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from Instructions and Human Demonstrations
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Abstract—We aim to endow a robot with the ability to learn
manipulation concepts that link natural language instructions to
motor skills. Our goal is to learn a single multi-task policy that
takes as input a natural language instruction and an image of
the initial scene and outputs a robot motion trajectory to achieve
the specified task. This policy has to generalize over different in-
structions and environments. Our insight is that we can approach
this problem through Learning from Demonstration by leveraging
large-scale video datasets of humans performing manipulation
actions. Thereby, we avoid more time-consuming processes such
as teleoperation or kinesthetic teaching. We also avoid having to
manually design task-specific rewards. We propose a two-stage
learning process where we first learn single-task policies through
reinforcement learning. The reward is provided by scoring how
well the robot visually appears to perform the task. This score is
given by a video-based action classifier trained on a large-scale
human activity dataset. In the second stage, we train a multi-task
policy through imitation learning to imitate all the single-task
policies. In extensive simulation experiments, we show that the
multi-task policy learns to perform a large percentage of the 78
different manipulation tasks on which it was trained. The tasks
are of greater variety and complexity than previously considered
robot manipulation tasks. We show that the policy generalizes
over variations of the environment. We also show examples of
successful generalization over novel but similar instructions.

I. INTRODUCTION

Humans have gradually developed language, mastered com-
plex motor skills, created and utilized sophisticated tools,
and built scientific theories to understand and explain their
environment. Concepts are fundamental to these abilities as
they allow humans to mentally represent, summarize, and
abstract diverse knowledge and skills [42]. By means of
abstraction, concepts that are learned from a limited number
of examples can be extended to a potentially infinite set of
new and unseen entities. Current robots lack this generalization
ability which hampers progress towards deploying them to real
domestic, industrial or logistic environments.

Most related work in cognitive science and robotics have
focused on lexical concepts that correspond to words in natural
language [42]. A large body of work in robotics has studied
how robots can acquire concepts that relate to objects, their
attributes (like color, shape, and material), and their spatial
relations [17, 43, 51, 1]. In this paper, we endow a robot with
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Fig. 1: We propose a method that learns manipulation concepts from videos of human
demonstrations labelled with natural language instructions. After training, our network
takes as input a task instruction and image of the start scene, and then outputs a robot
motion trajectory that will succeed at the task.

the ability to acquire manipulation concepts [25] that can be
seen as mental representations of verbs in a sentence.

The way concepts are represented and acquired is debated
within Cognitive science. In the classical view, concepts re-
flect contingencies in the environment that can be perceived
through different sensors [28]. In this paper, we follow this
classical view and propose a robot learning framework to
acquire manipulation concepts from human video demonstra-
tions. Here, manipulation concepts reflect contingencies in the
demonstration videos that instantiate specific natural language
instructions. By using videos, we can leverage large-scale
datasets such as 20BN-something-something (Sth Sth) [13]
instead of providing demonstrations through the more time-
consuming processes of kinesthetic teaching or teleoperation.

Specifically, we train a model that takes as input an image of
the environment and a natural language instruction. The output
of the model is a robot motion trajectory that is executed open-
loop. During training, we compute a reward for the executed
trajectory by scoring the resulting robot video using the video
classifier trained on Sth Sth. In experiments, we show how
our framework is capable of learning 78 different single-task
policies from human video demonstrations that generalize over



variations of the environment—in our case, varying object
poses. Given these single-task policies, we can then learn a
multi-task model. For this part, we use an imitation learning
approach where the multi-task policy imitates the trajectories
of the single-task policies. This multi-task model can then not
only generalize over variations of the environment but also
accept instructions that are similar to those it was trained on.

Due to the complex nature of learning manipulation con-
cepts from human visual demonstrations and natural language
instructions, our learning framework is composed of many
subcomponents that each plays a critical role in the working
of the entire system. The focus of our paper is not the
specific algorithms used for each subcomponent, but rather
the combination of these subcomponents into a whole learning
framework. Our primary contributions are as follows: 1) a
novel learning framework to acquire a unified model of diverse
manipulation concepts from human visual demonstrations and
language instructions, 2) a suite of 78 diverse simulated ma-
nipulation tasks for multi-task learning, 3) extensive evaluation
and demonstrations on our approach in simulation on the 78
manipulation tasks.

