes as the learner,
πE(s) = arg mina∈A QθE (s, a). We also set an intervention
threshold BE and decide whether to intervene or cede control
by continuously scoring the current action w.r.t. QE . If the
learner action exceeds BE , the expert supplies subsequent
actions until the score drops back below the threshold. In
choosing BE , the expert effectively defines the size of the
good enough region, and we discuss how its choice affects
performance in Section V-B. Although a human expert has no
such precise internal QE , θE , or BE , they provide feedback
in a similar way, by intervening and supplying a sequence
of nominal or intervention controls (ut, . . . , ut+N) based on
when they perceive the robot as acting poorly or to avoid
collision. We project the sequence of expert controls back
to the discrete primitive action space A by minimizing the
Fréchet distance [38] between the sequence of states during
expert control and the projected states visited for each action
in the library arg mina∈A F ((st:t+N |ut:t+N), (st:t+N |a)).

The optimal choice of hyperparameters αL and αE depends
on properties of both the robot and the human expert, such as
MPC horizon and reaction time, though poorly chosen values
smoothly degrade performance to be similar to HG-DAGGER.
For both sim and real, the MPC horizon is H = 15 steps
(∼ 3m), so we choose αL so that the last H learner steps
before intervention are flagged as bad. In our context, MPC
horizon length (rather than expert reaction time) is the domi-
nant factor in choosing αL since the robot typically lands in a
bad state after contemplating it for H steps, and H is usually
much longer than the expert reaction time. αE depends on how
quickly the expert recovers and returns to G, but in this context
αE = 0 works fine for a skilled expert. Choosing λ very large
or very small utilizes only half the available feedback, which
slows learning. For our environment, a fixed λ = 1 worked
well, though future work could explore adaptively tuning λ
as the dataset grows. Likewise, using multiple or sub-optimal
experts would certainly require more care, and a variant of

the Bayesian approach of [27] might present a way to infer
appropriate values of αL. We set B = 0 as it is just a way to
coarsely rank states, and it absorbs into the bias.

Experiment Setup, Baselines, and Evaluation – Each
policy improvement iteration n as denoted in Algorithm 1
can either be done by gathering a batch of samples under the
current policy, or in a fully online manner, updating the policy
after each time-step. For the sake of repeatability, we opt for
the batch setting, further breaking the mission (Fig. 4c) into
two portions trained independently: a straight hallway segment
and a sharp corner. The hallway is interesting because it is
repetitive, i.e. it should learn with few samples. The corner is
interesting because driving through the tip of the corner has
only a modest effect on the feature function but is catastrophic
for safety. All algorithms are initialized with the same set of
(very bad) parameters and given one full example trajectory.
For every improvement iteration n, we initialize the car at
roughly the same location, generate a short trajectory (50-70
steps, 10-15m), aggregate, improve, and iterate.

We choose as baselines the algorithms listed in Table I,
and evaluate based on 1) the total number of samples in the
environment as well as 2) the number of samples supplied by
the expert. For Behavioral Cloning (BC) and DAGGER, those
two numbers will be identical, since the expert labels every
state, though DAGGER has slightly fewer total samples over
the same number of iterations due to learner policy crashing
and terminating early. We hold the number of iterations con-
stant, so EIL and HG-DAGGER have substantially fewer expert
samples since the expert intervenes only when necessary.

In simulation, we judge success according to action subopti-
mality on a fixed validation set DT , Ea∼πL,s∼DT [QE(s, aL)−
QE(s, aE)] as a consistent, low-variance benchmark. With a
human, the standard of “good enough” is very flexible. Our
expert is instructed to intervene as consistently as possible
based on a) collision avoidance and b) “jerkiness”

∑
t |φ̇t|.

We measure ultimate success by the number of samples
required before the policy consistently executes collision-free
trajectories and the jerkiness of the converged policy.

B. Experimental Results

MuSHR Simulation Results – From our simulation exper-
iments, we make the following observations:

Observation 1: EIL outperforms all algorithms on all
datasets both in number of expert samples and total number
of environment samples.

