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Abstract—As the number of agents comprising a swarm
increases, individual-agent-based control techniques for collective
task completion become computationally intractable. We study
a setting in which the agents move along the nodes of a
graph, and the high-level task specifications for the swarm are
expressed in a recently proposed language called graph temporal
logic (GTL). By constraining the distribution of the swarm
over the nodes of the graph, GTL specifies a wide range of
properties, including safety, progress, and response. In contrast
to the individual-agent-based control techniques, we develop an
algorithm to control, in a decentralized and probabilistic manner,
a collective property of the swarm: its density distribution. The
algorithm, agnostic to the number of agents in the swarm,
synthesizes a time-varying Markov chain modeling the time
evolution of the density distribution of a swarm subject to GTL.
We first formulate the synthesis of such a Markov chain as a
mixed-integer nonlinear program (MINLP). Then, to address
the intractability of MINLPs, we present an iterative scheme
alternating between two relaxations of the MINLP: a linear
program and a mixed-integer linear program. We evaluate the
algorithm in several scenarios, including a rescue mission in a
high-fidelity ROS-Gazebo simulation™.

I. INTRODUCTION

Large numbers, or swarms, of autonomous agents have
been widely studied because they can collaboratively complete
complex tasks that would be difficult or impossible for a
single agent. Applications of the swarm concept include the
construction of a complex formation shape [21, 27]], task
allocations [5, 22], surveillance, and search or rescue mis-
sions with ground or aerial vehicle swarms [10l [16, 25| 30].
However, how to control such a swarm to achieve global task
requirements remains a challenging problem as the number of
agents in the swarm increases.

Individual-agent-based control techniques are centered on
the idea of generating the trajectory of each agent in the swarm
separately. Therefore, as the number of agents comprising
the swarm increases, the computational cost for assigning
the targets of each agent and generating all the optimal
trajectories one by one becomes prohibitively high. We study
an alternative setting in which the agents in a swarm move
along the nodes of a graph [6]. We sometimes refer to this
graph as the configuration space. In this scenario, instead of
controlling each agent individually, we propose to control over
time a collective property of the swarm, more specifically the
density distribution of the swarm over the nodes of the graph.

In the aforementioned scenario, constraining the evolution
of the density distribution of the swarm expresses a set
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of collective behaviors. We consider graph temporal logic
(GTL) [38] as the formal language to specify such constraints
on the swarm. GTL, an extension of linear temporal logic
(LTL) [26], is an expressive language for task specifications
that focuses on the spatial-temporal properties of the labels of
a graph. Specifically, GTL expresses more concisely spatial-
temporal properties on a graph structure than other logics
such as alternating-time temporal logic (ATL) [2]], and LTL.
As an example, GTL concisely expresses properties such as
“whenever the density of the swarm in a node is less than 0.3,
eventually in the next 3 time steps, at least two of its neighbor
nodes have their density above 0.6”. This property will result
in a lengthier formula if expressed in either ATL or LTL.

In this paper, we synthesize controllers for swarms of
autonomous agents subject to high-level task specifications
expressed in GTL. Specifically, we are interested in developing
control algorithms with the following properties: (a) correct-
ness, i.e., the algorithm should enable the satisfaction of GTL
specifications; (b) scalability, i.e., the algorithm should scale
with the size of the swarm and the size of the configuration
space; and (c) distributed, i.e., the algorithm should return
decentralized control laws to be executed by each agent [[1]].

More specifically, we develop an algorithm to control, in
a probabilistic manner, the time evolution of the density
distribution of the swarm. The algorithm synthesizes a time-
varying Markov chain [1} |9], which models the time evolution
of the density distribution in the configuration space. From
the perspective of an agent, the transition probability between
two nodes is specified by the transition probability between
the matching states of the synthesized Markov chain.

The proposed formalism builds on the notion of transition
probabilities between nodes of the configuration space, which
is agnostic to the low-level individual dynamics or local
interactions between agents as long as the transitions imposed
by the synthesized Markov chain can be achieved.

We formulate the synthesis of a Markov chain for the control
of a swarm subject to GTL specifications as a mixed-integer
nonlinear programming (MINLP) [31] feasibility problem.
MINLPs are NP-hard problems. Thus, we seek for algorithms
to efficiently compute solutions of the resulting MINLP. In
the particular case where the agents move along the nodes
of a complete graph [6]], we prove an equivalence between
the feasibility of the MINLP and the feasibility of a mixed-
integer linear program (MILP) [34]. In the general case, based
on an idea similar to the coordinate descent approach [32],



we present a method to efficiently solve the MINLP by
iteratively solving two of its relaxations: a linear program [7]]
and an MILP. We demonstrate on a set of problems how
the developed method improves scalability over off-the-shelf
MINLPs solvers [4} [12]. Specifically, we show that even
on relatively small problems, the developed method is three
orders of magnitude faster than these MINLPs solvers. In a
gridworld setting and a high-fidelity ROS-Gazebo simulation,
with agents of the swarm being able to achieve collision
avoidance based on ORCA [33]], we demonstrate the scalability
and correctness of the developed algorithm.

