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Reachable Sets for Safe, Real-Time Manipulator Trajectory Design
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Abstract—For robotic arms to operate in arbitrary environ-
ments, especially near people, it is critical to certify the safety
of their motion planning algorithms. However, there is often
a trade-o↵ between safety and real-time performance; one can
either carefully design safe plans, or rapidly generate potentially-
unsafe plans. This work presents a receding-horizon, real-time
trajectory planner with safety guarantees, called ARMTD (Au-
tonomous Reachability-based Manipulator Trajectory Design).
The method first computes (o✏ine) a reachable set of param-
eterized trajectories for each joint of an arm. Each trajectory
includes a fail-safe maneuver (braking to a stop). At runtime,
in each receding-horizon planning iteration, ARMTD constructs
a parameterized reachable set of the full arm in workspace and
intersects it with obstacles to generate sub-di↵erentiable, provably-
conservative collision-avoidance constraints on the trajectory pa-
rameters. ARMTD then performs trajectory optimization over the
parameters, subject to these constraints. On a 6 degree-of-freedom
arm, ARMTD outperforms CHOMP in simulation, never crashes,
and completes a variety of real-time planning tasks on hardware.

I. Introduction
To maximize utility in arbitrary environments, especially

when operating near people, robotic arms should plan collision-
free motions in real time. Such performance requires sensing
and reacting to the environment as the robot plans and executes
motions; in other words, it must perform receding-horizon
planning, where it iteratively generates a plan while executing a
previous plan. This paper addresses guaranteed-safe receding-
horizon trajectory planning for robotic arms. We call the
proposed method Autonomous Reachability-based Manipulator
Trajectory Design, or ARMTD, introduced in Fig. 1.

Motion planning can be broadly split into three paradigms,
depending on whether safety is enforced by (1) a path planner,
(2) a trajectory planner, or (3) a tracking controller.

The first paradigm is commonly used for robotic arm plan-
ning, wherein the path planner is responsible for safety. One
generates a collision-free path, then smooths it and parame-
terizes it by time (i.e., converts it into a trajectory) [1], [2].
Such methods often have a tradeo↵ between safety and real-
time performance because they represent paths with discrete
points in configuration space [3], [4]. Ensuring safety requires
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Fig. 1: ARMTD performs safe, real-time receding-horizon planning for a Fetch
arm around a cabinet in real time, from a start pose (purple, low shelf) to a goal
(green, high shelf). Several intermediate poses are shown (transparent). The
callout on the left, corresponding to the blue intermediate pose, shows a single
planning iteration, with the shelf in light red. In grey is the arm’s reachable set
for a continuum of parameterized trajectories over a short time horizon. The
smaller blue set is the subset of the reachable set corresponding to the particular
trajectory that was selected for this planning iteration, which is guaranteed
not to collide with the obstacle. Over many such trials in simulation and on
hardware, ARMTD never crashed. See our video: youtu.be/ySnux2owlAA.

approximations such as bu↵ering the volume of the arm at each
discrete point to account for the discretization, or computing
the swept volume along the path assuming, e.g., straight lines
between points [5]. If one treats the path as a decision variable
in a nonlinear optimization program, the gradient of the distance
between the arm’s volume and obstacles may “push” each
configuration out of collision [6]–[8]. This means the output
path can be treated directly as a trajectory, if the optimiza-
tion uses path smoothness as the cost. However, this relies
on several approximations to achieve real-time performance:
finite di↵erencing to bound joint speeds and accelerations,
collision penalties in the cost instead of hard constraints, and
finite di↵erencing [6] or linearization [7] for the collision-
avoidance penalty gradient. This necessitates finer discretization
to faithfully represent the robot’s kinematics. To enable real-
time performance without gradients, one can compute many
paths o✏ine, then collision-check at runtime [9], [10]; but
for arbitrary tasks, it can be unclear how many paths are
necessary, or how to ensure safety if the arm’s volume changes
(e.g., by grasping an object). Another approach to real-time
performance is to plan iteratively in a receding-horizon either
by gradient descent (with the same drawbacks as above) [8] or
assuming the underlying path planner is safe [11]. In summary,
in this paradigm, one must discretize finely, or bu↵er by a large
amount, to achieve safety at the expense of performance.

