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Agbots 2.0: Weeding Denser Fields with Fewer
Robots

Wyatt McAllister∗, Joshua Whitman∗, Joshua Varghese∗, Allan Axelrod∗, Adam Davis†, and Girish Chowdhary∗

Abstract—This work presents a significantly improved strategy
for coordinated multi-agent weeding under conditions of partial
environmental information. We show that by using Entropic
value-at-risk (EVaR) together with the Gittins index, agents can
make intelligent decisions about whether to exploit the estimated
distribution of weeds in the environment or to explore new
areas of the environment. The use of this method improves
the performance of agents in comparison to previous methods,
resulting in a system which can weed denser fields using fewer
robots. Furthermore, we show that for the reward function and
environmental dynamics which represent the weeding problem,
our system is able to perform comparably to the fully observed
case over the real-world range of seed bank densities, while
operating under partial observability.

I. INTRODUCTION

The robotic weed management problem can be considered
on an abstract level as the challenge of managing a large-scale
system with a team of agents, where the objective is to prevent
any part of the domain from remaining unattended for too long.
Furthermore, the longer any part of the environment is left
unattended, the longer it will take to weed. These relationships
are not uniform over the entire domain, but depend on a
spatially-varying stochastic process. These properties describe
many problems beyond weed management; examples include
destroying invasive underwater algae blooms, management of
disasters such as oil spills or radiation leaks, curing a blight,
and fighting wildfires.

Weed management and similar problems are challenging for
a number of reasons. First, there is a sharp discontinuity in cost
in the event that a weed patch grows too tall. Second, the cost
changes dynamically across the field as the weeds grow. Third,
agents are only able to exploit a highly rewarding state-action
pair periodically, since weeds take time to grow. Planning
with a sparse reward/cost function is a difficult problem in
robotics that has not been fully solved [1], much less in a
dynamic environment such as the one studied in this paper.
One effective strategy is to design a less-sparse heuristic
reward function [2], but this needs to be done carefully in
order to produce performance that is still calibrated to the
true objective. Another important challenge is managing the
trade-off between exploring unknown parts of the field and ex-
ploiting knowledge of the parts that have been observed. This
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is a fundamental challenge in distributed learning problems,
and is especially challenging within dynamic settings [3]. In
some sense, the value of information gain [4] must be used,
which previous work on the weeding problem failed to take
into account [5].

The contribution of this work is that we employ existing
bandit theory in an innovative manner to solve the path
planning problem in the novel and industry-critical coordinated
weeding domain. We extend the reward function from [5],
based on weed height and the expected weeding time [6], [7].
Since these quantities grow continuously, the problem of a
sparse reward function is eliminated. The overall objective
remains the same: preventing any weed from growing too
large to be eliminated. We use Entropic value-at-risk (EVaR)
to modify the reward function to incorporate our confidence
in the predictive model and manage the trade-off between
exploration and exploitation [8]. This results in a significant
performance improvement in terms of the number of agents
required to weed fields with a given seed bank density. To op-
timize over this cumulative reward function [9], we frame the
problem as a cooperative robotics problem involving foraging
[10], using techniques from multi-agent task allocation [11].

A. Background: The Herbicide Resistant Weed Problem

Weed management has historically relied on a combination
of crop rotation, mechanical weed control, and the use of
herbicides [12]. The evolution of herbicide-resistant weeds,
coupled with the fact that new herbicide discovery has ceased
in the past 30 years, has resulted in a crisis for agricultural
weed management [13], [14]. Crop losses due to herbicide
resistant weeds are approximately half a billion per year,
and may climb to $100 billion per year when chemical
control is lost [15]. Evolution of resistance to multiple sites of
herbicide action is accelerating, especially in the southern and
north-central U.S. grain production regions [16]. Increasingly,
farmers are only one site-of-action away from total loss of
chemical control. For example, the five-way multiple resistant
waterhemp (Amaranthus tuberculatus [Moq.] Sauer) in Illinois
is now one gene away from total loss of chemical control
[17]. Seeds with bred-in herbicide resistance are exacerbating
the herbicide resistance problem in soybean production [18].
An alternative to chemical weeding is mechanical weeding,
which most often targets young weeds, including germinating
seeds and seedlings that are extremely vulnerable to physical
damage.



