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Abstract—Creating accurate spatial representations that take
into account uncertainty is critical for autonomous robots to
safely navigate in unstructured environments. Although recent
LIDAR based mapping techniques can produce robust occu-
pancy maps, learning the parameters of such models demand
considerable computational time, discouraging them from being
used in real-time and large-scale applications such as autonomous
driving. Recognizing the fact that real-world structures exhibit
similar geometric features across a variety of urban environ-
ments, in this paper, we argue that it is redundant to learn
all geometry dependent parameters from scratch. Instead, we
propose a theoretical framework building upon the theory of
optimal transport to adapt model parameters to account for
changes in the environment, significantly amortizing the training
cost. Further, with the use of high-fidelity driving simulators
and real-world datasets, we demonstrate how parameters of 2D
and 3D occupancy maps can be automatically adapted to accord
with local spatial changes. We validate various domain adaptation
paradigms through a series of experiments, ranging from inter-
domain feature transfer to simulation-to-real-world feature trans-
fer. Experiments verified the possibility of estimating parameters
with a negligible computational and memory cost, enabling large-
scale probabilistic mapping in urban environments.

I. INTRODUCTION

The demand for intelligent robots in day-to-day activities is
growing as never before. However, one of the main reasons
hindering the deployment of robots in real-world environ-
ments is the challenge of reliably adapting to continuously
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changing environments. Since a robot typically represents
its environment and itself using mathematical models, it is
indispensable to adjust these models to accommodate changes
in the environment the robot operates in. For instance, if
the model is represented as a parameterized statistical model,
its parameters should be regularly redetermined to adjust for
changes to new environments and data.

If the learning procedure is computationally expensive,
frequently updating the model parameters in real-time is a
significant challenge. This is indeed the case in deep learning
as well as in many Bayesian inference techniques. While
there are many methods to adapt deep neural networks to
varying domains [1, 2, 3, 4, 5], such adaptation techniques are
under-explored for Bayesian models [6] despite their extensive
applications in robotics [7, 8, 9, 10, 11]. As uncertainty is
represented as probability distributions in Bayesian models,
entire distributions need to be adapted when changing to a
new domain. The question remains: how do we solve the
problem of efficient adaptation without retraining models from
scratch? In this paper, we focus on learning the uncertainty of
occupancy in an unknown environment by transferring model
parameters associated with a source dataset to a target dataset
in a zero-shot fashion [12]. This transfer procedure signifi-
cantly reduces the time to estimate the model parameters, as
opposed to learning them from scratch.

Even though the fundamental techniques developed in this
paper have great potential to be used in a variety of data-
efficient robot perception and planning applications, our focus
is to build an online continuous mapping method for arbi-

Fig. 1: (a) Forward camera-view from a car that has just passed an urban intersection (KITTI dataset). (b) A set of occupancy
model parameters estimated using the proposed Parameter Optimal Transport (POT) method. Values of these parameters depend
on the geometry of the environment. Note that these parameters were transferred online from a simulated environment and
were never learned from scratch. (c) Mean occupancy map obtained from the transferred parameters.

https://youtu.be/qLv0mM9Le8E
https://github.com/MushroomHunting/RSS2020-online-domain-adaptation-pot
https://github.com/MushroomHunting/RSS2020-online-domain-adaptation-pot


trarily large environments. Our formulation builds upon the
state-of-the-art Bayesian occupancy mapping technique named
automorphing Bayesian Hilbert maps (ABHMs) [13]. By
developing a novel parameter transfer learning technique, we
make this theoretically rich, yet practically less scalable offline
mapping technique, run online in large-scale unknown urban
environments. Since ABHM explicitly provides uncertainty
estimates of which areas of the environment are occupied,
it can be utilized in safety-critical robotics applications [14]
such as autonomous driving. For instance, they can be inte-
grated into safe-motion planning algorithms and risk-aware
decision-making in cluttered and dynamic real-world urban
environments [15, 16]. The main reason that hinders the use
of ABHM in real-world applications is the run-time cost of
learning parameters as it relies on an expensive black-box
variational inference technique. Because these parameters are
spatially local and depend on the geometrical features of the
objects in the environment, parameters in one location of the
environment are completely different from another. Therefore,
ABHM requires learning these spatially variant parameters
for every location of the environment. Moreover, in dynamic
environments, these parameters need to be swiftly adjusted
to the changing occupancy level. Taking into account these
limitations, it is essential to quickly estimate the parameters
in an alternative and more efficient manner.