In the second paradigm, the path planner generates a (poten-
tially unsafe) path, then the trajectory planner attempts to track
the path as closely as possible while maintaining safety. In

https://youtu.be/ySnux2owlAA


this paradigm, one computes a reachable set (RS) for a family
of trajectories instead of computing a swept volume for a path.
Methods in this paradigm can achieve both safety and real-time
performance in receding-horizon planning by leveraging sums-
of-squares programming [12]–[14] or zonotope reachability
analysis [15]. Unfortunately, the methods in this paradigm
su↵er from the curse of dimensionality, preventing their use
with the high-dimensional models of typical arms.

In the third paradigm, one attempts to ensure safety via the
tracking controller, instead of in a path or trajectory. Here,
one builds a supervisory safety controller for pre-specified
trajectories [16] or a set of safe states [17]. Another approach
is to compute a safety bu↵er and associated controller using
Hamilton-Jacobi reachability analysis [18], [19], but the curse
of dimensionality has prevented applying this to arms.

To the best of our knowledge, RSs in manipulator planning
have only been used for either collision-checking a single,
precomputed trajectory [16], [20], or for controlling to a
predefined setpoint [21]. In contrast, our proposed ARMTD
method generates RSs for a continuum of trajectories, allowing
optimization over sets of safe trajectories. Computing such
RSs directly is challenging because of the high-dimensional
configuration space and nonlinear transformation to workspace
used for a typical arm [13], [19].

Our proposed ARMTD method overcomes these challenges
by composing a high-dimensional RS in workspace from low-
dimensional reachable sets of joint configurations. ARMTD
extends the second planning paradigm above by using these RSs
to plan safe trajectories in real time. The RS also provides sub-
di↵erentiable collision-avoidance, self-intersection, and joint
limit constraints for trajectory optimization. Importantly, the
RS composition, constraint generation, and gradient evaluation
are all parallelizable.

We now provide an overview of ARMTD, also shown in Fig.
2. ARMTD begins by specifying a parameterized continuum
of kinematic configuration space trajectories, each of which
includes a fail-safe maneuver. O✏ine, ARMTD computes pa-
rameterized joint reachable sets, or JRSs, of these trajectories
in configuration space. At runtime (in each receding-horizon),
it constructs a parameterized RS from the precomputed JRSs.
ARMTD intersects the RS with obstacles to generate provably-
correct safety constraints. ARMTD then performs trajectory op-
timization over the parameters, subject to the safety constraints.
If it cannot find a feasible solution within a prespecified time
limit, the arm continues executing the trajectory from its pre-
vious planning iteration (which includes a fail-safe maneuver),
guaranteeing perpetual safety [11], [13]. In this work, we only
discuss static environments, but this approach can extend to
dynamic environments [14].

A. Contributions
We make the following contributions. First, a method to

conservatively construct the RS of high-dimensional redundant
robotic manipulators (Sections III–IV). Second, a parallelized
method to perform real-time, provably-safe, receding-horizon
trajectory optimization (Section IV). Third, a demonstration

in simulation and on hardware, with no collisions (Section
V and Supplemental Video), plus a comparison to CHOMP
[6]. The remaining sections are Section II (Arm, Obstacles,
and Trajectory Parameters) and Section VI (Conclusion). See
our video: youtu.be/ySnux2owlAA. Our code is available:
github.com/ramvasudevan/arm planning. All proofs,
plus additional explanations, are available in a supplement:
roahmlab.com/s/RSS 2020 armtd supplement.pdf.