The algorithm developed in this paper is scalable as it
does not depend on the number of agents in the swarm.
Furthermore, the algorithm is correct since, by construction,
the resulting Markov chain enables the satisfaction of the GTL
specifications. Assuming that the transition time between two
nodes is synchronized, each agent individually chooses the
node to transit solely based on the transition probabilities
of the synthesized Markov chain. Henceforth, the algorithm
returns a decentralized control law for each agent.
Contributions. We make the following contributions: (a) we
present a novel, correct-by-construction, scalable, and dis-
tributed algorithm for the problem of controlling a swarm
of autonomous agents subject to GTL specifications; (b) we
formulate the problem as an MINLP, identify a particular case
where the MINLP can be recast as an MILP, and develop a
method based on relaxations of the MINLP to efficiently solve
the general case; (c) we evaluate the developed algorithm on
simulation examples involving a large number of agents.
Related work. Existing techniques for probabilistic density
control [3l [11] of swarms based on the synthesis of a Markov
chain do not consider complex behaviors of the swarm, such
as the ones induced by temporal logic specifications. To the
best of our knowledge, this is the first paper to investigate
probabilistic density control with temporal logic specifications.

The problem of synthesizing a controller for systems with
multiple agents from a high-level temporal logic specification
is considered in [18, [19, 37, [39]]. These papers define the
specifications on the agent level and use an automata-based ap-
proach [17, 35]] to compute a discrete controller satisfying the
specifications over a finite abstraction of the system. However,
it is expensive to compute such a finite abstraction, and the
size of the automaton may be exponential in the length of the
specifications while the synthesis of a controller can be double
exponential in the length of the specifications. Moreover,
the length of the specifications depends on the size of the
configuration space and may also grow exponentially with the
number of controllable agents. Instead, this paper presents a
synthesis algorithm with a worst-case time complexity that is
only exponential in the size of the configuration space.

The synthesis of control algorithms for swarms subject
to spatial and temporal logic specifications has also been
considered in recent work [28, 29, 136, 115} 14} 23|]. When con-
sidering spatial-temporal properties on a graph, GTL is more
expressive than the spatial-temporal logics such as counting
LTL [28 29] or SpaTeL [14, [15]. Besides, the approaches

based on these logics are significantly less scalable than the
proposed approach, and most of them require a central unit to
assign targets to individual agents. Specifically, the number
of integer variables in the optimization problems resulting
from counting LTL-based, GR(1)-based [23], and SpaTeL-
based approaches depends on the size of the specifications.
Besides, it exhibits quadratic dependency on the size of the
considered abstraction. In contrast, the number of integer
variables in the proposed approach depends only on the size
of the specifications.

II. PRELIMINARIES

Notation. 0 is the zero matrix or vector of appropriate
dimensions. 1 denotes a vector with all elements equal to
1 of appropriate dimensions. e; is a vector of appropriate
dimensions with its i-th entry 1 and its other entries 0. AT
denotes the transpose of a matrix A. A; ; = A[i, j] = e] Ae;
for a matrix A. z; = z[i] = elx for a vector x. Comparisons
(e.g., >) between matrices or vectors are conducted element-
wise. The operator ® represents the element-wise product. |V|
denotes the number of elements in the set V.

A. Markov Chain-based Control Approach

We present the definitions and assumptions used in the
Markov chain approach to control swarms of autonomous
agents. Note that most of the definitions in this section can
be found in the existing literature [1} [3].

Definition 1 (Bins): The configuration space over which the
state of an agent is distributed is denoted as R. It is assumed
that R is partitioned into n, disjoint subspaces called bins.

R = U?;lRi, s.t. R; N Rj = (), for all i £ .

Each bin R; (also referred to as bin 7) represents a predefined
range of the state of an agent, e.g., position, behavior, etc.

Definition 2 (State of an agent): We denote by N, the
number of agents in the swarm. We define ™ (t) € {0,1}"™
as the state of agent m at time ¢. If 7™ (¢) belongs to the bin
R;, for some i € {1,...,n.}, then r™(t) = e;.

Definition 3 (Motion constraints): The state of each agent
can transition, between two consecutive time steps, from a
bin to only certain bins because of the dynamics or the
environment. These motion constraints are specified by the
fixed matrix A, € {0,1}™*™, called an adjacency matrix.
Each component of A,qj is given by

1 if the transition from bin R;

Augilt, j] = to bin R; is allowed,

0 if this transition is not allowed.

Equivalently, the topology of the bins can be modeled as a
graph G = (V, E) where V = {vy, ..., v, } represents the set
of bins, and £ C V' x V represents the set of edges such that
(vi,vj) € E if and only if Augfi,j] =1, Vi,j € {1,...,n}.

In the rest of the paper, when we refer to an agent belonging
to a bin, we mean that its state belongs to that bin. Similarly,
when we refer to an agent transiting between bins, we mean
that its state transits between these bins.