As an alternative to relearning parameters in a new scene,
we propose to transfer “geometry-dependent spatial features”
of the ABHM model from a training data pool to the current
scene. We show that this can be efficiently done using the
theory of Optimal Transport [17], which recently regained
popularity due to its successful application to several machine
learning algorithms [18, 19]. The proposed approach com-
pletely bypasses explicitly learning parameters of the statistical
model which are typically learned through a complicated log-
likelihood loss. In essence, as shown in Figure 1, the algorithm
“transports” location and geometry-dependent parameters of
the model from one place to another place by examining
the similarities among LIDAR scans. This parameter trans-
port procedure exploits geometry-dependent kernels with less
computational cost, resulting in a higher quality maps. With
this, we bring the following contributions,

1) a theoretical framework for parameter transfer in
robotics;

2) intra-domain transfer: sequentially building a map based
on features learned in previous time frames;

3) inter-domain transfer: mapping an environment with fea-
tures learned from another environment. This includes
parameter transfer from one town to another, static to
dynamic environments, and simulation to real-world;
and

4) online and efficient mapping of large-scale 2D and 3D
environments.

Notation given in Table I will be used throughout the paper.

TABLE I: Table of notations and terminology

Notation Description

¯and˘ Mean and variance of Gaussian; shape and scale of Gamma
x and y LIDAR data positions and labels
N and M Number of data points and number of parameters

h̄ Kernel positions
θ Parameter set except h̄

(S) and (T ) Source and target
P Coupling matrix

a→ b transport = transfer = domain adaptation = transform
= map = convert (from a to b)

Fig. 2: Kernel positioning. Kernels are placed in different
locations h̄. For instance, here, the distance between each data
point x and {h̄m}M=6

m=1 has to be evaluated as in eq. 1.

II. PRELIMINARIES

A. Uncertainty of Occupancy

An occupancy model is typically represented as a param-
eterized function that models the occupancy probability of
each location in the environment. The objective is to learn the
model parameters θ given a set of observations from LIDAR
beams. Once the parameters are estimated, it is possible to
query y∗ = p(occupied|x∗, θ) ∈ [0, 1] anywhere in the
2D space1 x∗ ∈ R2 := (x1, x2). Labeling LIDAR hits as
y = 1 = occupied and randomly sampled points between
each LIDAR hit and the LIDAR sensor as y = 0 = free, a
dataset D = {(xn, yn)}Nn=1 can be generated. Here, xn ∈ R2

are the corresponding spatial locations of yn ∈ {0, 1}.
Various models have been proposed for the occupancy

function. Gaussian process occupancy maps (GPOMs) [20, 21]
have been presented as an alternative to improve occupancy
grid mapping (OGM) [22, 23] and Hilbert maps [24]. In
addition to considering neighborhood information for accurate
occupancy predictions, kernel methods used in GPOMs come
with the flexibility of incorporating other aspects such as
dynamics into occupancy mapping [25, 26]. On the other
hand, GPOMs account for uncertainty as they are based on a
Bayesian nonparametric model. Regardless of their attractive
theoretical properties, GPOMs are impractical for real-world
usage because of theO(N3) run-time and memory complexity.
Recently proposed Bayesian Hilbert maps (BHMs) [27], on the
other hand, encompass all positive traits of GPOMs but at a
cost of O(M3) where M � N is the number of features that
correlates with the accuracy. Since ABHM considers the full

1We limit our discussion to 2D for simplicity. All theory are readily
extensible to 3D.



Fig. 3: Spatial correlation among obstacles in the environment and some ABHM parameters. (a) LIDAR data: y = 1 (hits) in
red and y = 0 in blue. (b)-(d) kernel weight means w̄m, weight variances w̆m, and width means γ̄m. Each point is a kernel
placed in the shown location h̄ in the x1-x2 space. Refer Observation 1 for further interpretation. (e) Predicted occupancy.