II. RELATED WORK
A. Vision and Language Grounding

In this paper, we are interested in associating natural lan-
guage, especially verbs, with robot motion skills for various
manipulation scenarios. Bridging vision with language has
been extensively studied for captioning images or videos
with natural language [8, 9, s , ]. Using natural
language and vision to guide mobile robot behaviors also has
a rich literature, ranging from pioneering work on connecting
language instructions such as “pointing left” and “pointing
right” with the behavior experiences of a mobile robot [43] to
more recent work on vision-language navigation [51, 1].

Recently, the use of natural language in robot learning has
gained increasing interest [31]. Task descriptions formulated
in natural language are used to condition policy learning.
Jiang et al. [18] use language to structure compositional task
learning in the context of hierarchical RL, where the high-level
policy produces language instructions that direct the low-level
policy. Natural language can induce the rewards in an inverse
reinforcement learning context. Bahdanau et al. [4] proposed
language-conditional reward functions trained on (instruction,
goal_state) pairs from demonstrations. Transferring knowledge
from unsupervised language learning on large web corpora
allows learned policy to generalize to instructions outside of
the training distribution.

Our approach is more related to work on using natural
language and vision to learn manipulation skills. Shu et al.
[39] use hierarchical reinforcement learning with a stochastic
temporal grammar to decide when to use previously learned
policies or acquire new skills based on their language descrip-
tions. Jiang et al. [17] similarly use the compositional structure
of language to learn hierarchical abstractions of manipulation
skills. However, these works are limited to tasks such as
fetching, arranging, and sorting objects. We propose a learning

framework that allows a robot to autonomously associate lan-
guage instructions with a diverse set of 78 manipulation skills
(Fig. 3), including complex tasks such as “scoop something up
with something” or “let something roll up a slanted surface”.

B. Learning from Visual Demonstration

Learning from Demonstration (LfD) [3] enables a robot to
learn a policy from expert demonstrations. LfD significantly
reduces human effort in robot skill learning by avoiding
the need to manually design task-specific reward functions.
Because we propose to learn from human activity videos, here
we review only approaches that are based on visual data. For
a more comprehensive review of LfD, we refer to [3].

Recent advances in processing large-scale image and video
datasets with deep learning have made it possible to leverage
visual data for LfD. Fu et al. [10] propose a variational inverse
reinforcement learning method to learn policies when a large
number of desired goal state samples are available. Singh
et al. [41] present a follow-up work to enable a robot to learn
from a modest number of successful examples followed by
actively solicited queries, where the robot shows the user a
state and asks whether the task was successfully completed.
Gupta et al. [14] propose a method for solving long-horizon
tasks which contains an imitation learning stage to produce
goal-conditioned hierarchical policies, and a reinforcement
learning phase to fine-tune these policies for task performance.
The goal is to reproduce an image of the final successful state.
However, the final state may not be enough to characterize a
manipulation skill where the shape of the motion trajectory is
important, such as pouring water into a cup.

In this paper, we propose to evaluate the entire video of a
robot action by leveraging a video classifier trained on a large-
scale video dataset [13]. This is in contrast to using single
images to classify goal states. One concern in learning from
human activity videos is the domain gap between the videos
that the classifier is trained on and the videos rendered from
the robot simulation environment. However, our hypothesis
is that a video-based activity classifier captures the visual
dynamics of the different actions rather than the appearance
of the environment. If the visual dynamics are shared between
the simulated and real environments, then a video-based action
classifier should be able to guide the robot to successfully learn
various manipulation concepts. In experiments, we demon-
strate that reward provided by a video classifier is indeed more
informative than an image-based classifier.

C. Motion Trajectory Representation

How to best represent motion skills is an age-old question
in robotics with a rich literature. Pastor et al. [34] propose
Dynamic Movement Primitives (DMPs) to encode movement
trajectories using the attractor dynamics of a nonlinear dif-
ferential system. DMPs are commonly used for representing
and learning basic movements in robotics, such as swinging
tennis rackets [16, 29], playing drums [48], or writing [23].
Khansari-Zadeh and Billard [21] propose learning nonlinear
dynamical systems with Gaussian mixture models that are



robust to spatial and temporal perturbations. Paraschos et al.
[32] and Meier et al. [30] present a probabilistic formulation of
DMPs that maintains a distribution over trajectories to enable
composition and blending of multiple primitives.