B. Notation

The n-dimensional real numbers are Rn, natural numbers are
N, the unit circle is S1, and the set of 3⇥3 rotation matrices is
SO(3). Vectors are either [x1, · · · , xn]> or (x1, · · · , xn) depending
on if the size/shape is relevant. Let U,V ⇢Rn. For a point p 2U,
{p}⇢U is the set containing p. The power set of U is P(U). The
Minkowski sum is U �V = {u+ v | u 2 U, v 2 V}. For a matrix
A 2 Rn⇥n, AU = {Au | u 2 U}. For matrices,

Q
performs right

multiplication with increasing index (e.g.,
Q3

i=1 Ai = A1A2A3).
Greek lowercase letters in angle brackets are indeterminate
variables (e.g., h�i). Superscripts on points index elements of
a set. Subscripts are joint indices or contextual information.

II. Arm, Obstacles, and Trajectory Parameters

The goal of this work is to plan collision-free trajectories for
a robotic arm operating around obstacles in a receding-horizon
framework. We now discuss the arm and its environment, then
our receding-horizon framework and parameterized trajectories.

A. Arm and Obstacles

1) Arm: Consider an arm with nq 2N joints (i.e., nq DOFs)
and nq +1 links, including the 0th link, or baselink. We make
the following assumptions/definitions. Each joint is a single-
axis revolute joint, attached between a predecessor link and
a successor link. The arm is a single kinematic chain from
baselink to end e↵ector; link i�1 is joined to link i by joint i
for i = 1, · · · ,nq. One can create multi-DOF joints using virtual
links of zero volume. The configuration space is Q ✓ Snq ,
containing configurations q = (q1,q2, · · · ,qnq ) 2 Q. The space of
joint velocities is Q̇ ⇢ Rnq . There exists a default configuration
0 2 Q. The workspace, W ⇢ R3, is the all points in space
reachable by any point on the arm in any configuration. The
robot’s physical limits are as follows. Each joint i has a
minimum and maximum position q�i,lim and q+i,lim, maximum
absolute speed q̇i,lim and maximum absolute acceleration q̈i,lim.

We now describe the kinematic chain. Each link has a
local coordinate frame with the origin located at the link’s
predecessor joint (the baselink’s frame is the global frame). The
rotation matrix Ri(qi) 2 SO(3) describes the rotation of link i
relative to link i�1 (by joint i). The displacement li 2R3 denotes
the position of joint i on link i relative to joint (i� 1) in the
frame of link i. The set Li ⇢ R3 denotes the volume occupied
by the ith link, with respect to its predecessor joint, in the frame
of link i. Let FOi : Q! P(W) give the forward occupancy of
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link i. That is, the ith link occupies the volume

FOi(q) =

8>>><
>>>:

X

j<i

 Y

n j
Rn(qn) l j

!9>>>=
>>>;
�

0
BBBBBB@
Y

ni
Rn(qn)Li

1
CCCCCCA ⇢W. (1)

Let FO : Q ! P(W) give the occupancy of the entire arm:
FO(q) =

Snq
i=1 FOi(q). Note, the first expression in (1) gives the

position of joint (i�1) and the second gives the rotated volume
of link i.

2) Obstacles: We denote an obstacle as a set O ⇢ W. If
the arm’s volume at q 2 Q is intersecting the obstacle, we
say the arm is in collision, i.e. FO(q) \O , ;. We assume
the following about obstacles. Each obstacle is compact and
static with respect to time (note, one can extend ARMTD
to dynamic obstacles [14]). At any time, there are at most
nobs 2 N, (nobs < 1) obstacles in the workspace, and the arm
has access to a conservative estimate of the size and location
of all such obstacles (we are only concerned with planning, not
perception). Let O = {O1, · · · ,OnO } denote a set of obstacles.