Bayesian treatment over parameters of [27] to account for local
spatial changes in the environment, it achieves a significantly
higher accuracy.

BHM can be summarized as performing Bayesian logistic
regression in a high-dimensional feature space RM using
kernels [28, 29]. BHM uses the same kernel for the entire map.
ABHM is an extension to BHM to learn all location-dependent
nonstationary kernel parameters (Appendix I-C). While BHM
can be run in near real-time in an online fashion, ABHM is
computationally expensive as it requires learning thousands of
parameters offline. In ABHM, the occupancy probability of a
point x∗ is given by,

p(y∗ = 1|x∗) = sigmoid

( M∑
m=1

wm exp
(
− γm‖x∗ − hm‖22

)︸ ︷︷ ︸
mth SE kernel

)
,

(1)
where w,h, and γ are parameters learned from data D. The
inner part of the equation is a w weighted sum of M kernels
placed in 2D spatial locations h. In areas where there are
more LIDAR hits in the locality of a kernel, then its associated
weight wm will be higher, and vice versa. This is because, as
illustrated in Figure 3, here, M squared-exponential (SE) ker-
nels positioned at mean locations (h̄1, h̄2, . . . , h̄M ) are used to
project 2D data into an M dimensional vector such that each
kernel has more effect from data in its locality. γ are positive
parameters that control the width of each kernel. Probability
distributions wm ∼ N (w̄m, w̆m), hm ∼ N (h̄m, h̆m), and
γm ∼ Gamma(γ̄m, γ̆m) are induced on the parameters to
naturally encode uncertainty. Here, slightly abusing standard
notations,¯and˘ symbols are used to represent the mean and
dispersion parameters, respectively (Table I).

The parameters of the model are learned using variational
inference [13]. See Figure 3 for some of the estimated pa-
rameters. Since there are 8 parameters (w̄m, w̆m, γ̄m, γ̆m ∈ R
and h̄m, h̆m ∈ R2) associated with each kernel, it is required
to learn 8M parameters. In order to achieve a practically
satisfactory accuracy to cover a 100 m2 area, it is necessary to
have over 10000 kernels which would take around 10 minutes
on a GPU. On the other hand, although ABHM provides high-
quality maps, it is required to first collect the entire dataset as
it does not support sequential training, making it practically
unsuitable for mobile robotics applications.

B. Domain Adaptation

The learned model parameters for a sample environment
can be visualized in Figure 3.

Observation 1: Once the full ABHM model is learned,
the following can be observed: topsep=0pt,itemsep=-
1ex,partopsep=1ex,parsep=1ex

1) As shown in Figure 3 (b), the mean values of weights
w̄ are higher in areas where there are LIDAR hits, and
vice versa. In areas where there are no observations at
all (x1 / −105 in Figure 3 (a)), the variance values w̆
are high as shown in Figure 3 (c).

2) The mean widths γ̄, as can be onserved in Figure 3 (d),
are higher close to the obstacles, indicating sharp edges.

3) The mean positions of kernels h̄ align according to the
geometry of the obstacles (Figure 3 (b)-(d)).

Premise 1: Based on Observation 1, there is geometric
correspondence between parameter values and obstacles ob-
served by the LIDAR. Therefore, we argue that spatially
dependent parameters for a new environment, defined as the
target domain, can be estimated by discovering correspondence
between the target (new) LIDAR data and source (known)
LIDAR data with associated parameters. Here, the source is
an environment whose parameters are known or pre-estimated
using a method such ABHM in a simple environment, and the
target is a complex and large environment whose parameters
are not known and challenging to estimate. This requires
transferring features from source to target domains.

Transferring knowledge obtained from one domain to the
other has been widely discussed in the machine learning
literature [1, 30]. The broader class of transferring from one
type of domain to the other, e.g. images to text, is known
as transfer learning. If the type of source and target domains
are the same, as in occupancy mapping, the transfer process
is called domain adaptation (DA). Applications in robotics
include transferring control policies from simulation to real-
world [2, 31], and making image processing tasks invariant to
lighting and other changes [5, 32].