In contrast to these methods, we adopt a simple second-
order spring-damper system with auxiliary forces at each
timestep to modify the shape and velocity profile of the
trajectory. The simplicity and efficiency of this attractor system
works well for our application, where a complex neural
network needs to learn and output these trajectory parameters
from high-dimensional language and image inputs. In exper-
iments, we show that the auxiliary forces are an important
ingredient to this motion representation in addition to the goal
to shape the trajectories of more complex manipulation tasks.

D. Multi-Task Learning

If we want robots to be broadly useful in realistic environ-
ments, we need algorithms that can learn a wide variety of
skills reliably and efficiently. To this end, Yu et al. [53] re-
leased a multi-task learning benchmark containing simulation
environments for 50 different manipulation tasks. While this
benchmark uses one-hot vectors to represent each task, we use
natural language instructions as input to our multi-task policy
network. In this way, we can achieve generalization to various
even unseen instructions and manipulation scenes.

In terms of learning procedures, the majority of previous
multi-task learning (MTL) work mainly falls into two families:
(1) modular policy design [2], where a multi-task policy
maintains separate subpolicies for different tasks, and (ii)
knowledge transfer through distillation [36, 33, 45], where a
single unified policy is learned from multiple experts. Devin
et al. [6] decompose network policies into task-specific and
robot-specific modules to enable robots to learn multiple skills
from other robots. Competing objectives for individual tasks
can make MTL difficult, but Sener and Koltun [37] formulate
MTL as a multi-objective optimization with the goal of finding
a Pareto optimal solution. Teh et al. [44] propose using a
shared “distilled” policy that captures common behavior across
tasks. Each single-task policy is trained to solve its own task
while constrained to stay close to the shared policy, while the
shared policy is trained to be the centroid of all task policies.

Our multi-task learning method falls under the policy dis-
tillation category. Single-task policies are trained to solve
individual tasks, and after their performance stabilizes, we
train the multi-task policy to imitate the behaviors of all
the single-task policies. In experiments, we show how our
approach outperforms related policy distillation approaches.

III. TECHNICAL APPROACH
A. Overview

Our model takes as input a natural language instruction
describing the task along with an RGB image of the initial
scene, and outputs the parameters of a motion trajectory to
accomplish the task in the given environment. These inputs
are first fed into a semantic context network to combine the
information from natural language with the visual perception

of the robot in order to produce a joint task embedding.
This serves as a description of the desired task. The task
embedding is then input to a policy network, which synthesizes
the parameters of a motion trajectory. The trajectory is finally
executed by the robot with Operational Space Control [22].
An overview of the system is given in Fig. 2.

We learn manipulation concepts from human demonstra-
tions by scoring how closely a robot resembles a human
executing the same task. For scoring, we use a video-based
action classifier that is trained on human activity videos in Sth
Sth. With this classifier as a proxy reward, we first learn single-
task policies through reinforcement learning. Then, we train
a multi-task policy over all the tasks by performing imitation
learning on the single-task policies. The final result is a multi-
task policy that can take a new natural language instruction
and environment image and execute the desired task using its
knowledge base of 78 previously learned tasks.

In this section, we describe the subcomponents of our
framework. While we chose to implement each subcomponent
with certain algorithms, the focus of this paper is not the
specific algorithms. Instead, the focus is the integration of
these subcomponents to allow learning manipulation con-
cepts from rewards that are provided by a video classifier
trained to distingiush human manipulation actions. We leave
the optimization of these subcomponents to future work. To
ensure reproducability, we provide a detailed description of the
implementation in an appendix in addition to the source code,
both available on https://sites.google.com/view/concept2robot.

B. Semantic Context Network

1) Instruction Encoding: To represent a natural language
instruction, we tokenize the sentence and feed it into BERT [7]
to extract an instruction feature with dimension 1024. This
feature is fed into a Multilayer Perceptron (MLP) to reduce the
dimensionality to 128. The weights of the MLP are optimized
during training, while the BERT model is frozen.

2) Vision Encoding: To represent the image of the initial
scene, we leverage ResNet18 [15]. The resulting feature is fed
into an MLP to reduce the dimensionality to 256. The weights
of both ResNet18 and the MLP are optimized during training.