B. Receding-Horizon Planning and Timing
ARMTD plans in a receding-horizon way, meaning it gen-

erates a short plan, then executes it while generating its next
short plan. Every such plan is specified over a compact time
interval T ⇢ R. Without loss of generality (WLOG), since time
can be shifted to 0 at the beginning of any plan, we denote
T = [0, tf]. We further specify that ARMTD must generate a
new plan every tplan < tf seconds. If a collision-free plan cannot
be found within tplan s, the robot must continue the plan from
the previous receding-horizon iteration; therefore, we include
a fail-safe (braking) maneuver in each plan. The durations tf
and tplan are chosen such that (tf� tplan) is large enough for the
arm to stop from its maximum joint speeds given its maximum
accelerations. This ensures every plan can include a fail-safe
maneuver. We abuse notation to let q : T!Q denote a trajectory
plan and qi : T !Q denote the trajectory of the ith joint. A plan
is collision-free if FO(q(t))\O = ;8t 2 T, 8 O 2 O . Next, we
specify the form of each plan.

C. Trajectory Parameterization
ARMTD plans using parameterized trajectories. We describe

the theory, then present our implementation.
1) Theory: Let K ⇢ Rnk , nk 2 N, be a compact space of

trajectory parameters, meaning each k 2 K maps to a trajec-
tory q : T ! Q. We use q(t;k) to denote the configuration
parameterized by k 2 K at time t 2 T . So, in each receding-
horizon planning iteration, ARMTD attempts to select a single
k 2 K (via trajectory optimization with obstacles represented as
constraints on K.

Definition 1. We require q : T ! Q to satisfy three properties
for all k 2 K. First, q(· ;k) is at least once-di↵erentiable w.r.t.
time. Second, q(0;k) = 0. Third, q̇(tf;k) = 0.

The second property uses the fact that all joints are revolute,
so q(0;k) = 0 WLOG. The third property guarantees each
parameterized trajectory includes a fail-safe braking maneuver.

Note, the parameterized trajectories are kinematic, not dy-
namic. This is common in motion planning [6]–[10], because
existing controllers can track such trajectories closely (e.g.,
within 0.01 rad for revolute joints [22], [23]) in the absence
of disturbances such as collisions. We find these trajectories
su�cient to avoid collision in real-world hardware demonstra-
tions (Sec. V). Also, methods exist for quantifying tracking
error [15], [23] and accounting for it at runtime [13], [14].

2) Implementation: We choose a parameterization that is
simple yet su�cient for safe planning in arbitrary scenarios (see
Sec. V). We define a velocity parameter kv 2 Rnq for the initial
velocity ˙̃q, and an acceleration parameter ka 2Rnq that specifies
a constant acceleration over [0, tplan). We write kv = (kv

1, · · · ,kv
nq )

and similarly for ka. We denote k = (kv,ka) 2 K ⇢ Rnk , where
nk = 2nq. The trajectories are given by

q̇(t;k) =

8>><
>>:

kv+ kat, t 2 [0, tplan)
kv+katplan

tf�tplan
(tf� t), t 2 [tplan, tf],

, (2)

with qi(0;k) = 0 for all k to satisfy Def. 1. These trajectories
brake to a stop over [tplan, tf] with constant acceleration.

We require that K is compact to perform reachability analysis
(Sec. III). Let Ki denote the parameters for joint i. For each joint
i, we specify Ki = Kv

i ⇥Ka
i , where

Kv
i =

h
kv

i ��kv
i , kv

i +�kv
i

i
, Ka

i =
h
ka

i ��ka
i , ka

i +�ka
i

i
, (3)

with kv
i , ka

i , �kv
i , �ka

i 2 R and �kv
i ,�ka

i � 0. To implement
acceleration limits (i.e., to bound Ka

i ), we ensure

Ka
i =

h
max

n
�q̈i,lim,ka

i ��ka
i

o
,min

n
q̈i,lim,ka

i +�ka
i

oi
. (4)

Next, we use these parameterized trajectories to build param-
eterized reachable sets of joint configurations.