Variations of generative adversarial networks (GANs) such
as DTN [33], CycleGAN [34], DiscoGAN [35], UNIT [36],
DART [4] have been widely used for domain adaptation of
RGB images. However, not only do these methods require
a large amount of data but also it is not immediately clear



how to use these techniques with sparse LIDAR data nor
transferring probability distributions. In the next section, we
consider an alternative domain adaptation method based on
optimal transport (OT) [17] to transfer parameters of the
Bayesian occupancy model using sparse LIDAR data.

III. OPTIMAL PARAMETER TRANSPORT

In this section, we present the proposed algorithm. Trans-
ferring parameters is a two-step procedure: creating a source
dataset offline (Section III-A) and transferring them to a target
domain online (Section III-B). Section III-C is a generalization
and is the actual algorithm used in experiments. Section III-D
is an extension to further improve the map quality.

A. Preparing the Source Dictionary of Atoms

Fig. 4: Extracting source data. (a) Splitting source LIDAR
scans into 3 sectors. (b) Corresponding kernels parameters are
also split the same way. Only kernel position means and weight
means are shown here.

In order to take advantage of domain adaptation we must
have accurately pre-trained maps from which we can extract
spatially relevant features. In the context of our problem,
we must extract LIDAR scans (hits and free) with their
corresponding model parameters including kernel weights,
positions, and widths. To provide high-quality training data
we extract learned model parameters from ABHM maps.
Since ABHM can only be used on small areas due to the
high computational cost, we learn separate ABHM maps for
different areas and construct a dictionary of source atoms
which we call a dictionary of atoms.

To construct the dictionary, as illustrated in Figure 4, we
split each LIDAR scan into circular sectors with radii equal
to the specified maximum LIDAR distance. Rather than using
the entire LIDAR scan as the source dataset, this split not
only results in a diverse set of geometric primitives but also
provides simpler sources for the transfer procedure presented
in the following section. The corresponding learned model
parameters for each sector are considered as source parameters
that we wish to transfer to the target domain. For each sector,
we have M (S) parameters {θ(S)

m }M
(S)

m=1 associated with N (S)

LIDAR hits or free points {(x(S)
n , y

(S)
n )}N(S)

n=1 . The collection
of these different LIDAR sectors constitutes the dictionary of
source atoms X (S).

B. Source to Target Parameter Transport

Until we present the general transfer procedure that we used
in experiments in Section III-C, for the sake of simplicity of
the following discussion, let us assume that the dictionary

of atoms contains only one LIDAR sector and associated
parameters.

Objective: Having determined source LIDAR data
{(x(S)

n , y
(S)
n )}N(S)

n=1 and corresponding parameters {θ(S)
m }M

(S)

m=1 ,
our objective is to determine the new set of parameters
{θ(T )}M(T )

m=1 for a new LIDAR dataset {(x(T )
n , y

(T )
n )}N(T )

n=1 .
This problem is illustrated in Figure 5 (a) and (b). In other
words, we are looking for a nonlinear mapping technique to
convert a source (S) to a target (T ). We recognize this as an
optimal transport (OT) problem given in Theorem 1.

Theorem 1: (Monge-Kantorovich) [17] Let Ω(S) and Ω(T )

be two separable metric spaces such that probability measures
µ(S) and µ(T ) on Ω(S) and Ω(T ), respectively, are Radon
measures. The optimal coupling,

P∗ = arginf
P∈Γ(µ(S),µ(T ))

∫
Ω(S)×Ω(T )

D(µ(S),µ(T ))dP (µ(S),µ(T )),

(2)
always exists for a distance function D : Ω(S) × Ω(T ) →
[0,∞), where Γ is the set of all couplings (probability
measures) on Ω(S) and Ω(T ) with marginals µ(S) and µ(T ),
respectively.

Intuitively, as illustrated in Figures 5 (a) and 6, the OT
problem attempts to determine the optimal way to move one
probability distribution to another. If µ(S) and µ(T ) constitute
two datasets of size N (S) and N (T ), respectively, there always
exists an optimal probabilistic coupling P∗ ∈ RN(S)×N(T )

be-
tween the two datasets [37]. Here, as shown in Figures 6 where
the source and target samples are assumed to separately follow
bivariate distributions, P∗ is a doubly stochastic matrix—each
row and column sums to one—that indicates the probability of
a sample in the source match with all other points in the target.
In occupancy mapping, µ is computed as Dirac measures from
LIDAR data (Appendix I-A).