Example 1: Consider a swarm scenario where the state
of an agent is its position, and the physical configura-

tion space is partitioned into n, = 3 bins. Consider
that A, = [[1,1,0]T,[1,1,1%,[0,1,1]T]. Having that
Augi[1,1] = Aagi[1,2] = 1, and Ayq[1, 3] = 0 enforces agents

in bin R, to either stay in R, or transit to R, between two
consecutive time steps. The corresponding graph G = (V, E)
is given by V = {vy,vs,v3}, where the nodes vy, vy, and
vs represent respectively the bins R1,Ro, and R3. The set
of edges is given by E = {(v1,v1), (v1,v2), (v2,v1), (v2, v2),
(v2,v3), (vs, v2), (v3, v3)}-

Definition 4 (Density distribution of the swarm): The den-
sity distribution x(¢) € R™ of a swarm is a column-stochastic
vector, i.e. x(t) > 0 and 1Tx(t) = 1, such that a component
x;(t) is the proportion of agents in bin R; at time ¢:

Definition 5 (Transition policy of an agent): At time t, the
agent m transits from bin R; to bin R; with probability

M75(t) = P (t+1) = 1rj*(t) = 1),

where M™(t) € R™*™ is a column-stochastic matrix, i.e.
1TM™(t) = 1T, M™(t) > 0. We refer to M™(t) as the time-
varying Markov matrix of agent m at time ¢.

Remark 1: Under the motion constraints given by A,q;, the
transitions between some bins may not be allowed. For agent
m, M]"(t) is the probability of transition from bin R; to bin
R;. Hence, M"(t) = 0 if Auq[j,1] = 0.

In Example 1} if M™(t) is the time-varying Markov matrix
of agent m at time ¢, then M (t) gives the probability of
agent m to transit from bin R; to bin Rs in one time step.
Moreover, having Aug[1, 3] = 0 enforces that M3 (t) = 0.

We focus on methods that ensure that each agent has
the same time-varying Markov matrix at any given time ¢,
ie. MY(t) = --- = M™M(t) = M(t). When the agents
independently choose their transitions between bins using
M (t), two mathematical interpretations are given for z(¢) [1]:
(a) x(t) is the vector of expected ratio of the number of agents
in each bin; (b) the ensemble of agent state, {r" (t)}kNgl, has
a distribution that approaches x(¢) with probability one as N,
increases towards infinity (due to the law of large numbers).
As a consequence, the dynamics of the density distribution of
the swarm can be modeled by [} [11]

z(t+1) = M(@t)x(t), (D

as N, increases towards infinity. The Markov chain approach
for the control of swarms relies on the synthesis of a time-
varying Markov matrix M (t) such that the time evolution of
the density distribution of the swarm is given by ().

B. Graph Temporal Logic

Let G = (V, E) be a graph, where V is a finite set of nodes
and F is a finite set of edges. We use X’ to denote a (possibly
infinite) set of node labels. T = {0, 1, ...} is a discrete set of

time indices. A graph with node labels is also called a labeled
graph. A trajectory g : V x T — X on the graph G denotes
the time evolution of the node labels.

Consider the graph G in Example [I| We label each node of
G with the density of the swarm in the corresponding bin. For
example, the label of node v; at time ¢, denoted by x1(t), is the
density of the swarm in bin R;. As a consequence, the graph
trajectory ¢ at node v; and time ¢ is given by g(v;, t) = x;(t).

An atomic node proposition is a predicate on X, i.e. a
Boolean valued map from X. We use 7 to denote an atomic
node proposition, and O(w) to denote the subset of X for
which 7 is true.

We define that a graph trajectory g satisfies the atomic
node proposition 7 at a node v at time index k, denoted as
(9,v,k) =, if and only if g(v, k) € O(r). In Example [1] if
2(0) = [0.3,0.3,0.4] and 7 = (z < 0.3), then 7 is satisfied
by ¢ at time index O at nodes v; and vs.

Definition 6 (Neighbor operator): Given a graph G, the
neighbor operation () : 2V — 2V is defined as

oW

Intuitively, O(V”) consists of nodes that can be reached from
V. Note that neighbor operations can be applied successively.
In Example |1, we have O ({v1}) = {v1,v2}.

We refer to a graph trajectory of finite length as a trajectory
g:V x{0,..., Tt} — X, where T; € T. Graph trajectories of
finite time length are sufficient to satisfy (resp. violate) finite-
horizon GTL formulas. We define the syntax of a finite-horizon
GTL formula ¢ recursively as

y={veV|I eV st (V,v) € E}.

o= |01 | X1 | p1Ap2 | prilh<ipa | V(O O)epn,

where 7 is an atomic node proposition, 3V () --- ()¢ reads
as “there exist at least N nodes under the neighbor operation
O -+ that satisfy ¢ ”, = and A stand for negation and con-
junction respectively, X is the temporal operator “next”, and
U<; is the temporal operator “parametrized until” where ¢ € T
is a parameter. We can also derive V (disjunction), = (implica-
tion), O, ,i,) (parametrized eventually), [;, ;,) (parametrized
always) from the above-mentioned operators [8], e.g.