III. Offline Reachability Analysis
ARMTD uses short parameterized trajectories of joint angles

for trajectory planning. We now describe a Joint Reachable
Set (JRS) containing all such parameterized trajectories. All
computations in this section are performed o✏ine.

1) Theory: Since each qi represents a rotation, we examine
trajectories of cos(qi) and sin(qi), as shown in Fig. 2. By Def. 1,
q(· ;k) is at least once di↵erentiable. We can write a di↵erential
equation of the sine and cosine as a function of the joint
trajectory, where k is a constant:

d
dt

2
666666664

cos(qi(t;k))
sin(qi(t;k))

k

3
777777775 =

2
666666664

�sin(qi(t;k))q̇i(t;k)
cos(qi(t;k))q̇i(t;k)

0

3
777777775 . (5)

We then define the parameterized JRS of the ith joint:

Ji =
⇢
(c, s,k) 2 R2⇥K | 9 t 2 T s.t. qi as in Def. 1,

c = cos(qi(t;k)), s = sin(qi(t;k)),

and d
dt

�
cos(qi(t;k)),sin(qi(t;k)),k

�
as in (5)

�
.

(6)

We account for di↵erent initial joint angles, and use the JRSs
to overapproximate the forward occupancy FO, in Sec. IV.



2) Implementation: We represent (6) using zonotopes, a
subclass of polytopes amenable to reachable set computation
[24]. A zonotope is a set in Rn in which each element
is a linear combination of a center x 2 Rn and generators
g1, · · · ,gp 2 Rn, p 2 N:

Z =

8>><
>>:y 2 Rn

���� y = x+
pX

i=1
�igi, �1  �i  1

9>>=
>>; . (7)

We denote Z = (x,gi, h�ii)p as shorthand for a zonotope with
center x, a set of generators {gi}pi=1, and a set of indeterminate
coe�cients {h�ii}pi=1 corresponding to each generator. When
an indeterminate coe�cient h�ii is evaluated, or assigned a
particular value, we write �i (i.e., without angle brackets).

To represent the JRS, we first choose a time step �t 2R such
that tf

�t 2 N and partition T into tf
�t closed intervals each of

length �t, indexed by NT =
n
0,1, · · · , t f

�t �1
o
. We represent Ji

with one zonotope per time interval, which is returned by Ji :
NT !P(R2⇥K). For example, the zonotope Ji(n) corresponds
to the time interval [n�t, (n+1)�t]. We abuse notation and let
t index the subinterval of T that contains it, so that Ji(t) =
Ji (bt/�tc) where b·c rounds down to the nearest integer. We use
similar notation for the center, generators, and indeterminates.

Next, we make an initial condition zonotope Ji(0) ⇢ R2⇥K:

Ji(0) =
✓
x̃i,

n
g̃v

i , g̃
a
i

o
,
n
h̃v

i i, h̃a
i i

o ◆
, (8)

with x̃i = [1,0,kv
i ,k

a
i ]>, g̃v

i = [0,0,�kv
i ,0]>, g̃a

i = [0,0,0,�ka
i ]>.

The indeterminates h̃v
i i and h̃a

i i correspond to g̃v
i and g̃a

i . Ji(0)
contains Kv

i and Ka
i in the kv

i and ka
i dimensions.

Finally, we use an open-source toolbox [25] with the time
partition, di↵erential equation (5) and (2), and initial set Ji(0) to
overapproximate (6). Importantly, by [26, Thm. 3.3 and Prop.
3.7], one can prove the following:

Ji ✓
[

t2T
Ji(t). (9)

JRSs are illustrated in Fig. 2. Next, we use the JRSs online
to build an RS for the arm and identify unsafe plans in each
receding-horizon iteration.

IV. Online Planning
We now present ARMTD’s online algorithm for a single

receding-horizon iteration (see Alg. 3 and Fig. 2). First, we
construct the parameterized RS of the entire arm from the
JRS of each joint. Second, we identify unsafe trajectory plans.
Third, we optimize over the safe plans to minimize an arbitrary
cost function. If no solution is found, we execute the previous
plan’s fail-safe maneuver. Note, we present self-intersection
constraints in the supplement.