We concatenate the instruction and image features to get the
final task instance embedding of dimension 384. This vector
is fed into a policy network to produce a motion trajectory.

C. Policy Network

The objective of the policy network is to output the param-
eters of an open-loop motion trajectory that, when executed
by the robot, achieves the manipulation task in the current
environment. In this paper, we choose to represent the motion
trajectory by a second-order dynamical system of the form:

§(t) = kp(g —y(@)) — kay(t) + f(#) (1)

where y, y, and ¥ are position, velocity, and acceleration of the
end-effector, g is the goal pose, and f are the additional forces
at each timestep that modify the shape and velocity profile of
the trajectory. k, and k, are standard PD control gains. This
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Fig. 2: System architecture. The input to the network is an initial image of the environment and a natural language command from the 20BN Something Something Dataset.

ResNetl8 [

] and BERT produce feature vectors for the image and the command sentence, respectively. These feature vectors are concatenated and processed with 1D upconvolution

to produce 7-dof vectors for the trajectory goal pose and forces, where 3-dof represent position, 3-dof represent angle axis orientation, and the last dof represents the gripper state.
The controller for this trajectory is executed in simulation, and a classifier trained on the 20BN Something Something Dataset classifies the task from the resulting image sequence.
The classification score is treated as a proxy reward for completing the task, and is fed back to the network for training.

kind of dynamical system is analytically well understood and
is widely utilized in the robotic community [21].

While the above representation is similar to a DMP, DMPs
have a canonical system in which the phase variable exponen-
tially decays to zero [34]. The forcing term is weighted by
the phase variable, thus also decaying to zero and ensuring
convergence. DMPs have often been used for reaching move-
ments, where it makes sense to slow down towards the end.
However, we are considering a variety of 78 tasks involving
contact, such as “hit sth with sth” or “close sth with sth”,
where diminishing forces is less desirable. For example, for
“close sth with sth”, the robot needs to apply large forces
until the end to overcome the sliding friction of the drawer.
While it may be possible to capture such motions with DMPs
by, for example, placing the goal behind the drawer,we found
it difficult for the neural network to learn trajectories in this
manner. Thus, we choose a free parameterization of the forcing
terms so the network has the freedom to apply large forces at
the end, without being hindered by exponential decay. While
this means we can no longer ensure convergence, the video
classifier encourages the network to learn stable trajectories.

The motion trajectory operates in a 7-dimensional space: 3D
position and orientation of the end effector and 1D movement
of the two-fingered gripper. For orientation, we adopt the angle
axis representation, which has been shown to be effective for
neural networks due to its lack of parameter constraints [38].

The final task embedding from the semantic context network
with shape 1 x 384 is simultaneously fed into an MLP
(equivalent to 1D upconvolution) to generate the goal g with
shape 1 x 7 and into a separate 1D upconvolution network to
generate the forces f with shape T x 7, where T is the number
of timesteps in the trajectory. The force network applies 1D
upconvolution along the time dimension of the task embedding
to expand its size from 1 to 7', and reduces the feature
channels in the second dimension from 384 to 7. We choose
to use upconvolutions across time because there may be tra-
jectory features that are independent of time. Upconvolutions
allow us to share weights across the trajectory, reducing the
number of parameters required and thus improving learning
efficiency [27].

D. Video Classification Network

In our LfD framework, the unknown reward function for a
given task 7; is substituted by a video classifier that is trained
to classify actions in Sth Sth videos. We use 3D convolution
for the classifier, which is reported to be effective for learning
spatio-temporal relationships in videos [47].

Note that after training on the Sth Sth dataset, we fix
the weights of the video classifier. When training the policy
network, the output trajectory is executed open-loop by the
robot and rendered into a video. This video is then scored by
the video classifier. For a given task 7; and a video V, the
classification score of the corresponding category is used as a
reward signal R(V,7T;) to update the policy network.

E. Single-Task Learning

As a first step towards learning manipulation concepts, we
train single-task policies m; per task T;, for ¢ € [1...78].
Given the video classifier as a substitute for the reward, we
frame this problem as a reinforcement learning problem per
task 7;. The actions are the motion trajectory parameters
a = [g, f] € A, which represent the goal and forces for the
entire trajectory (Eq. 1). The reward is the video classification
score R(V,T;) as defined above. Note that since the output of
the policy network is directly transformed into a continuous
motion trajectory, our single-task learning problem is a Con-
textual bandit problem [24], where the contextual information
is the language instruction and the image of initial scene.