2 — 2 —
k=i, k=i
The satisfaction relation (g, v, k) |= ¢ for a graph trajectory
g at node v at time index k£ with respect to a finite-horizon
GTL formula ¢ is defined recursively as

(g,v,k) = iff g(v, k) € O(n),

(9,0, k) E = iff (g,v,k) & ¢,

(9,v, )lZXsD iff (g,v,k+1) F ¢,

(9,v.k) Ep1 Apa iff (g,v,k) | p1and (g,v,k) | g2,
(9,0, k) = porld<ipa  iff 3K € [k, k +1],s.t. (9,0, k) |= o,

(g,v, k") = 1, VK" € [k, k'),

(g0, k) = IN(O - Q)piff vy, ..., o5 (v; # v; for
Z#])a S't'7Vivvi € O O ({U})’ and (g7viak) ): ®.



Intuitively, a graph trajectory g satisfies 3V (O --- )y at
anode v € V at time index k, if there exist at least N nodes
in O--- O ({v}) where ¢ is satisfied by g at time index k.
Note that, by definition, if O -+ O ({v}) consists of fewer
than N nodes, then 3V (O --- () is false. In Example [1} if
x(0) = [0.3,0.3,0.4]", then the nodes that satisty 32 O (z <
0.3) at time index 0 are v1 and vs.

We also define that a graph trajectory g satisfies ¢ at node
v, denoted as (g, v) | o, if g satisfies o at node v at time 0.

Definition 7 (Time horizon of finite-horizon GTL formulas):

We define the time horizon T, € T of the formula ¢ as the
minimum time length of a graph trajectory to evaluate both
its satisfaction and its violation with respect to ¢.

As examples, o1 = Qpo5(r > 0.2) has a time horizon
T, =5, and 2 = X ((z < 0.1)U<s(F* O (z > 0.3))) has a
time horizon T,,, = 9. In the remainder of the paper, we will
use GTL instead of finite-horizon GTL for brevity.

III. PROBLEM FORMULATION

In this section, we first specify the link between a graph
trajectory satisfying a graph temporal logic (GTL) formula and
the time evolution of the density distribution of a swarm. Then,
we formulate the problem of controlling, in a probabilistic
manner, the density distribution of a swarm subject to GTL,
as the problem of synthesizing a time-varying Markov matrix.

Definition 8 (GTL specifications): Let G = (V, E) be the
graph induced by the topology of the bins (Definition [3).
By labeling each node v; € V with the time-varying density
x;(t) of the swarm (Definition {4{ in bin R;, we define GTL
specifications on the swarm as GTL formulas on G.

Definition [§] specifies that a graph trajectory g on the labeled
graph G, at node v; and time index ¢t € T, is given by
g(vi,t) = x;(t). In the remainder of the paper, we write
(z,v;) E ¢ to denote the fact that the graph trajectory g,
with g(v;,t) = x;(t), satisfies ¢ at node v;.

Assumption 1: For every atomic node proposition 7 of a
given GTL formula, we assume that O(m) C X is a convex
polytope set [7].

Problem 1: Given the adjacency matrix A,qj and its induced
graph G = (V, E),aset V' C V, and a GTL formula ¢ on the
induced labeled graph (Definition [8), compute a time-varying
Markov matrix M (t) such that the following are true:

1) The motion constraints are satisfied.
2) (z,v) E ¢ forall ve V'

Remark 2: M(t) dictates the evolution (I)) of the density
distribution of the swarm x(t). Thus, M (t) specifies the graph
trajectory and its design is crucial in the satisfaction of .

Consider Example |1 with z(0) = [0.3,0.3,0.4]T, and the
GTL formula ¢; = (O} 10 (z = 0)) is specified for node
vg (bin Ry). Intuitively, ¢ means that from time index 1 to
time index 10, there should always be no agents in bin Ry. A
time-varying Markov matrix solution to Problem [I] is

1 05 0 100
MO)=10 0 0| ,Mt)=|0 1 0|,t=1,...,9.
0 05 1.0 00 1

Intuitively, at time 0, an agent in /R must move to R or R
with probability 0.5 and remains there for ¢ > 1. The reader
can check that with z(t) = M (t)z(t — 1) for t > 1, we have
x2(t) = 0 holds for ¢t > 1. Thus, ; is satisfied at node vs.

IV. MINLP FORMULATION

In this section, we formulate the Problem [I] as a mixed-
integer nonlinear programming (MINLP) problem containing
M(t) and z(t + 1) as variables, where ¢ € {0,...,T, — 1}
and T, is the time horizon of the graph temporal logic (GTL)
formula ¢ that we seek to satisfy.