In Fig. 5 we see that EIL achieves the highest performance,
while HG-DAGGER performs comparably to DAGGER in
terms of total samples, but outperforms DAGGER in the
number of expert samples since it doesn’t query the expert
on the segments of learner control. HG-DAGGER amounts
to an implementation of EIL with no reliance on implicit
feedback, (remove `B term or make λ very large), which
indicates that the improvement in sample efficiency is largely
due to the added benefit of implicit feedback. Surprisingly, the
hallway proves to be the more challenging task in simulation,
because many states are repetitive, and it takes a longer time

Hallway

100 200 300 400 500 600
Total Environment Samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(a)

100 200 300 400 500 600
Expert Queries

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(b)
Right turn

100 200 300 400 500 600
Total Environment Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(c)

100 200 300 400 500 600
Expert Queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(d)

Fig. 5: Simulation performance of EIL compared to baselines
(see Table I) in a straight hallway scenario (a,b) and the right
hand turn segment (c,d) pictured in Fig. 4b.

60 80 100 120 140
Expert Queries

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL,BE = − 1
EIL,BE = − 0.5
EIL,BE = 0
EIL,BE = 0.5
EIL,BE = 1

Fig. 6: Performance in driving sim after 200 time-steps for
different intervention thresholds BE . Varying BE confirms
intuitions that an overly aggressive expert is sample inefficient,
while an overly passive expert fails to provide useful feedback.

to discover the key states for shaping optimal performance. On
the physical system, however, added localization error makes
precisely clearing the sharp corner the more challenging task.

Observation 2: There exists an optimal level of intervention
which minimizes both learner error and expert burden. (Fig. 6)

The hand-crafted πθE expert in simulation lets us precisely
track learner performance as a function of the expert interven-
tion style, parameterized here by the intervention threshold

TABLE II: Samples required to achieve a zero collision policy
for right turn, jerkiness (

∑
t |φ̇t|) and mean obstacle proximity

(m) of converged policies after 24 iterations of T = 70 steps.

Alg. # Expert # Total Jerkiness Obst. Prox

BC [4] > 1680 > 1680 0.0090 0.341
EIL (ours) 311 1120 0.0135 0.396
HG-DAGGER 223 560 0.0217 0.437
Human - - 0.0114 0.675

BE . In Fig. 6 we explore the range between an aggressively
intervening expert (BE = −1) and an overly passive expert
(BE = 1). Reducing BE → −∞ shrinks the set of good states
to nothing and mimics behavioral cloning in requiring that the
expert always be in control. The aggressive expert prevents the
learner from making mistakes and visiting diverse states that
would speed learning, and thus burdens the expert by requiring
more samples. On the other hand, by raising the cost threshold
BE →∞, a passive expert almost never intervenes, giving the
agent too much leeway and the agent fails to learn, receiving
neither correction nor demonstration. Although a human expert
cannot make such precise intervention style adjustments, this
gives a useful heuristic: In implementing EIL (and perhaps in
life) some intervention is helpful, but too much correction will
both exhaust the supervisor and slow the learning process, and
too little will rob the learner of meaningful expertise.

MuSHR Robot with Human Expert – Our experiments
with the physical robot and the human expert corroborate
our first observation from simulation and add the following
observation:

Observation 3: Learning only from recovery trajectories can
harm performance.

Table II shows the number of samples required for the
learner to achieve a policy that consistently avoids collision
in the right turn scenario. After 24 expert demo trajectories,
BC never achieves collision avoidance, demonstrating the
difficulty of this task. HG-DAGGER learns collision avoidance
with somewhat fewer samples than EIL, but the converged
policy (after 24 iterations) is still undesirable, making jerky
weaving maneuvers seen in Fig. 7b. This is unsurprising,
because the HG-DAGGER dataset is imbalanced, largely com-
prised of jerky explicit “recovery” policy samples supplied by
the expert. EIL benefits from the reinforcement of the implicit
approval of the smooth parts of its steering and the implicit
disapproval of any jerky samples as it swerves towards a wall
prior to intervention, and the inclusion of αE > 0 can teach
the robot to avoid the initial jerky expert states. In Table II and
Fig. 7 we see that EIL quickly learns to both avoid collision
and smoothly track the reference in a “good enough” way for
the expert not to intervene.

VI. DISCUSSION

Learning from demonstration in a way that is both sample
efficient and easy to implement is challenging since many
techniques ask human experts to perform burdensome off-line
labeling [5, 14, 21]. Expert Intervention Learning introduces a

(a) Behavior Cloning (b) HG-DAGGER

(c) EIL (ours) (d) Human demonstrations

Fig. 7: Recorded rollouts of πθm show the policy improvement
as training progresses for each algorithm.

novel way to train robots that is natural to implement, provides
theoretical guarantees, and demonstrates strong performance in
practice. EIL exploits both implicit and explicit feedback from
corrective demonstrations, the benefit of which we see clearly
in the policies produced by the real robot experiment. Relying
solely on recovery actions creates an imbalanced dataset,
biased towards actions exhibiting undesirable jerky behaviors,
whereas the incorporation of coarse implicit feedback gives a
more balanced sample set, producing both safe and desirable
policies (Fig. 7). Our simulation results also suggest a trade-
off for the expert in deciding how good is “good enough” and
how strictly to enforce it (Fig. 6). With regard to interventions,
if the expert can afford to be patient, then less is more.