To solve the Contextual bandit problem, we combine Deep
Deterministic Policy Gradients (DDPG) [26] with the Cross
Entropy Method (CEM) [35]. The DDPG critic network is used
to approximate the Q value function. The output of the DDPG
actor network is used to initialize CEM. Then we run CEM to
search the landscape of the critic network for a better action in
a broad neighborhood of the initial action [20]. For the first
iteration of CEM, we sample a batch of M points in the action
space A and fit a Gaussian to the top N samples. In successive
iterations, we sample M points from the Gaussian and again
update the Gaussian with the top N samples. We run CEM
for four iterations to select actions in both the training and test
stages. In the training stages, we store the transition (s, a,r)



where s represents the state, a is the action selected after CEM,
r is the reward from the video classifier. The critic loss is £, =
lr — Q(s,a)||, and the actor loss is £, = —Q(s, Actor(s)),
where Actor(s) is the output of the actor network. Note that the
weights of critic network are not updated when optimizing the
loss of the actor network. In the contextual bandit problem, the
critic network is trained to directly approximate the Q value, so
overestimation is not an issue when using neural networks to
learn the Q value [ ! 1]. Thus, the critic learns more stably than
the actor, and CEM allows us to leverage the faster learning
speed of the critic to improve the output of the actor. More
analysis of this effect is provided in the Appendix.

F. Multi-Task Learning

After training single-task policies, we now have expert
models for each task that we can use to train a multi-task
model through imitation learning. We found that this staged
approach works better than directly training a multi-task model
from scratch and provide supporting evaluation in Sec. V.

For each task 7;, we use the corresponding single-task
policy m; to produce N rollouts of state-action tuples

. UN .

(s',a’, yl)j:1 and save them into a large replay buffer. Here,
s' is the feature vector that represents the language instruction
and initial image of the scene, a’ contains the motion trajectory
parameters provided by m;, and y* is the actual end effector
trajectory of length 7' recorded when the robot executes a’.

After generating rollouts for all 78 tasks, we train the multi-
task policy 7y to generate an action a = [g, f] that imitates the
single-task policies by minimizing the following loss function:

T
min Y [|(a)e — yil|"+llg = d@) 1+ g = 7 (a) . |* @
t=1
where g(a)r and g (ai)T are the final end effector poses of the
trajectory predicted by the multi-task and single-task policy,
respectively. The predicted trajectory is computed by forward
simulating the dynamical system in Eq. 1. Note that y usually
differs from y due to physical contact or joint limits.

The first term in the loss function ensures that the predicted
trajectory y(a) from the multi-task policy 7y is similar to the
trajectory y* of the single-task policy 7*. The second term
ensures that the goal g of the multi-task policy is not too far
from the predicted final state of the trajectory ¢(a)r. This
could occur if the force terms f are too large towards the end
of the trajectory and prevent the end-effector from reaching
the goal. The third term ensures that g is not too far from the
predicted final state of the single-task trajectory ¢ (ai)T.

Note that the gradients of y with respect to g and f are
non-trivial, since ¥ is computed by integrating the dynamical
system in Eq. 1 twice across all timesteps. We compute the
gradients based on the derivation in [12].

IV. ENVIRONMENT SETUP

A. Human Demonstration Data

At the time of writing, the Sth Sth dataset contained 108,499
videos of 174 manipulation tasks, with durations of 2-6

seconds. Labels are textual descriptions based on templates,
such as “dropping [something] into [something],” containing
slots (“[something]”) that serve as placeholders for objects. We
select 78 of the 174 tasks that are appropriate for our environ-
ment setting. The remaining 96 tasks either require dual-arm
manipulation or are difficult to simulate in PyBullet [5], such
as “tearing sth”. For the 78 chosen tasks, we adopt the same
task IDs used in Sth Sth, as listed in Fig. 3.

B. Robot Environment

We use PyBullet [5] to simulate each environment asso-
ciated with one of the 78 tasks. Our robot is a simulated
7-DoF Franka Panda robot arm with a two-fingered Robotiq
2F-85 gripper. A camera is statically mounted to capture the
environment state as RGB images downsampled to 120 x 160.
Every time the environment is reset after an RL episode, the
manipulation objects in each environment are initialized with
a random pose within manually defined bounds for each task.