With source data obtained in Section III-A, for a new target
dataset, we attempt to obtain the optimal coupling,

P∗ = argmin
P∈Γ(x(S),x(T ))

∑
ij

PijDij − λ−1r(P ), (3)

for a given D ∈ RN(S)×N(T )

distance matrix (e.g. squared
Euclidean distance between source-target pairs) with the in-
formation entropy of P ,

r(P ) = −
∑
ij

Pij logPij . (4)

This entropic regularization, commonly known as the
Sinkhorn distance [38, 39], enables solving the otherwise
hard integer programming problem using an efficient iterative
algorithm [40]. Here, λ controls the amount of regularization2.

Having obtained the optimal coupling between source and
target LIDAR, as illustrated in Figures 5 (b)-(c) and 7, now
it is possible to transport source parameters θ(S) to the target
domain. This is done by associating the source parameter posi-
tions h̄(S) with source samples x(S) as a linear map [41], and

2λ can be set to a large number depending on the machine precision of
the computer.



transporting them to the target domain h̄(S) → h̄(T ) according
to the coupling matrix P∗ learned from LIDAR matching. All
other θ(S) parameters associated with the kernels positioned
at h̄(S) will also be transported to the target domain. This
implicit transfer process is depicted in Figure 7.

C. Transport from a Dictionary of Atoms

Although we created a dictionary of atoms consisting of
diverse geometric primitives in Section III-A, the transfer
procedure introduced in Section III-B was limited to a single
LIDAR sector. In order to effectively make use of the entire
dictionary, it is required to find the optimal coupling matrix
over all elements in the dictionary x(S) ∈ X (S).

As another fact, although eq. 3 can be used to obtain a
translation and scale invariant solution, it is not robust enough
against large rotation variations. However, we can rotate data
about the centroid of each atom using the rotation matrix,

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, (5)

for a discrete set of rotations α ∈ A.
Overall, we obtain a candidate optimal coupling set of size

|X (S)|×|A| by minimizing eq. 3 over all rotations and atoms,

P∗ =

{
argmin

P∈Γ(x(S),R(α)x(T ))

∑
ij

PijDij − λ−1r(P )

}
x(S)∈X (S)

α∈A

.

(6)
Ultimately, we select the overall best coupling matrix from

the candidate set P∗ as the candidate that has the minimum
2-Wasserstein distance (refer Appendix I-B) to the target,

P∗ = argmin
P∈P∗

∑
ij

PijDij . (7)

This P∗ can now be used to transfer parameters using
the same method explained in Figure 7. As a result of the

computation procedure introduced in this section, as depicted
in Figure 8, atoms from various domains will be transferred
to the target. Because atoms only consist of a few hundred
LIDAR points, this transfer can be performed in real-time.
Unlike in BHM or ABHM, we can now introduce thousands of
kernels. The increasing number of pre-learned kernels as well
as the nonstationarity help to improve the accuracy. The entire
Parameter Optimal Transport (POT) algorithm is summarized
in Algorithm 1.

D. POT Maps and Refined POT Maps

Transporting parameters can be performed in two different
ways. It is possible to transport parameters for each LIDAR
scan separately, and immediately build the occupancy map.
This results in an instantaneous map which is useful for
understanding the occupancy of the surrounding at present.
Such maps can be used for safe decision-making and control
in the locality of the robot. On the other hand, it is also
possible to build the overall map by sequentially aggregating
the transported parameters as the robot moves. The overall
map model completely discards training LIDAR data after
transporting the parameters. This enables mapping large areas
at a constant cost.

Once the parameters are transported with the intention of
building an instantaneous or overall map, an occupancy map
can be generated by plugging in the transported parameters to
eq. (1) and querying occupancy probabilities. It will not only
provide the mean occupancy map, but also the uncertainty
as the variance estimate. Since only the parameters of the
continuous mapping function eq.1 are stored, the occupancy
map can later be queried at any time at any resolution.