A. Stochasticity and Motion Constraints

The desired time-varying Markov matrix M (¢) at time index
t is a column-stochastic matrix, i.e.

1TMm(t) =1". 2)

From Remark [I} we have that M; ;(t) = 0 if Aug[j,i] =0,
and M]"(t) > 0 otherwise. Thus,

(117 — Agy) © M(1)
M(t) >
B. MILP Encoding of GTL Formulas

In this section, we ignore the constraints implied by the
dynamics (I, and seek only for graph trajectories that satisfy
a given GTL formula. Given a labeled graph G = (V, E) with
V = {v1,...,un}, a GTL formula ¢ and its time horizon
T,, anode v € V, we want to compute a graph trajectory g
such that (g,v) = ¢ under Assumption |1} With a slight abuse
of notation, we write g(t) := [g(v1,1),...,9(vn,t)]T, where
t€{0,...,T,}. Consider X C R? with d > 1.

Theorem 1: The existence of a graph trajectory g such
that (g,v) = ¢ can be equivalently formulated as a mixed-
integer linear programming (MILP) feasibility problem with
constraints given by A[zT, wT]T < b, where the variables are
z = [g(0)T,...,9(T,)"]" € R? and w € {0,1}", and the
parameters A € RIXPH+k) p ¢ RY, p = (T, + 1)Nd € N,
k €N, and ¢ € N depend only on ¢ and v.

Proof: See the supplementary material on the githutm. [ ]

3)

0,
0. 4)

C. Synthesis of a Time-Varying Markov Matrix via MINLP

Theorem |I| shows that the synthesis of a graph trajectory
satisfying a GTL formula at a given node can be equivalently
formulated as an MILP feasibility problem. However, in the
swarm setting (see Definition [8)), we are interested in finding
graph trajectories that follow the dynamics and satisfy
motion constraints.

Corollary 1: Let G = (V, E) be the labeled graph induced
by the topology of the bins as in Definition |8} ¢ be a GTL
formula with time horizon T, V'’ be a subset of V, and
x(0) be the node labels at time index 0. Then, the following
statements are equivalent:

1) There exists x such that (z,v) = ¢ for all v € V'’ while

the motion constraints are satisfied.

2) There exists a feasible solution of the MINLP feasibility

problem with constraints given by



A M <b;, Vo € V7, ()
Wy
1T z(t) =1, t=1,...,T,, (6)
z(t) > 0, t=1,...,T,, 7)
1T M) =17, t=0,...,T,—1, (8)
M(t) >0, t=0,....,T,—1, (9
(11T - Ay o M@Et)=0, t=0,....T,—1, (10)
a(t+1) = M(t) z(t), t=0,....T,—1, (1)
where the variables are x = [z(1)T,..., 2(T,)T|T € R™Te¢,
w; € {0,1}P¢ for all v; € V' and M(t) € R™*™ for ¢t €
{0,...,T, — 1}, ¢ denotes a bin index, and the parameters

A;, b; and p; depend only on v; and ¢ for all v; € V.
Proof: This is a direct application of Theorem [I] The
constraint (5) is obtained by the equivalence shown in Theo-
rem [I] The constraint (TT)) is resulting from the dynamics (T).
The definition of the density distribution, the stochasticity, and
the motion constraints are given by (6)—(I0). |

V. SOLUTION

Corollary [I| formulates the problem of synthesizing M (t)
as a mixed-integer nonlinear programming (MINLP) feasibil-
ity problem. However, MINLPs are NP-hard problems, and
they are inefficiently solved by general purpose off-the-shelf
MINLP solvers. We use the specific structure of the problem
to propose an efficient method to compute a feasible solution
of the MINLP.

A. Special Case: MILP Formulation for Complete Graphs

When the graph G is complete, we can reduce the MINLP
feasibility problem given by constraints (3)—(TI) to a mixed-
integer linear programming (MILP) feasibility problem.

Corollary 2: With the notation of Corollary [I] assume
that G is a complete graph. Then, the latter statements are
equivalent:

1) There exists = such that (x,v) = ¢ for all v € V' while

the motion constraints are satisfied.

2) There exists a feasible solution of the MILP feasibility

problem with constraints given by G)—(7).
Furthermore, if there exists & = [£(1)",...,2(T},)"]" satisfy-
ing constraints (3)—(7), then M (t) given by

Mij(t) =2i(t+1), Vi,j € {1,...,n.},
for t € {0,...,T, — 1}, satisfies constraints (8)—(TT).
Proof: We know that A, = 117 when G is a complete
graph. Thus, the constraint is automatically satisfied.

(1) implies (2) is trivial by the equivalence of Corollary

Suppose there exist & and Wy, for all v, € V' satisfying
constraints (3)—(7). With M (t) given by and a fixed 7,

S M) = Y @it +1) =1Te(t +1) = L.

This yields the satisfiability of the constraint (8) by M(t). The
constraint (9) is satisfied by M (¢) due to the constraint (7).
Finally, for t € {0,...,7, — 1} and a fixed i, we have

Zj M;;(t)2;(t) = Z;(t + 1) Zj Z;(t) = &i(t+1).