Our approach is successful when the expert is consistent
and we are satisfied with simply achieving a performance
threshold. We posited that EIL is natural and un-burdensome,
but supervision still requires alertness, and we plan to do a user
study to see just how much our claim holds, and what happens
when the expert is less consistent or sub-optimal. Our coarse
goodness threshold was key for harnessing implicit feedback,
but an interesting avenue of future work is to incorporate a
multi-task learning framework, and thus learn from multiple
experts with perhaps different thresholds and deduce which
objectives they are biased towards [27]. Finally, we also plan to
look into the way an expert may change and adapt intervention
technique as learning progresses, extending theory of mind
into interventions, which can benefit the wider body of human-
robot interaction.

ACKNOWLEDGMENT

This work was (partially) funded by the DARPA Dispersed
Computing program, NIH R01 (#R01EB019335), NSF CPS
(#1544797), NSF NRI (#1637748), the Office of Naval Re-
search, RCTA, Amazon, and Honda Research Institute USA.

REFERENCES

[1] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer,
and R. Urtasun, “Jointly learnable behavior and trajec-
tory planning for self-driving vehicles,” arXiv preprint
arXiv:1910.04586, 2019.

[2] S. Choudhury, V. Dugar, S. Maeta, B. MacAllister,
S. Arora, D. Althoff, and S. Scherer, “High performance
and safe flight of full-scale helicopters from takeoff to
landing with an ensemble of planners,” Journal of Field
Robotics (JFR), 2019.

[3] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and
D. Quillen, “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collec-
tion,” The International Journal of Robotics Research
(IJRR), 2018.

[4] D. A. Pomerleau, “Alvinn: An autonomous land vehicle
in a neural network,” in Advances in Neural Information
Processing Systems (NeurIPS), 1989.

[5] S. Ross, G. Gordon, and D. Bagnell, “A reduction
of imitation learning and structured prediction to no-
regret online learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and
statistics (AIStats), 2011.

[6] M. Laskey, C. Chuck, J. Lee, J. Mahler, S. Krishnan,
K. Jamieson, A. Dragan, and K. Goldberg, “Comparing
human-centric and robot-centric sampling for robot deep
learning from demonstrations,” in IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[7] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wen-
del, D. Dey, J. A. Bagnell, and M. Hebert, “Learning
monocular reactive UAV control in cluttered natural envi-
ronments,” in IEEE International Conference on Robotics
and Automation (ICRA), 2013.

[8] P. Abbeel and A. Y. Ng, “Apprenticeship learning via
inverse reinforcement learning,” in Proceedings of the
twenty-first International Conference on Machine learn-
ing (ICML), 2004.

[9] H. Daumé III, J. Langford, and D. Marcu, “Search-based
structured prediction,” Machine Learning Journal (MLJ),
2009.

[10] B. D. Argall, S. Chernova, M. Veloso, and B. Brown-
ing, “A survey of robot learning from demonstration,”
Robotics and Autonomous Systems, 2009.

[11] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell,
P. Abbeel, and J. Peters, “An algorithmic perspective on
imitation learning,” Foundations and Trends in Robotics,
2018.

[12] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and
J. Malik, “Cognitive mapping and planning for visual
navigation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[13] B. Kim, A. Farahmand, J. Pineau, and D. Precup, “Learn-
ing from limited demonstrations,” in Advances in Neural
Information Processing Systems (NeurIPS), 2013.

[14] M. Laskey, J. Lee, W. Hsieh, R. Liaw, J. Mahler, R. Fox,

and K. Goldberg, “Iterative noise injection for scalable
imitation learning,” arXiv preprint arXiv:1703.09327,
2017.

[15] S. Chernova and M. Veloso, “Interactive policy learning
through confidence-based autonomy,” Journal of Artifi-
cial Intelligence Research, 2009.

[16] K. Menda, K. R. Driggs-Campbell, and M. J. Kochen-
derfer, “EnsembleDAgger: A Bayesian Approach to Safe
Imitation Learning,” arXiv preprint arXiv:1807.08364,
2018.