Learning kernel parameters γ and h in real-time is not
feasible with ABHM. However, learning weights w, assuming
other parameters are given, we have a fast approximation given
by Bayesian Hilbert maps (BHMs) [27]. As an additional
step to further improve the map quality, we propose to use

Fig. 5: Optimal transport from a square to an arc. (a) If there are N (S) and N (T ) number of data points in the source (red)
and target (brown) datasets, the coupling matrix γ is size N (S)×N (T ) where any column or any row sums to 1. A given row
in γ indicates the probabilities of the sample associated with that row could be coupled to all samples in the target dataset.
Probabilities associated with one such source point to target matches are shown in white-black color scale. Note that only the
10 highest matches are shown for clarity. (b) For a given set of LIDAR hits (red) spatial parameters can be learned using
ABHM. Here we see kernel parameters spread across the environment. However, for another set of LIDAR hits (brown) we
would prefer not re-learning parameters because it is expensive. (c) Based on the coupling matrix between the source and the
target, we transport (move from the target area to the source area) the parameters around each point. Note that how the small
lengthscales (cyan) stays close to the LIDAR hits and larger lengthscales (magenta) move away from the LIDAR.



Fig. 6: (a) 10 red and 10 brown dots indicate samples in R2

from the bivariate source and target distributions, respectively.
The higher the transparency of gray lines, the lower the
probability of couplings (matches) obtained after solving eq. 3.
(b) 10 × 10 pairwise cost matrix D between the positions
of samples. (c) 10 × 10 coupling matrix P∗ indicates the
optimal coupling probability of source points and all other
target points. Determining this matrix (and gray lines in (a))
is the goal of optimal transport.

learn P∗ for x(S) explicit−−−−→
transport

x(T )

predict−− .h̄(S) explicit−−−−→
transport

h̄(T ) using P∗
...−−−− ...

...−−
——-θ(S) implicit−−−−→

transport
θ(T )

Fig. 7: Parameter optimal transport. Known and unknown
quantities are in blue and red, respectively. We learn an optimal
coupling matrix P∗ using source and target LIDAR. Then
we use this coupling matrix to predict target kernel positions
corresponding to the source kernel position. By doing this,
the other parameters associated with each kernel are also
implicitly transported by treating them as labels.

transported parameters as prior distributions of the BHM
and simply update the weights w by using [27]. We call this
improved map, the refined POT (RePOT) map.

IV. EXPERIMENTS

Both simulated and real-world datasets were used to assess
the quality of POT. To generate simulated data, Carla v.0.9.2
simulator [42] was used as it closely resembles real-world
towns. As a real-world dataset, we used the KITTI benchmark
dataset [43]. All datasets are listed in Table II and each of
these environments is considered as a domain. More details
are provided in Appendix II-A. As evaluation metrics, we used
accuracy (ACC), area under ROC curve (AUC) and negative
log-likelihood (NLL) [44]. Unlike ACC and AUC, NLL takes
into account uncertainty of predictions. The higher the AUC
or lower the NLL, the better the model is.

A. Intra-domain and Inter-domain Adaptation

In this experiment, we consider two paradigms: intra-
domain and inter-domain transfer. In intra-domain transfer,
the source atoms are generated from the first 10 frames of
a particular dataset and parameters are transferred to the
rest of the same dataset while they are transferred to a
completely different domain in inter-domain transfer. Based

Algorithm 1: Transferring parameters to a new domain
Input: New LIDAR scans, Source dictionary of atoms
while new scan in new domain do
P∗ = {};
for each atom in X (S) do

for each rotation in A do
P∗.insert(Compute the coupling matrix)

(Eq. 6);
end

end
P∗ ← Determine the best coupling matrix (Eq. 7);
θ(T ) ← Transfer the source parameters to the

target domain using P∗ (Figure 7);
end
Output: Parameters θ(T )

TABLE II: Description of domains

Domains (Datasets) Description
Carla Town 1 a 2D dataset in town 1 in Carla (3.7 km).
Carla Town 2 a 2D dataset in town 1 in Carla (1.5 km).
Carla Town 3 a 2D dataset in town 1 in Carla (8.6 km).
Carla Town 1 3D a 3D dataset in town 1 in Carla.
Carla Town 1 Dyna Carla Town 1 with 120 vehicles running around.
KITTI Dyna a 2D dataset (the middle LIDAR channel).