12)

This gives the satisfiability of the constraint (TT) by M(t).
Therefore, there exists &, M (t) and wy for all v, € V'
satisfying (3)—(10). Hence, Corollary [T| provides that statement
(1) also holds. u
Complexity and correctness analysis: With the notation
of Corollary [l the number of non-binary variables N, and
the number of binary variables NV}, of the equivalent MILP in
Corollary [2| are given by N, = n, T, and N, = Zvi cv Di-
The number of constraints C' of the MILP is C' = T, +
N, + Zv,;e\/’ q;, where ¢; is the dimension of b;. Since a
linear program (LP) can be solved in polynomial time in the
number of variables and constraints via interior-point meth-
ods [24], the worst-case time complexity to solve the MILP
is O(2M™R(N,,C)), R is a polynomial. By Corollary [2} a
solution to the MILP ensures the satisfaction of the constraints.
Therefore, the algorithm for the special case is correct.

B. General Case: Modified Coordinate Descent (MCD)

When the graph G is not complete, we develop a coordinate
descent type of technique to find a solution that satisfies
constraints (B)—(LI)) of Corollary [I}

When either M(t) or x in Corollary |I| are known, the
MINLP is either an MILP or an LP, which can be solved
efficiently by current MILP/LP solvers. We develop a method
that generates iterates =¥ = [2%(1)T,... 2*(T,)T|T, M*(t)
satisfying constraints (B)—(10), and such that the sequence
(ZtTio_l ||k (t + 1) — M*(t) 2% (t)||,)ken is non-increasing.
Note that p € {1,2, 00} specifies the norm that is being used.
The iterates =¥, M*(t) are generated by alternating between
solving two relaxations of the MINLP. If p € {1,000}, the
relaxations are an LP and an MILP. For p = 2, we obtain a
quadratic program and a mixed-integer quadratic program.

We start with a feasible solution %, w$ for all v, € V'’ of
the relaxation of the original MINLP with the constraints

A Lf] < b, Vo, € V7,

1T 2(t) =1, t=1,...,T,,

a(t+1) < Ayz(t), t=0,...,T, -1, (13)
z(t) < Azt +1), t=0,...,T,—1,

x(t) >0, t=1,...,T,,

where the variables are © = [z(1)7,...,z(T,)"]" and w; for
all v; € V'. If the MILP with constraints @]) is infeasible,
then the initial problem is infeasible and we stop at this point.
Note that the constraint z(t + 1) < Aj;z(t) comes directly
from (TT) with A as an upper bound for M (t). On the other
side, from the law of total probability, we have that

x;i(t) = Z Pr(r"(t) = 1rj"(t+1) = Dx;(t + 1)

< Z Aadj [Z,]].%'] (t + 1)7

Jj=1

for any agent m and ¢ € {1,...,n,}. Hence the inequality
x(t) < Aaugiz(t + 1) also holds. Observe that the constraints



z(t) < Awjz(t+1) and z(t + 1) < A;fdjx(t) are relaxations
of the constraint z(t + 1) = M (t) x(¢).
In case of feasibility of the problem (13), in each iteration

k > 1, we solve the following problem for fixed 2*~!
T,—1
minimize ~ »  [[2¥7 (4 1) = M () 2F (1)),
t=0
subject to 1T M (t) =17, t=0,...,T, — 1,
(1" —AL) O M) =0, t=0,...,T, 1,
M(t) > 0, t=0,...,T,—1,
(14)

where the variable is M (t) € R™*™. Let M*~1(t) be the
optimal solution of problem (T4), we additionally solve the
following problem at the k-th iteration

Ty,—1
minimize Y [Jz(t + 1) — M*H(E) 2(t)]l,
t=0

subject to  A; [uaj < by, Yo, € V7,

' (15)
1T 2(t) =1, t=1,...,T,,

o(t+1) < Aygx(t), t=0,...,T, —1,

a(t) < Agr(t+1), t=0,...,T, -1,
z(t) > 0, t=1,...,T,,

where the variables are x and w; for all v; € V.
We solve the problem (I4) and the problem (I3) at each
iteration k until we find a pair M*(t), ¥ such that

To—1
Do Mk + 1) = M) 2 (@)l < e,
t=0

for a small fixed £, > 0. In this case, we have obtained
a solution of the original MINLP with an accuracy of the
bilinear constraints less than &y. However, when the sum
converges toward a value greater than €, we cannot certify
that a solution of the original MINLP does not exist.
Complexity and correctness analysis: We consider in this
analysis the notation of Corollary [I| Consider N} = n,T,

(¢~4)
Ne =niTp, No =3, ey Pin Cr = Ty + 3Ne + 32, e s
where ¢; is the dimension of b;, Co = nT, + n?Tw.