When weeding mechanically before crop planting, super-
ficial soil disturbance and subsequent soil cultivation can
remove germinated weeds. However, hand weeding of young
weeds at the two-leaf growth stage is difficult and impractical
at scale. Mechanized inter-row cultivation has disadvantages,
such as soil compaction due to use of heavy machinery, and
an inability to work after the crop canopy closes.

Drones are ineffective for collecting data during much of
the crop season, as canopy closure removes aerial visibility of
the ground. A team of collaborative low-cost and lightweight
mechanical weeding ground robots (termed here as agbots,
illustrated in Figure 1) may be used to control herbicide-
resistant weeds. Such a team of agbots can target weeds within
and between crop rows, as opposed to tractors, combines, and
planters, which cannot be used after the crop canopy closes.
The agbots are ideal for working in dense fields, since they are
small enough to drive over plants without damaging them, and
do not compact the soil. This approach necessitates algorithms
for managing large fields with the least number of robots.

Fig. 1: The agbot solution for robotic mechanical weed
control is a dynamically configured team of weeder bots, and
automated maintenance barns for persistent autonomous weed
control, leveraging collaboration.

(a) TerraSentia (b) Weeding Apparatus

Fig. 2: Prototypes of TerraSentia Robot and Weeding Appa-
ratus in the field.

Termination of weed seedlings within the critical weed-free
period [19], where crops are most vulnerable, is essential to
preventing crop yield losses in corn and soybeans [20]. For
many crops, weeding may be done under the canopy, and
therefore under conditions of partial environmental informa-
tion.

To address this issue, several companies, such as TerraSentia
[21], shown in Figures 2a and 2b, Ecorobotix [22], and
Naio-Technologies [23], have developed small agricultural
robots for autonomous weeding. For robots like these to be
employed at scale, multi-agent planning strategies must solve
the problem of coordination in field environments with limited
observations.

This work significantly advances existing techniques for
coordination of teams of mechanical weeding robots [5], [24].
We use the realistic simulation environment Weed World [24]
to test our methods against previous benchmarks, with the
TerraSentia robot as the basis for our simulation parameters.
Previous work has used the Gittins Index to estimate the
reward of weeding a particular row. We show in this work
that utilizing the EVaR index can improve the planning perfor-
mance by effectively managing the explore-exploit trade-off,
thereby allowing a fewer number of robots to handle fields
with denser populations of weeds.

B. Summary
Section II presents an overview of the Weed World simula-

tion environment used in this work, the underlying generative
model for weed growth used by this simulation framework,
the planning algorithm and how it was revised, and the
experiments used to validate this planning method. Section
III explains the insight gained from each of the experiments.
Section VI provides a discussion. Finally, conclusions and
future work are presented in Section VII.

II. METHODS

A. Simulation Environment
The simulation environment, called Weed World (shown in

Figure 3), was developed to allow large-scale simulations of
coordinated weeding algorithms for multi-robot planning in
uncertain environments [24]. This environment incorporates a
realistic weed growth model (described in II-B), as well as
a framework for multi-agent collaboration, which enables a
scalable amount of agents to easily share information. In this
environment, the crops are assumed to be arranged in evenly
spaced vertical rows.

Fig. 3: Simulation environment, Weed World, created in
Python. Each cell represents a small 0.8 m square portion of
the field. The colors of the squares represent weed seed bank
density. Darker colors represent higher density. The agents are
shown in solid blue.