on results reported in Table III with 20% randomly sampled
test LIDAR beams from each town, it is possible to accurately
transfer parameters using POT. This enables mapping large
scale towns in real-time. All parameters are aggregated over
time to build occupancy maps of the entire environments as
visualized in Figure 9 and Appendix II-C. Using the Town
1 3D dataset, we demonstrate the possibility of extending
POT to 3D environments. In this case, source atoms described
in Section III-A, were circular cylindrical sectors (i.e. pie
slice shaped). The post-hoc refinement procedure, RePOT,
introduced in Section III-D, further improved the map signif-
icantly. A visualization of RePOT is shown in Figure 10 and
performance improvement, in direct comparison with results
in Table III, is reported in Table IV.

B. Building Instantaneous Maps

This experiment was designed to demonstrate how param-
eters can be instantaneously transported to build the instanta-
neous map of the surrounding. For this purpose, we used the
two dynamic environments: Town 1 Dyna and KITTI Dyna.
The source dictionary of atoms was prepared similar to the
intra/inter-domain adaptation experiment. Such a map is shown
in Figure 1. The performance of the model was evaluated on
20% of data that were not used for optimal transport. Table V
shows the performance of transferring features extracted from
each town to the dynamic datasets.

C. Performance Comparison

In this experiment, we compared various occupancy map-
ping algorithms in terms of accuracy and speed. Since these



Fig. 8: A high-level overview of the proposed method: Parameter Optimal Transport (POT). Training domains correspond to
potentially independent, data-intensive, expensive, yet small-scale pre-learned models. After storing in a dictionary of atoms,
representative data-space and model-parameter tuples from the pre-learned set of models, we find data-space correspondences
using optimal transport. These correspondences are then used to transport pre-learned parameters to out-of-sample test domains.

TABLE III: Performance of intra-domain (diagonal entries of the table)
and inter-domain (off-diagonal entries of the table) transfer.

Target
Town1 Town2 Town3

So
ur

ce

A
C

C Town1 0.79 0.82 0.76
Town2 0.70 0.72 0.58
Town3 0.85 0.83 0.84

A
U

C Town1 0.88 0.88 0.90
Town2 0.85 0.83 0.83
Town3 0.92 0.92 0.93

N
L

L Town1 1.14 0.97 1.40
Town2 3.30 3.23 5.98
Town3 1.64 1.69 1.79

TABLE IV: Performance metrics of Refined POT (Re-
POT) across both intra- and inter-domain transfers.

Target
Town1 Town2 Town3

So
ur

ce

A
C

C Town1 0.95 0.93 0.95
Town2 0.91 0.91 0.92
Town3 0.95 0.92 0.93

A
U

C Town1 0.99 0.98 0.98
Town2 0.98 0.98 0.98
Town3 0.99 0.97 0.97

N
L

L Town1 0.71 1.4 1.12
Town2 1.40 1.74 1.85
Town3 0.96 1.62 1.44

Fig. 9: Transported occupancy maps for the inter and intra
domain adaptation experiments using the town datasets. From
top to bottom and left to right are towns 1, 2, and 3.

TABLE V: Instantaneous maps in dynamic environments:
Experiments for sim2sim and sim2real with mean and SD.

Target
Town 1 Dyna KITTI Dyna

So
ur

ce

A
C

C Town 1 0.74 ± 0.10 0.69 ± 0.06
Town 2 0.70 ± 0.10 0.58 ± 0.06
Town 3 0.74 ± 0.11 0.71 ± 0.07

A
U

C Town 1 0.81 ±0.11 0.77 ±0.06
Town 2 0.77 ±0.12 0.73 ±0.06
Town 3 0.78 ±0.15 0.73 ±0.09

N
L

L Town 1 1.06 ± 0.56 1.42 ± 0.38
Town 2 1.90 ± 0.79 3.63 ± 1.04
Town 3 1.89 ± 1.30 2.30 ± 0.83

algorithms cannot be trained or queried in a similar fashion,
we measured the per time unit performance. For instance,
ABHM can only be trained in small environments although our
datasets consist of large towns. Firstly, we measure the time
for running POT per LIDAR scan. Then we decide the number
of kernels to match the same runtime for BHM and ABHM.
Results are reported in Table VI. Though OGM cannot be
computed per time basis, we report the results for reference
(See Appendix II-B). GPOM cannot be executed for datasets
this large. As expected, ABHM outperforms BHM in all met-
rics because ABHM is a nonstationary model that takes into



Fig. 10: Large-scale map building with POT and RePOT. (a) Carla Town 2 plan. (b) Transferred kernel mean width and position
parameters. (c) Occupancy prediction with POT. (d) Occupancy prediction with RePOT.