Using the arguments in the complexity analysis of Sec-
tion the worst-case time complexity to solve the prob-
lems (13), (T4), (T3) are respectively O(2V*Ri (N2, Cy)),
O(RQ(NS,CQ)) and O(2N!’R3(Nca,01)), where Rl, RQ, R3
are polynomials. Finally, the MCD has a worst-case time
complexity that is linear in the number of iterations for
achieving the £-accuracy, exponential in [V, and polynomial
in N2, NP Cy,Cs. Furthermore, since a solution returned
by MCD is proven to ensure the satisfaction of the GTL
specifications, the MCD is correct-by-construction.

C. Agent-Level Probabilistic Swarm Guidance

Assuming the MCD algorithm outputs a solution M (t), each
agent uses M (t) to choose its bin-to-bin transition. The decen-
tralized Algorithm [I] specifies how each agent probabilistically

computes its target bin at each time index, in order for the
high-level task specifications to be satisfied.

Algorithm 1: Probabilistic Swarm Guidance

// For each agent at time index t
1 Identify the current bin R;;
2 Query M;;(t), for all j € {1,...,n:};
3 Generate z from the uniform distribution on [0, 1];
4 Select bin R; such that
S Mi(t) < = < S0 Mu(h);
5 Transit to bin R; while achieving collision avoidance.

VI. NUMERICAL EXPERIMENTS

In this section, we first demonstrate how the MCD outper-
forms current off-the-shelf mixed-integer nonlinear program-
ming (MINLP) solvers. Then, we show that MCD combined
with Algorithm [T] can be used for real-world applications. The
simulations were performed on a computer with an Intel Core
15-7300HQ 2.5GHz x4 processors and 8Gb of RAM. We use

gurobi [13] to solve the optimization problems (13)), (T4), (15).

A. Optimization Comparisons

We empirically show that the MCD algorithm solves the
MINLP feasibility problem of Corollary [I] much more effi-
ciently than general purpose MINLP solvers. For this purpose,
we compare the MCD algorithm with two open-source and
efficient [20] MINLP solvers: Couenne [4] and SCIP [12].

Couenne SCIP —— MCD,p=00 MCD,p=1 —— MCD,p=2
| | | | |
10% B
10" -
10° -
107" B
1072 -
1072 1 -
\ \ \ \ \
0 50 100 150 200
problem number
| |
10% B
10" B
107" B
1072 4 M? B
(U B =— | B
\ \ \ \
) 10 15 20
Ny
Fig. 1. Computational time, on a logarithm scale, of each solver on 200

non-trivial and randomly generated problems. The figure on the top shows the
solving time for each problem. The figure on the bottom shows the average
solving time as a function of the number of bins n..



Figure [T] shows that no matter what norm is used for the
MCD, it always performs better than the MINLP solvers.
The MCD with p = 2 has the drawback of having an
increasing computational time with n, compared to the MCD
with p = 1 and p = oco. Additionally, the figure shows that the
MCD sometimes performs 1000 times better than SCIP while
Couenne always has the worst solving time amongst all the
solvers. As n, increases, we expect an even bi%ger gap.

Furthermore, we want to compare Z;‘Fio_ [lz(t + 1) —
M (t) z(t)||2, where & and M (t) are the solutions given by
each solver for each generated problem. This value specifies
the accuracy of the bilinear constraint in the MINLP problem.

—— MCD,p=2 —— SCIP Couenne

MCD,p=1 —— MCD,p=cc

T T
150 200

T
100
problem number

Fig. 2. Variation of Zz;ogl [|lz(t+1)— M(t)z(t)||2, on a logarithm scale,
for the solutions @, M (t) obtained by the different solvers.

Figure [2] shows that, with p = 1 and p = oo, the MCD
algorithm achieves better accuracy than the MINLP solvers.

B. A Gridworld Example

We consider in this section a simulation example with
a swarm of autonomous agents navigating in a gridworld
environment as shown in Figure 3] The task of the swarm
is, from a given initial distribution, to converge towards the
desired distribution in a fixed amount of time. Moreover, the
swarm must satisfy some capacity constraints in the bins, i.e.
each bin can contain only a fixed maximum number of agents
at a time index. Specifically, we use GTL to express the task
specifications of the swarm as following

e Opiig(x > 0.2) is specified for bins 1,5, and
Opi1,12)(w > 0.3) is specified for bins 0, 6. Intuitively, we
want the swarm to eventually have between time indexes
11 and 12 at least 20% of agents in bins 1,5 and at least
30% of agents in bins 0, 6.

e Opg(x < 0.15) is specified for bins 2,3,10,
Ojo,127(x < 0.5) is specified for bins 19, 23,24, and
Ojo,127(x < 0.3) is specified for the remaining bins.
These constraints are safety constraints limiting the max-
imum allowable agents per bins at each time index
between 0 and 12.

o Ojp,191(x = 0) is specified for bins 7,8,11,16. Intu-
itively, these bins represent obstacles and no agent should
be in these bins.

Fig. 3.  Evolution of the swarm in a 5 by 5 gridworld. From the second
frame to the last frame, the time indexes are respectively 0, 3, 8,11, 12.