C. Evaluation Metric

The reward that the robot receives from the video clas-
sification is a proxy objective that may not directly reflect
how successful a policy is with respect to its task. Therefore,
we manually define task-specific success metrics to evaluate
(not train) the policies. For example, “hit sth with sth” is
successful if there is a collision between the object grasped by
the robot and the target object, and the grasped object remains
in the robot’s gripper after the collision. We report the average
success rate over 100 episodes.

V. EXPERIMENTS

The core idea of this paper is to use a video classifier
as a proxy reward for learning a multi-task policy and to
specify tasks with natural language. We propose a new multi-
task learning algorithm that outputs an entire robot motion
trajectory. In the following experiments, we seek to justify
these choices or demonstrate a performance gain over previous
approaches. The hypotheses we want to test are:

H1. A motion trajectory representation that can capture
complex trajectory shapes and velocity profiles is
important for completing the tasks in our dataset.
For learning complex tasks, it is important to take
the video of an entire robot trajectory into account
rather than only the before and after frames.

H3. Policies trained on the video classifier as a proxy
reward for true task success perform comparably to
policies trained on true task success.

Our imitation learning method for multi-task learning
outperforms other state-of-the-art methods.

HS.  The multi-task policy performs comparably to single-
task policies.

Incorporating natural language through task embed-
dings allows the multi-task policy to generalize to
novel instructions.

H2.

H4.

He.
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Fig. 3: Initial scene images for each of the 78 tasks that form the input to the single and multi-task network. The top left image shows an overhead view of the simulation

environment. More examples are shown in the supplementary video.

A. Single-Task Policies

To conduct an ablation study of our choices for the motion
representation and reward signal, we first evaluate the perfor-
mance of single-task policies.

1) Comparison of goal+forces to goal-only trajectories
(HI): To evaluate whether a motion trajectory representation
that can capture complex trajectories is important for learning
tasks, we run an ablation experiment where we remove the
auxiliary forces f at each timestep from our trajectory repre-
sentation in Eq. 1. We train policies on the resulting straight-
line trajectories with only goal poses g, which is equivalent to
PD control to the goal. The results are presented in Fig. 4. The
average task performance of the full trajectory representation
(Video w/ Goal+Forces) is 61%, while the average of the goal-
only representation (Video w/ Goal) is 54%. For most simple
tasks, the goal-only representation is sufficient, but some tasks,
like “show sth is empty” and “push sth so that it slightly
moves” require more complex trajectory shapes or velocity
profiles that can only be provided by the additional force term.

2) Comparison of video-based to image-based classification
(H2): To demonstrate the importance of using videos to learn
dynamic manipulation tasks, we run an ablation experiment
where we replace the video-based action classifier with a clas-

sifier that only takes the initial and goal image of the trajectory
as input. Because videos in Sth Sth do not necessarily end
exactly when the task is finished, i.e. when the hand reaches
the goal pose, we train the image classifier by randomly
selecting a frame from the last 25% of the video to be the
goal image. The image-based action classifier feeds the initial
and goal images into a pretrained ResNet50 network [40]. The
resulting features are concatenated and passed to an MLP with
a softmax layer to output a probability distribution over the
174 manipulation tasks. The image classifier achieves a top-1
accuracy of 28% and top-5 accuracy of 43%, while the video
classifier achieves 35% and 58%, respectively.

Fig. 4 (second column) compares the performance of the
policies trained with the video- and image-based action clas-
sifier. In general, policies trained on the image-based classifier
perform worse, particularly on tasks like “hit sth with sth” or
“poke sth so that it slightly moves”, which require intermediate
frames in the trajectory, not just the goal image, to identify.