B. Weed Generation
The weed growth model is composed of a matrix of

cells (each representing 0.8 m2 for a total of 0.4 hectares)
evolving according to a random process, forming a cellular
automata model [25]. This study will determine the number
of robots needed per acre for effective weed management.
Seeds emerge from a finite, fixed seed bank, according to a
time-inhomogeneous Poisson process. The parameters used,
summarized in Table I, are aligned with the growth model
for the common waterhemp weed species specified in [26].
The density of the seed bank in each cell, discretized in
the coordinates (x, y, t), is S(x, y, t), which is equal to S0

(between 600 and 1560 seeds per cell) on average at time
t = 0. The initial seed bank density in each cell S0(x, y) is
chosen so that the Gini coefficient of concentration (GCC)
between all the cells is between 0.31 and 0.35, which ensures
that the relative density of weeds aligns with that seen in real
experiments [26]. In order to achieve this distribution, we first
give each cell a random density between zero and 20 percent
of S0, chosen uniformly at random, and then we create 50
patches of weeds with random centers and random radii up
to 20 cells long, and fill those patches with an additional S0

weeds distributed normally around each center.

The evolution of several fields is shown in Figure 4.

TABLE I: Seed Bank Density Parameters: Consistent with
Those Found in [26]

Parameter GCC S0 Np. Patches Patch Radius
Range [0.31,0.35] [600,1560] 50 [0, 20]

Fig. 4: The evolution of emerged seedling density for different
fields over time, as simulated in the Weed World environment.
Differing seed bank distributions result in differing evolutions.

After initializing the simulation, a certain number of days,
d0, are allowed to elapse before the agbots begin weeding. The
number of emerging weeds in each cell, Nemerge, is a randomly
generated Poisson variable with mean, λ (x, y, t), such that 90
percent of the seed bank, S (x, y, t), emerges in Ttotal, which
is two months. This emergence rate is aligned with past work
[27]–[31], all of which present measurements of the seed bank
densities for various species of weeds, and provide an analysis
of weed growth models for these species.
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The weed density in each cell, ζ (x, y, t), grows as seeds
emerge from the seed bank.

ζ (x, y, t) =

t"

t′=tlast weeded

Nemerge (x, y, t
′) (4)

The maximum weed height in each cell, δ(x, y, t), increases
at a fixed, upper-bounded, rate of Γ inches per day. This
assumption is valid up until the point at which weeds grow
explosively, and mechanical weeding becomes impossible.

δ (x, y, t) =

$
tcurr. − tlast weeded

60 · 60 · 24

%
Γ (5)

C. State, Action, and Reward Model

Here, Ndim = 85 is the number of rows, Nagents is the
number of agents, Ylen. = 64 m is the length of each row,
and RW (x, y, t) is the reward per cell (x, y) at time t.

The environmental state, S, depends on the x and y posi-
tions of each agent in I . The action, ai (t), is defined to be
the target row chosen by each agent.

S ≡ {1, ..., Ndim} (6)
I ≡ {1, ..., Nagents} (7)

xi (t) ∈ S, yi (t) ∈ S ∀i ∈ I (8)
ai (t) ∈ A ≡ S (9)

Since we require agents to finish the rows they begin, only
the x location is relevant for the state.

xi (t) ∈ S ∀i ∈ I (10)

We choose the reward associated with a cell to be the
maximum height in that cell, prioritizing the regions with
the tallest weeds, which prevents weeds from exceeding the
maximum height our system can weed and thus causing major
yield loss.



The reward for each row is the sum of the reward for each
cell in the row, RW (x, y, t).

RW (x, y, t) = δ (x, y, t) ∀x ∈ S, y ∈ S, ∀i ∈ I (11)

The agents keep track of the estimated density and max-
imum height for each observed cell, using this to estimate
a total scalar reward for each row. This is the only required
information for the reward.

Ri (ai (t)) =

Ndim"

y=1

RW (ai (t) , y, t) ai (t) ∈ A (12)

D. Previous Planning Algorithm

In [24], a time delayed reward was used, where each agent
receives its reward for a row after completing it.

The planned operation time for a given row is the sum of
the time it takes to move to the proposed row, Tto row, the time
it takes to move down it, Tdown row, and the time it takes to
weed all the cells in the row, Tweed row, which depends on the
weed density of each cell but is at most 2 minutes per cell.

Ti (xi (t) , ai (t)) = Tto row + Tdown row + Tweed row (13)

Tto row =
(ai (t)− xi (t))

v
(14)

Tdown row =
Ylen.

v
(15)
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The Gittins Index, G (Xi), is known to be an optimal metric
for planning on tasks with an uncertain termination time and
known statistics [6]. Here, x is the state of the bandit, τ is the
stopping time, r is the reward, and γ is the discount factor.