More specifically, we consider a scenario with a swarm
comprised of 100 agents able to perform collision avoidance
in a decentralized manner. For this purpose, each agent in
the simulation uses optimal reciprocal collision avoidance
(ORCA) [16] to dynamically compute safe velocities to reach
a given goal region. We first apply the MCD to find a time-
varying Markov matrix M (¢) such that the specifications above
are satisfied. Then, given the current time index tcy, < 12,
each agent independently and probabilistically chooses their
target bin based on Algorithm (1| with given M (tcyy). When
the target bin is obtained, the line 5] of Algorithm [T] consists
of using ORCA to generate in real-time, at a fixed frequency,
control velocities to reach the target bin while avoiding the
fixed obstacles and the other agents in the gridworld.

Figure [3] shows the evolution of the swarm at different
time indexes in the gridworld. The Videdzl shows no collisions
between the agents while they safely avoid the obstacles and
satisfy the GTL specifications. Specifically, Figure [5] shows
the real-time evolution of the density of the swarm in some
specific bins. On one side, we can observe that the density
constraints are sometimes violated (bin 2, 3, 10) between two
consecutive time indexes. Intuitively, since the flow of agents
passing through the bins between two consecutive time indexes
was not constrained in the GTL specifications, these violations
are allowed to happen. On the other side, Figure [5] shows that
for each bin, the density of the swarm satisfies the prescribed
capacity constraints at each new time index. Moreover, for bins
0,1,5,6, we can observe that the final density distribution is
the one imposed by the GTL constraints. Thus, we demonstrate
with this example the correctness of the control algorithm.

C. ROS-Gazebo Simulation

In this section, we evaluate the algorithm developed in
this paper in a high-fidelity simulation environment. For this
purpose, we upgraded the implementation of the gridworld
example to interact with Gazebo (a robust physics engine
and high-quality graphics simulator). We consider a virtual
scenario in which a building of a custom-made world has

! https://github.com/u-t-autonomous/RSS2020_SwarmControl GTL.git



Fig. 4. Gazebd environment for the rescue mission. From the left to the right: the 2D occupancy grid map of the gazebo world with the bins topology and
the distribution of the swarm in the gazebo world at time indexes 3,4 and 5.
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Fig. 5. Evolution of the density distribution of the swarm in specific bins.
The switch in the color bands represents the synchronization time (called time
index in this paper) at which each agent decides to transit to a neighbor bin.

collapsed, and a swarm of 24 robots are constrained to first
secure some surrounding buildings before trying to secure
the collapsed building. For that purpose, we compute the 2D
occupancy grid map of the environment and build on top of
it the graph in which the agents move. Figure El and vided®
show the evolution of the swarm in the gazebo world. The
specifications of the mission are defined as follows.

e (z=0)U<5(3* O (0.1 <x<0.4)) is specified for bin
5. This formula specifies that the density of the swarm
in bin 5 must be O until the densities of the swarm in
at least 4 of the neighbors of bin 5 become between 0.1
to 0.4. Intuitively, this means that no agents should enter
the damaged area (bin 5) until a certain number of agents
have surrounded the area.

e Qps)(z > 0.9) is specified for bin 5. This formula
specifies that at least 90% of the agents should eventually
be in the damaged area in less than 5 time units.

o Ujp,5(w <0.35) is specified for all bins, except for bins
0,1,5,10. This formula specifies the capacity constraints
in bins other than bins 0, 1, 5, 10.

We first compute M (t) using the MCD, then the robots
compute their target node in a decentralized manner according
to Algorithm[T} On the low-level control, collision avoidance is
achieved using ORCA and the local sensing capabilities of the
robots. The video of the gazebo simulation demonstrates the
correctness of the MCD algorithm. We observe that to satisfy
the GTL specifications, the synthesized controller leads the
agents in the swarm towards the neighbor bins of the damaged
area, before sending them in the area.

VII. CONCLUSIONS

The paper develops a correct-by-construction algorithm
to control, in a decentralized and probabilistic manner, the
density distribution of a swarm of autonomous agents subject
to GTL specifications. The algorithm is independent of the
number of agents in the swarm and relies on synthesizing a
time-varying Markov matrix by solving an optimization prob-
lem. The synthesized Markov matrix is independently used by
each agent to determine its next target while the entire swarm
satisfies the GTL specifications. The complexity analysis of
the developed algorithm shows that it significantly improves
scalability over existing approaches. We also demonstrated the
correctness of the algorithm in the special case and in the
general case using the MCD. We successfully demonstrated
the efficiency and the correctness of the algorithm in simula-
tion. Although the paper uses finite-horizon GTL to specify
the collective behavior of the swarm, future work will extend
the finite-horizon GTL to infinite-horizon GTL, and investigate
efficient and more accurate modifications of the algorithm. We
will also consider experiments in a real-world setting involving
swarms of low-cost autonomous vehicles.
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