TABLE VI: Performance per time unit for RePOT, POT,
ABHM, and BHM. Though OGM results are reported for
reference purposes, unlike other methods, OGM cannot be
computed for per time unit basis.

Target
Method Town1 Town2 Town3

A
C

C

RePOT 0.95 0.93 0.95
POT 0.85 0.83 0.84

ABHM 0.77 0.59 0.86
BHM 0.66 0.61 0.71
OGM 0.78 0.78 0.77

A
U

C

RePOT 0.99 0.98 0.98
POT 0.92 0.92 0.93

ABHM 0.95 0.96 0.96
BHM 0.94 0.92 0.91
OGM 0.89 0.91 0.90

N
L

L

RePOT 0.71 1.41 1.12
POT 1.64 1.69 1.79

ABHM 0.58 0.71 0.41
BHM 0.63 0.69 0.61
OGM 2.00 1.34 1.13

account local geometry. Theoretically, in the infinite memory
and computation time limit, ABHM should outperform all
methods. Nonetheless, practically, POT has a higher ACC and
AUC compared to ABHM as POT can transfer kernels online
to accommodate the complexity of the environment. However,
the increase in NLL in POT compared to ABHM, indicates
the inherent uncertainties of the transfer procedure. Once the
weights were refined using RePOT, NLL has dropped as the
weight distributions can be optimized to reduce the uncertainty
giving better predictions.

Runtime: With a laptop with 4 cores and 8 GB RAM,
on average, POT, programmed in Python, takes around 1 s
update time. This is without parallelizing any part of the code.
Note that eq. (6) is highly parallelizable making the algorithm
|X (S)| × |A| faster (approx. 25 times). This is a significant
improvement to algorithms such as BHM and ABHM which
would take several hours to build a large-scale map as they
rely on complicated variational inference procedures. POT run-
time increases with increasing λ in the Sinkhorn algorithm we
used in POT. As λ→∞ the convergence is guaranteed.

V. DISCUSSION

In optimal transport, we consider the problem of trans-
forming one probability measure to another. This also loosely
relates to the point cloud registration problem typically ad-
dressed by the iterative closest point (ICP) algorithm [45].
However, unlike ICP which only has a single set of translation
and rotation parameters, in optimal transport, each data point
in the source dataset has a highly nonlinear relationship with
every other point in target datapoints through the optimal
coupling matrix P∗. Another reason why we cannot resort to
a popular algorithm such as ICP is because it only works for
slight changes in translation and rotation. When a robot moves
in dynamic environments, it is essential to adapt for sudden,
potentially large, nonlinear changes in geometry.

One remarkable aspect of being able to transport distribu-
tions is that it endows us the ability to adapt Bayesian models
in the sense of an informed prior [46] enabling expedited
parameter tuning. We have demonstrated such a use case in
RePOT with significant improvements in overall map quality.

Although our method was presented and demonstrated in
the context of occupancy mapping, there are many other
potential applications in robotics. For example, the theory can
be potentially used for domain adaptation of policy parameters
where a policy is trained in one environment and needs to
be transferred to another. For example, a particular robotic
arm is trained to grasp objects on a table and performs well
on this task. One could, in principle adapt policies for use
in another arm without retraining the policy from the start.
Finally, it can also be used for sim2real where models are
learned in simulation and transferred to the physical world,
saving significant time and cost in running real robots.

VI. CONCLUSION

This paper introduced parameter optimal transport (POT),
an efficient framework for geometric domain adaptation. By
combining the formalism of automorphing Bayesian Hilbert
maps with optimal transport theory, patterns from one environ-
ment can be seamlessly transferred to another in a fraction of
a second. We show that this framework can be effectively used
to map large urban environments, transferring learned patterns
between two cities, between simulated and real environments,
and between static and dynamic environments.
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