G (x (t)) = sup
τ

,
E [

-τ
t=0 γ

tr (x (t))|x (0) = x]

E [
-τ

t=0 γ
t|x (0) = x]

.
(17)

For our domain, the termination time, τ , is not a planning
parameter, but is equal to Ti (xi (t) , ai (t)), and the reward
is delayed until that time. This resulted in a heuristic index
based on Gitten’s Index, Ḡi (a, x), as follows:

Ḡi (a, x) =
γTi(xi(t),ai(t))Ri (ai (t))

-Ti(xi(t),ai(t))
t=0 γt

(18)

E. Revised Planning Algorithm

Our goal is to improve the planning algorithm from [24],
which placed full confidence in the estimated reward for
each row, to more effectively address the uncertainty of our
model of this dynamic field environment. We want to find
an optimization index which yields improved explore-exploit
performance.

The difference between this work and [24] is that for
unobserved rows, we now have a prediction for the reward,
which varies across the field, and may grow more accurate
as we explore the space further. We need to account for the
value of information gained for a candidate row via predictive
inference.

Entropic value-at-risk (EVaR) [8] is a principled way to
optimize with regard to the reward and information gain. The
parameter α ∈ (0, 1) is our confidence in our reward estimate,
and X is the reward distribution.

EVaR [X; 1− α] := inf
η>0

,
1

η
ln
/
EP

0
eηX

1
/α

2.
(19)

EVaR is an index based on the Chernoff bound.

P (X ≥ EVaR [X; 1− α]) ≤ α (20)

As in [32], we set our confidence α as follows:

α = e−DKL(Q||P ) (21)

Here, Q and P are the distributions for the emergence time
before and after a given measurement respectively, and DKL

is the Kullback-Leibler divergence, which uniquely quantifies
the information gain of Q relative to P [33]. We obtain a
modified version of the equation for EVaR:

EVaR [X; 1− α] := inf
η>0

1

η

/
ln
/
EP

0
eηX

12
+DKL(Q||P )

2

(22)

Equation 22 highlights that EVaR is a probabilistically
meaningful optimization equation that includes an “exploration
bonus” based on the information gain, represented by the DKL

term. In this way we have a probabilistically meaningful and
inquisitive planning algorithm. In addition, EVaR is linear just
like the expected value, meaning that linear transformations of
the problem space will not result in different solutions. This
is not the case for other exploration bonus methods [34]–[37].
Finally, EVaR exhibits the properties of strong monotonicity
[38] and stop-loss ordering [39], which both speak to the in-
creased ability to discern optimality amongst similarly valued
random variables, as compared to the expected value, average
value-at-risk, and value-at-risk.

While most work in financial mathematics assumes a con-
stant confidence parameter, α, in our case, this parameter
changes with each measurement made. However, the partial
stochastic ordering [40] guarantees of strong monotonicity
and stop-loss ordering hold at each time step, and since the
value of α is constant throughout the field at each time step,
these ordering guarantees hold at each time step. Finally, as
sampling goes to infinity, the information gain converges to
zero; therefore, our confidence function α converges to one,
and our EVaR based index converges to the Gittins index.



In order to compute the KL divergence, we create a distri-
bution for the emergence time for each cell, Temerge.

We keep track of the time since we have weeded a cell
using the current weeding time.

Tsince weed (x, y, t) = t− Tlast weed (x, y) (23)

During an observation, we calculate the time since emer-
gence and the emergence time as below, based on the observed
maximum height.

Tsince emerge (x, y, t) =
δ̂ (x, y, t)

Γ
(24)

Temerge (x, y, n) = Tsince weed (x, y, t)

− Tsince emerge (x, y, t)
(25)

We then keep an average of the emergence time for each
visit to a cell.