3) Comparison of video-based with ground truth reward
(H3): In this work, we are proposing to learn manipulation
concepts from a reward signal that is provided by a video-
based action classifier trained on human video demonstrations.
However, there is concern that this proxy reward is noisy and
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Fig. 4: Task Performance of Single and Multi-task policies. The blue bars in all plots
represents the task performance of single-task policies when trained with reward from the
video classifier and with the motion being represented by goal poses and forces at each
time step. The bar plot on the left shows the effect of removing forces from the motion
representation (orange). The second plot from the left shows the effect of replacing the
video classifier with an image classifier (red). These two ablation studies show that with
a few exceptions, being able to shape the trajectory with forcing terms improves task
performance, and that taking the video of the entire robot motion into account instead of
only before and after images also improves task performance. The third plot shows the
effect of replacing the video classifier with the handcrafted RL reward that reflects true
task success (purple). For most of the high-performing tasks, the video classifier performs
comparably (in some cases better), while for the low-performing tasks, the video classifier
faces a drop in performance, possibly due to video classification inaccuracies. The plot
on the right compares single-task to multi-task performance, showing that the multi-task
framework is able to maintain performance on most of the tasks.

may not provide a sufficient signal to reach a high success
rate. To test this, we first gauge the difficulty of each task
by training 78 single-task policies with a hand-designed, task-
specific, binary reward signal that reflects real task success.
To evaluate the effectiveness of using the video-based action
classification score as a reward signal, we compare the per-
formance of the resulting policies to those trained with our
handcrafted reward functions. Ideally, there is no difference
in task success. However, because the action classifier is not
perfect, we expect some drop in performance. The results are
presented in the third column of Fig. 4. Most of the high-
performing, video-based policies match the performance of the
“handcrafted RL” policies. Some of them even perform better,
e.g. “push sth so that it slightly moves” and “fail to put sth into
sth because sth does not fit”. One possible explanation for this
is that the ground truth rewards are binary, whereas the video-
based classifier provides a continuous classification score that
offers some feedback for attempts that almost achieve the
task but fail. For some of the lower-performing, video-based
policies, the gap to the performance of the handcrafted RL
policies is quite large, indicating that the video-based action
classifier only provides a noisy reward signal for these tasks.
For other low-performing, video-based policies, the gap to the
performance of the handcrafted RL policy is small, indicating
that the task is hard to learn in general.

B. Multi-Task Policies

We aim to learn a unified model for all the 78 tasks such that
this model can also generalize over novel instructions. In this
section, we evaluate the performance of our learning method
compared to baselines and show qualitative examples of how
the model outputs reasonable actions for novel instructions.

1) Comparison of multi-task algorithms (H4): We first
select eight tasks for a simple multi-task benchmark, shown in
Table I. The tasks are grouped into complementary pairs, like
“move sth away from sth”/“move sth closer to sth” and “pull
sth from right to left”/“pull sth from left to right”. We run our
proposed multi task learning algorithm on the benchmark.

The first baseline, which we call Simple, trains a single
multi-task policy on all eight environments with the corre-
sponding video classification score as the reward. Because
this model needs to learn a policy that maximizes the video
classifier reward on all eight tasks, the objective function is
complex, and policy gradient optimization easily gets stuck
in local minima. For example, among the eight tasks, task 42
dominates, while the others remain low. Overall, the Simple
baseline only achieves an average success rate of 17.4%.

We implement a second baseline based on the Distral algo-
rithm [44]. Since our method generates deterministic actions,
we replace the KL divergence—used to measure the difference
between the single- and multi-task policy distributions—with
the Euclidean distance between the actions generated by the
single- and multi-task policy. Distral greatly outperforms Sim-
ple, but does not perform as well as our method. One possible
explanation for this is that Distral requires that the multi-task
policy is trained in conjunction with the single-task policies.



However, jointly optimizing the policies may be difficult in
our task setting. First, the reward signal from the learned video
classifier is noisy. Second, the magnitude of rewards for the
optimal single-task policies may vary across tasks, since the
video classifier may be more confident in scoring some tasks
than others. The noise and bias in the reward function may
cause Distral to get stuck in local optima.

The reason we learn the single-task policies independently
of the multi-task policy is that the noisy and biased reward
from the video classifier may cause the multi-task policy to
be unstable and perform poorly in the early stages of learning.
By learning the single-task policies first, we can ensure that
the instability of the multi-task learning does not affect the
single-task performance, especially since single-task learning
is unaffected by the reward bias when trained alone.