[17] D. H. Grollman and O. C. Jenkins, “Dogged learning
for robots,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation (ICRA), 2007.

[18] B. Kim and J. Pineau, “Maximum mean discrepancy
imitation learning.” in Robotics: Science and Systems
(RSS), 2013.

[19] B. Packard and S. Ontañón, “Policies for active learning
from demonstration,” in 2017 AAAI Spring Symposium
Series, 2017.

[20] K. Judah, A. P. Fern, and T. G. Dietterich, “Active
imitation learning via reduction to iid active learning,”
in 2012 AAAI Fall Symposium Series, 2012.

[21] M. Laskey, S. Staszak, W. Y.-S. Hsieh, J. Mahler, F. T.
Pokorny, A. D. Dragan, and K. Goldberg, “SHIV: Re-
ducing supervisor burden in dagger using support vec-
tors for efficient learning from demonstrations in high
dimensional state spaces,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[22] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J.
Kochenderfer, “Hg-dagger: Interactive imitation learning
with human experts,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019.

[23] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D.
Dragan, “Learning robot objectives from physical human
interaction,” in Proceedings of the 1st Annual Conference
on Robot Learning (CoRL). PMLR, 2017.

[24] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learn-
ing trajectory preferences for manipulators via iterative
improvement,” in Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2013.

[25] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D.
Dragan, “Learning from physical human corrections, one
feature at a time,” in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), 2018.

[26] E. Senft, P. Baxter, and T. Belpaeme, “Human-guided
learning of social action selection for robot-assisted ther-
apy,” in Machine Learning for Interactive Systems, 2015.

[27] R. Loftin, B. Peng, J. MacGlashan, M. L. Littman, M. E.
Taylor, J. Huang, and D. L. Roberts, “Learning behaviors
via human-delivered discrete feedback: modeling implicit
feedback strategies to speed up learning,” Autonomous
Agents and Multi-Agent Systems, 2016.

[28] J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang,
D. L. Roberts, M. E. Taylor, and M. L. Littman, “Inter-
active learning from policy-dependent human feedback,”

in Proceedings of the 34th International Conference on
Machine Learning (ICML), 2017.

[29] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza,
“Power to the people: The role of humans in interactive
machine learning,” AI Magazine, vol. 35, pp. 105–120,
2014.

[30] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “In-
formation gathering actions over human internal state,” in
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016.

[31] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa,
“Planning with trust for human-robot collaboration,” in
Proceedings of the 2018 ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), 2018.

[32] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dra-
gan, “Cooperative inverse reinforcement learning,” in
Advances in Neural Information Processing Systems
(NeurIPS), 2016.

[33] J. F. Fisac, M. A. Gates, J. B. Hamrick, C. Liu,
D. Hadfield-Menell, M. Palaniappan, D. Malik, S. S.
Sastry, T. L. Griffiths, and A. D. Dragan, “Pragmatic-
pedagogic value alignment,” Robotics Research, p.
49–57, Nov 2019.

[34] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and
J. A. Bagnell, “Deeply AggreVaTeD: Differentiable Im-
itation Learning for Sequential Prediction,” in Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), 2017.

[35] S. Shalev-Shwartz, “Online learning and online con-
vex optimization,” Foundations and Trends in Machine
Learning, vol. 4, no. 2, pp. 107–194, 2012.

[36] M. Zinkevich, “Online convex programming and gener-
alized infinitesimal gradient ascent,” in Proceedings of
the 20th International Conference on Machine Learning
(ICML), 2003.

[37] S. S. Srinivasa, P. Lancaster, J. Michalove, M. Schmittle,
C. Summers, M. Rockett, J. R. Smith, S. Choudhury,
C. Mavrogiannis, and F. Sadeghi, “MuSHR: A Low-
Cost, Open-Source Robotic Racecar for Education and
Research,” arXiv preprint arXiv:1908.08031, 2019.

[38] H. Alt and M. Godau, “Computing the Fréchet distance
between two polygonal curves,” International Journal of
Computational Geometry & Applications, vol. 5, pp. 75–
91, 1995.

	I Introduction
	II Related Work
	III Problem Formulation
	IV Approach
	IV-A Modelling interventions as action-value constraints
	IV-B Reduction to online, convex optimization
	IV-C Algorithm
	IV-D Comparison to other imitation learning frameworks
	IV-E Analysis

	V Experiments
	V-A Experimental Setup
	V-B Experimental Results

	VI Discussion