T̄emerge (x, y) =
1

Nvisits

Nvisits"

n=1

Temerge (x, y, n) (26)

At each time step in the simulation, we make a histogram of
T̄emerge (x, y) at times t and t−1 and construct probability mass
functions P , and Q. These distributions are used to compute
the KL divergence, which then goes into the information gain
term within EVaR, where |P | is the size of P .

DKL(P ||Q) =

|P |"

i=0

P (i) (log (P (i))− log (Q (i))) (27)

Supposing that the empirical estimates are unbiased, both
P and Q will converge to the same true pmf in the limit
of observations. Therefore, DKL(P ||Q) would asymptotically
converge to zero, causing EVaR to converge to the Gittins
index [41] over time.

Finally, in order to plan while incorporating our confidence
in the environmental model, we utilize a similar algorithm
to that used previously in [24], but with the new planning
index which leverages EVaR. The average reward, R̄i (ai (t)),
is computed as the sum of rewards for all agents for each
row weeded, divided by the total number of rows weeded,
Nrows weeded.

R̄i (ai (t)) =

tcurr.-
t=0

Nagents-
i=0

Ri (ai (t))

Nrows weeded
(28)

The information index of a row, I (ai (t)), is the number of
rows which would be newly observed by going to that row.

I (ai (t)) =

robs"

i=−robs

I{is observed(x=ai(t)+i)} (29)

We then compute a new Gittins index using EVaR and pick
the maximum.

Ĝi (a, x) =
γTi(xi(t),ai(t))EVaR

0
R̄i (ai (t) I (ai (t))) ; 1− α

1

-Ti(xi(t),ai(t))
t=0 γt

(30)

We are then able to choose the action which maximizes the
new Gittins index for every agent.

ai (t) = argmax
ai(t)

Ĝi (a, x) ai (t) ∈ A (31)

F. Overall Architecture

We assume an architecture in which agents are assigned
rows from a centralized planner which has access to a global
environmental model. This model aggregates the observations
from all the agents at every step in the simulation. The overall
process is as follows.

1) When agent i completes a row, it becomes idle and waits
for a new row to be assigned according to Equation 31.

2) It proceeds to the new row and weeds it.
3) At every time step t during weeding, agent i sends its

observations on visited rows to the centralized planner.

Before any row assignment, predictive inference is used to
compute the EVaR index, which then goes into the bandit plan-
ner described in Equation 31, as summarized in Figure 5. We
assume a discretized and fixed time step, in which observations
are aggregated, processed, and sent to the centralized planner.
Communication delays may change this time step slightly in
a real-world scenario. However, as long as the time step is
much smaller than the time taken to weed a row, the time step
will not affect decision making.

In practice, communication delays can be minimized by
assigning a team of agents to each region of a larger field,
and using our method to coordinate their actions. This work
presents a study on one-acre fields, in which the assumption
of reliable communication is reasonable.

Fig. 5: Overall Architecture: The red squares within the
portion of the figure showing the field represent the robotic
agents.



G. Experiment Plan

This section presents an outline for the experiments to test
for improvement over the planning algorithm in [5] (Section
II-D), detailed in Section II-E. In [5], it was determined
that wider ranges of observation for each agent improved
performance in every case, by comparing the case where
observation radius robs = 1 to the case where robs = 0, which
had worse performance. It was also observed that beyond a
critical point of two days for the number of days of weed
growth allowed before the simulation starts (denoted d0), the
system could not succeed regardless of the number of agents
used. Therefore, for these experiments, we set d0 = 1 and
set the observation radius robs = 1, which is the largest
observation distance reasonable for robots operating under
an occluded crop canopy. These experiments compare the
performance of the prediction scheme from [5] with Gitten’s
Index used for the planning index, with the new prediction
scheme using EVaR in the planning index. We do not use the
fully-observed scenario, robs = ∞ with EVaR, as this would
make exploration irrelevant since there is no uncertainty in
the environmental model. We did not compare to the case
of robs = 0, because the current technology for the robot
prototypes used to determined the simulation parameters in
this work allow for robs = 1 and the restriction on the amount
of information would flatten the differences between the old
method and EVaR.