SuccessRate%| Average | T40 T42 T8 T8&7 T93 T94 TI103 TI104
Simple 17.4 24 52 20 28 1 10 3 1
Distral 61.5 88 78 80 100 63 36 45 3
Ours 76.3 94 74 82 100 100 96 60 4

TABLE I: Comparison of multi-task baselines. The instructions for the eight tasks are
“Move sth away from sth”, “Move sth closer to sth”, “Pull sth from left to right”, “Pull
sth from right to left”, “Push sth from left to right”, “Push sth from right to left”, “Put
sth behind sth”, and “Put sth in front of sth”. We report average success rate over four
random seeds. The mean and standard deviation of the success rates of the corresponding
single-task policies are: 91 4+ 3.4, 78 4.6, 88 3.1, 96 £ 3.8, 96 £ 3.2, 94 £ 3.1,
51 £ 7.3, and 2 &£ 2.2. This shows that the performance is stable across seeds.

2) Comparison of multi-task to single-task (H5): Learning
a unified policy for multiple tasks is harder than learning a
policy for a single task. Therefore, we expect the multi-task
policy to perform worse than the single-task policies. This
comparison is shown in the fourth column of Fig. 4. The multi-
task policy achieves an average success rate of 54%, while
the single-task policies collectively achieve 61%. As expected,
this indicates a drop in performance, although not too severe.
In future work, we will investigate other multi-task learning
frameworks, such as from the meta-learning community.

3) Generalization to new instructions (H6): We demon-
strate that our model shows reasonable generalization to new
natural language instructions. We test the generalization at two
levels. First, we replace words in a known task instruction
with novel but similar words. For example, “move sth up” is
replaced with “move sth higher” or “put sth higher”. As shown
in Table II, these new instructions reach comparable task
performance. The performance of generalization decreases the
more novel words are in the instruction.

Second, we try to compose tasks. For example, combining
“pull sth from left to right” and “move sth up” becomes “pull
sth from left to right and move sth up”. Qualitatively, the
policy network seems to linearly interpolate between the two
tasks. This can be observed in the supplementary video. We
evaluate the motion to be successful if it satisfies the success
conditions in both tasks. However, the success rate drops by
about half, which may not be surprising because we do not
specifically train the multi-task network to be able to compose
multiple tasks. This is a potential direction for future work.

Task Instruction Success
Rate
Known: Move sth up 88%
Unseen: Move sth higher 81%
Unseen: Put sth higher 79%
Unseen: Put an object higher 43%
Known: Move sth down 83%
Unseen: Move sth lower 83%
Unseen: Put sth lower 71%
Unseen: Put an object lower 34%
Known: Pull sth from left to right 93%
Unseen: Pull sth from left to right and move sth up 45%

TABLE II: Comparison of performance between unseen and related known instructions.

VI. CONCLUSION

In this paper, we approached the problem of learning a
multi-task policy that links natural language instructions to
motor skills. Specifically, we propose to learn from demon-
strations that are provided in the form of videos of human
manipulation actions. Our framework used a two-stage pro-
cess. In the first stage, we trained single-task policies through a
reinforcement learning algorithm where the reward is provided
by a video-based activity classifier. This classifier scored how
much the robot executing the current policy appears to perform
the specified task. In a second stage, we then proceeded to
train one multi-task policy by letting it imitate the single-
task policies. In extensive simulated experiments, we showed
how our policy can learn to perform a large number of the
78 complex manipulation tasks it was trained on. In ablation
studies, we also motivated our choice of using a video- rather
than an image-based classifier. Furthermore, we demonstrated
how parameterizing the action through end effector goal pose
and forces per time step enables the robot to learn a larger
number of the 78 tasks than when only using the goal. Finally,
we showed in qualitative examples how the multi-task policy
generalizes to novel natural language instructions that are
similar to the ones it was trained on.

Our approach opens exciting new future directions. For
example, we would like to explore different algorithms for
multi-task reinforcement learning as well as meta-learning
to learn new tasks faster [53]. Furthermore, in this current
approach, we have only learned to perform basic manipulation
skills. However, for more complex manipulation tasks, we
may want to compose or sequence skills which may require
integrating task and motion planners similar to [19, 46].
Currently, we are only learning tasks on the coarsest level of
natural language instructions that is provided by Sth Sth [13].
However, some actions are qualified by the kind of object
they are applied to. For example, “closing a bottle” requires a
different motion from “closing a drawer”. Expanding manip-
ulation concept learning to these more complex instructions
is also an interesting future direction. And finally, we would
like to execute these learned manipulation concepts on a real
robotic platform with real time closed-loop behavior.
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