A. Reachable Set Construction
1) Theory: Recall that ARMTD plans while the robot is

executing its previous plan. Therefore, ARMTD must estimate
its future initial condition (q̃, ˙̃q) 2 Q ⇥ Q̇ as a result of its
previous plan by integrating (5) for tplan seconds. At the
beginning of each online planning iteration, we use (q̃, ˙̃q) to

Fig. 2: An overview of the proposed method for a 2-D, 2-link arm. O✏ine,
ARMTD computes the JRSs, shown as the collection of small grey sets Ji(t)
overlaid on the unit circle (dashed) in the sine and cosine spaces of two joint
angles. Note that each JRS is conservatively approximated, and parameterized
by trajectory parameters K. Online, the JRSs are composed to form the arm’s
reachable set Vi(t) (large light grey sets in W), maintaining a parameterization
by K. The obstacle O (light red) is mapped to the unsafe set of trajectory
parameters Ku ⇢ K on the left, by intersection with each Vi(t). The parameter
ka represents a trajectory, shown at five time steps (blue arms in W, and blue
dots in joint angle space). The subset of the arm’s reachable set corresponding
to ka is shown for the last time step (light blue boxes with black border),
critically not intersecting the obstacle, which is guaranteed because ka < Ku.

compose the RS of the arm from the low-dimensional JRSs.
Denote each link’s RS Li, formed from all J j with j  i:

Li =
⇢�

Y,k
� 2 P(W)⇥K

���� 9 t 2 T s.t.

q̇i(0;k) = ˙̃qi, Y = FOi(q(t;k)+ q̃),

and
⇣
cos(q j(t;k)),sin(q j(t;k)),k

⌘
2J j 8 j  i

�
(10)

with FOi as in (1). Each Li is formed by trajectories which
start at the given initial conditions (q̃, ˙̃q). The RS of the entire
arm, L ⇢W ⇥K, is then L =

S
i Li.

2) Implementation: It is important that we overapproximate
L to guarantee safety when planning. To do this, we overap-
proximate FO for all configurations in each Ji (see Alg. 2).

First, we fix ˙̃q by obtaining subsets of the JRSs containing
trajectories with the given initial velocity. To do so, we note a
property of the zonotope JRS:

Lemma 2. There exist Ji : NT ! P(R2 ⇥K) that overapprox-
imate Ji as in (9) such that, for each t 2 T, Ji(t) has only
one generator with a nonzero element, equal to �kv

i , in the
dimension corresponding to kv

i ; we denote this generator gv
i (t).

Similarly, Ji(t) has only one generator ga
i (t) (distinct from gv

i (t))
with a nonzero element, �ka

i , for ka
i .

Note, the zonotopes created by the open-source toolbox [25]
satisfy Lem. 2. For each Ji(t), we denote the center xi(t), the
generators {gv

i (t),ga
i (t),g j

i (t)}, and the corresponding indetermi-
nates

n
hv

i (t)i, ha
i (t)i, h� j

i (t)i
o

for j = 1, · · · , p(t) 2 N. We write
p(t) since the number of generators is not necessarily the same
for each Ji(t) [25]. For all t except 0, gv

i (t) and ga
i (t) may have
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Algorithm 1 Zsliced = slice
⇣
Z, {h� ji}nj=1, {� j}nj=1

⌘

1: // Let Z = (x,gi, h�ii)p denote the input zonotope or rotatotope
2: Zsliced (x,gi, h�ii)p // allocate output
3: for i = 1, · · · , p // iterate over generator/indeterminate pairs
4: for j = 1, · · · ,n // iterate over input values
5: if h� ji 2 h�ii
6: gi � jgi // multiply generator by value
7: h�ii  h�ii \ h� ji // remove evaluated indeterminate
8: end if
9: end for