We conduct eight experiments, each with 1000 trials with
varying initial parameters shown in Table II, in a simulated
field of 0.4 hectares, gridded in 0.8 m2 cells. Each trial
is run for 2 days of simulated time, as this was found
to be the critical weeding period for the environment. The
algorithm is run with the original prediction scheme, and the
planner using the Gittins index (Old), where the planner has
knowledge of each cell adjacent to one of the agents, in order
to establish a benchmark of previous performance using the
new Python Weed World simulation. The algorithm is then run
with the EVaR planning index (New), with the old prediction
scheme using the average reward in previously weeded rows,
in order to observe how the revision to the planner affects
performance. Next, the algorithm is run with full observability
of the environment provided to the planner (Obs.), to see how
performance improves. Last, we compare to the baseline case
of a lawn mower pattern (Mow.), which we expect all other
algorithms to outperform.

In Table II, an X denotes a parameter for a Monte Carlo
run over the ranges shown in Table III. For S0, the real-world
range is between 600 and 1560 for the weed species of interest
[26]. We chose to double this range for our simulations in
order to find an upper bound on the seed bank density that
can be weeded for each algorithm with the given number of
agents. This better shows the feasibility of each method with
respect to changes in these parameters, and allows us to more
accurately determine the sensitivity of each algorithm to the
weed density.

TABLE II: Initial Experimental Parameters: Here, Nagent is the
number of agents, S0 is the initial seed bank density. An X
denotes a parameter for a Monte Carlo run over the ranges
in Table III. We use a value of 15 for Nagent to ensure there
are enough agents to weed the field. Here, 1080 is the median
of the real-world range for S0, which is determined to be
between 600 and 1560, for the weed species of interest [26].
The original planning and prediction methods are from [5].

Exp. 1 2 3 4 5 6 7 8
Plan Old New Old Mow Old New Old Mow
Pred Old Old Obs NA Old Old Obs NA
Nagent 15 15 15 15 X X X X
S0 1080 1080 1080 1080 X X X X

For Experiments 1 - 4, we used the values 15 for Nagent,
and 1080 for S0. These values are chosen to ensure that
there are enough agents to weed the field, and that the robots
have enough time to do so before the weeds grow too tall.
The mean and standard deviation of the average reward for
the environment (total reward over all the cells divided by
the number of agents) are plotted at each time step. This
provides a clear comparison between the different cases (the
original prediction scheme versus fully observed case, the
Gittins index versus the EVaR index, and the lawn mower
patter), and showcases the effect of each method used on
weeding performance. The general trend in the performance
shows the stages of weeding for each algorithm tested, and
the maximum possible reward each can achieve.

In Experiment 5-8, Monte Carlo runs are performed over
a range of values for the parameters Nagent, and S0, for the
lawnmower pattern. A heat map of the terminal reward (total
reward over all the cells at the end of the simulation divided
by the number of agents) is plotted with respect to initial seed
bank density S0 and number of agents Nagents.

Within every Monte Carlo run, we consider a success to be a
case in which an algorithm is able to keep the total maximum
heights from each cell in the field, per agent, under the
value 1000. This is an adjustable threshold, which physically
represents a system which drives the weed height to an average
of just over one-tenth of one inch per agent for each cell.

III. RESULTS

IV. EXPERIMENTS 1 - 4

In Figure 6, the mean and standard deviation of the average
reward for the environment (total reward over all the cells
divided by the number of agents) are plotted at each time step
for each algorithm in Experiments 1-4. Though we see slight
statistical differences in numerical performance, the general
trend in the reward is the same for all of these algorithms,
which all succeed in fields with these nominal parameters.
The lawn mower pattern does worse than any of the others,
as we expect.



TABLE III: Ranges for Experimental Parameters in Monte
Carlo Runs: d0 is then number of days of weed growth before
the start of weeding, and robs is the observation radius. The
real-world range for S0 is between 600 and 1560, for the weed
species of interest [26], but we chose to double this range in
order to test the upper limits of our algorithms.

Parameter Range
robs 1
d0 1
Nagent [5,20]
S0 [600,3120]

Fig. 6: Weeding Performance vs. Algorithm

V. EXPERIMENTS 5 - 8

For each experiment, the contour map of the terminal reward
for 1000 trials with number of agents and seed bank density
is shown. The red end of the spectrum represents a terminal
reward of zero, meaning the field has been weeded completely,
and the blue end represents a high nonzero terminal reward,
a strong failure case. Each blue circle represents a simulated
trial, and the black dashed line represents the maximum seed
bank density the system can weed for each number of agents.

In Figure 7, we examine the case when the Gittins index is
used for the planner. The maximum density that can be handled
with eight agents is significantly less than the maximum of the
real-world seed bank range. When more agents are used, the
system succeeds over the entire range of seed bank densities.

In Figure 8, we examine the case when EVaR is used for
the planner. The system succeeds with only eight agents for
the entire real-world seed bank densities range, though not
for the entire worst-case range. When more than eight agents
are used, the system succeeds over the entire range of seed
bank densities. Our experiment shows that in most real-world
scenarios, EVaR will yield better performance at a lower cost.

Fig. 7: Number of Agents vs. Seed Bank Density, Gittins
Index, Partially Observed

Fig. 8: Number of Agents vs. Seed Bank Density, EVaR
Index, Partially Observed

In Figure 9, we examine the case with full environmental
information. Full environmental information is unrealistic, but
serves as a useful comparison point. We find that the system
can handle extremely high seed bank densities with only eight
agents, though quite the entire tested range. Seven agents are
still insufficient to succeed at any realistic seed bank density
even with full observability. This suggests that eight agents is
a critical number for one-acre fields.

In Figure 10, we examine the case of the baseline planner
using a lawn mower pattern. From this figure, we see that
with eight agents, the system fails for every seed bank density
tested. Nine agents are needed for success. This demonstrates
that the lawn mower pattern does much worse than any
algorithm tested in the main body of the text.



Fig. 9: Number of Agents vs. Seed Bank Density, Full
Environmental Information

Fig. 10: Number of Agents vs. Seed Bank Density, Gittins
Index, Partially Observed

VI. DISCUSSION

These results show that compared to previous algorithms,
the EVaR-based index enables teams of robots to weed fields
with higher average background seed bank densities with the
same number of agents. We see that EVaR even exhibits
comparable performance to the fully observed scenario, over
the real-world range of seed bank densities from 600 to 1560
for this weed species. Since our reward function is only
concerned with the height of weeds, and since weeds emerge
quickly after being destroyed and begin growing at a consistent
rate, models of the seed bank density and growth patterns are
not necessary for high performance in most realistic fields.
Only when the field becomes unrealistically dense does the
fully observed case start to outperform the case of EVaR with
partial information.

Fig. 11: Number of Agents vs. Seed Bank Density, Sum-
mary: We compare the maximum seed bank density weeded
for a given number of agents for each algorithm.

The Weed World simulation environment establishes a
worst-case scenario for weeding performance. We assume
weeds grow aggressively, without growth being curbed by
competition from crops or bad weather. Robotic agents use
conservative estimates for speed and weeding time, which
make effective use of each agent critical. In order to establish
a baseline, the weeding time is much slower than that of
the TerraSentia robot. The goal of the system is to ensure
weeds never grow taller than the mechanical system can
eliminate, entering a regime of explosive growth. For common
waterhemp, which grows to have a large and strong stem, this
can mean full yield loss, due to inability to harvest the crop
with combine harvesters. Though, as shown in Figure 11 the
use of EVaR only saves one robot per acre, and only does
so for fields with high density, it guarantees that any field in
this real-world range of seed bank densities can be managed
without the risk of explosive weed growth.

VII. CONCLUSION

The use of the revised planning algorithm leveraging En-
tropic value-at-risk allows the use fewer robots to achieve
the goal of preventing weeds from stifling crop yield. Our
simulations show that fields with significantly greater and
more challenging hidden seed banks of weeds can be managed
effectively using this new approach. We observe that the ability
to predict weed density evolution is surprisingly non-critical
to the success of robots in this domain. Further work will be
done in bringing machine learning and robotics expertise to
this challenging and pressing problem in agriculture.
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