10: if h�ii = ; // if fully-sliced, then gi is no longer needed
11: x x+gi and gi ; // shift center, remove generator
12: end if
13: end for

nonzero elements in the cosine and sine dimensions, due to
nonzero dynamics and linearization error. The generators gv

i (t)
and ga

i (t) are important because they let us obtain a subset of
the JRS corresponding to a particular choice of parameters kv

i
and ka

i . We refer to this operation as slicing, and we call gv
i (t)

and ga
i (t) kv-sliceable and ka-sliceable, respectively.

To this end, we define slice in Alg. 1. We slice a zonotope
by taking in a set of indeterminate coe�cients and corre-
sponding values with which to evaluate them. We evaluate an
indeterminate by multiplying its associated generator by the
given value. We then remove the corresponding indeterminate
from the set. Since any zonotope generator has only one
indeterminate, once its indeterminate is evaluated, it is called
fully-sliced, and added to the center of the zonotope. Later in
this section (Def. 4), we construct zonotope-like objects called
rotatotopes, which have multiple indeterminates per generator
(so, a generator could be sliced without being fully-sliced).

For each joint i, recall that each Ji(t) has generator gv
i (t), with

indeterminate hv
i (t)i and nonzero element �kv

i corresponding
to the kv

i dimension. Also, xi(t) (the center of Ji(t)) has the
value kv

i in that same dimension. We use ˙̃q to slice each Ji(t):

S i(t) = slice
⇣
Ji(t), hv

i (t)i, ( ˙̃q� kv
i )/�kv

i

⌘
(11)

Note, we ensure ˙̃q 2 Kv later in this section. We denote
S i(t) = (xv

i (t),
�
ga

i (t),g j
i (t)

 
,
�ha

i (t)i, h� j
i (t)i )p(t), where xv

i (t) is
the new (shifted) center and p(t) 2 N is the new number of
generators, other than ga

i (t), left after slicing. S i(t) contains
a set of cos(qi(t;k)) and sin(qi(t;k)) reachable for a single
value of kv

i , but for a range of ka
i . Denote the components

of S i(t) as xv
i (t) = [cv

i , s
v
i ,

˙̃qi,ka
i ]>, ga

i (t) = [ca
i , s

a
i ,0,�ka

i ]> and
g j

i (t) = [c j
i , s

j
i ,0,0]> for each j = 1, ..., p(t). Note from Lem. 2

that ca
i and sa

i are generally non-zero, and �ka
i is constant.

The forward occupancy map FO uses rotation matrices
formed from the cosine and sine of each joint. By overapproxi-
mating these matrices, we can overapproximate FO. To this end,
we represent sets of rotation matrices with matrix zonotopes.
A matrix zonotope M ⇢Rn⇥n is a set of matrices parameterized
by a center X and generators G1, · · · ,Gm:

M =

8>>><
>>>:

A 2 Rn⇥n
���� A = X+

mX

j=1
G j� j,�1  � j  1

9>>>=
>>>;
. (12)

We use M = (X,G j, h� ji)m as shorthand for a matrix zonotope
with center X, generators {G j}mj=1, and indeterminate coe�-
cients {h� ji}mj=1. Note, superscripts are indices, not exponen-
tiation, of matrix zonotope generators.

We use each sliced zonotope S i(t) to produce a matrix
zonotope Mi(t) that overapproximates the rotation matrices for
each joint i at each time t. We do so by reshaping the center
and generators of S i(t) (and keeping its indeterminates), then
rotating the resulting matrix zonotope by the initial joint angle
q̃; we call this the makeMatZono function in Alg. 2. See the
supplement for an example of Mi(t). Importantly, Mi(t) satisfies
the following property:

Lemma 3. For any parameterized trajectory q : T ! Q with
kv

i =
˙̃q, every Ri(qi(t;k)) 2 Mi(t).

Now we use Mi(t) to overapproximate the link RS Li. Given
the joint displacements li and link volumes Li, we specify l j 2
R3 as a zonotope with center l j and no generators, and Li as a
zonotope overapproximating the volume of link i. We multiply
the matrix zonotopes Mi(t) by Li to overapproximate a swept
volume, hence the following definition:

Definition 4. Let Z = (x,gi, h�ii)p be a zonotope and M =
(X,G j, h� ji)m be a matrix zonotope. Let MZ := {y 2 Rn | y =
Az, A 2 M, z 2 Z} ⇢ Rn. We call MZ a rotatotope, which can
be written:

MZ =
⇢
y 2 Rn | y = Xx+

P
i �

iXgi+
P

j�
jG jx+

+
P

i, j �
i� jG jgi, �1  (�,�)  1

�
,

(13)

where i = 1, · · · , p and j = 1, · · · ,m.

We use the shorthand MZ = (x̂, ĝr, h�ri)s where x̂ = Xx, s =
(p+1)(m+1)�1, and the generator and coe�cient sets are

{ĝr}sr=1 = {Xg1, · · · ,Xgp,G1x, · · · ,Gmx,G1g1, · · · ,Gmgp}
{h�ri}sr=1 = {h�1i, · · · , h�pi, h�1i, · · · , h�mi, h�1�1i, · · · , h�p�mi}.

Rotatotopes are a special class of polynomial zonotopes [25].
Each h�ri for r > p+m is a product of indeterminate coe�cients
from M and Z. For a pair of indeterminate coe�cients h�1i and
h�2i, the notation h�1�2i indicates the product h�1ih�2i. We call
h�1i and h�2i the factors of h�1�2i.

As noted earlier, we use slice with rotatotopes, for which
we now define removing factors generically. We denote the
removal of the ith indeterminate coe�cient of h�1�2 · · ·�ni as:

h�1�2 · · ·�ni \ h�ii = h�1�2 · · ·�i�1�i+1 · · ·�ni. (14)

We define h�1�2 · · ·�ni \ h�1�2 · · ·�ni = ;. We write h�i 2
h�1�2 · · ·�ni to denote that h�i is a factor of h�1�2 · · ·�ni.

Two useful properties follow from the rotatotope definition:

Lemma 5. A matrix zonotope times a rotatotope is a rotatotope.

Lemma 6. (Zono/rotatotope Minkowski sum) Consider two
zonotopes X = (x,gi

X , h⇣ii)n and Y = (y,g j
Y , h ji)m. Then X�Y =

(x+y, {gi
X ,g

j
Y }, {h⇣ii, h ji})i=n, j=m

i=1, j=1 , which is a zonotope centered
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Algorithm 2 {Vi(t) : i = 1, · · · ,nq, t 2 T } = composeRS(q̃, ˙̃q)
1: parfor t 2 T // parallel for each time step
2: for i = 1 : nq // for each joint
3: v

i (t) ( ˙̃q� kv
i )/(�kv

i ) // get value for (11)
4: S i(t) slice(Ji(t), hv

i (t)i,v
i (t)) // slice JRS

5: Mi(t) makeMatZono(S i(t), q̃)
6: Vi(t) Mi(t)Li // init Vi(t) for link volume RS
7: Ui(t) li�1 // init rotatotope for joint location
8: for j = (i�1) : �1 : 1 // predecessor joints
9: Vi(t) Mt

jVi(t) // rotate link volume
10: Ui(t) Mt

jUi(t) // rotate joint location
11: end for
12: for j = (i�1) : �1 : 1 // predecessor joints
13: Vi(t) Vi(t)�U j(t) // stack link on joints
14: end for
15: end for
16: end parfor

at x + y with all the generators and indeterminates of both
X and Y. Similarly, for two rotatotopes, V = (v,gi

V , hµii)n and
W = (w,g j

W , h! ji)m),

V �W =
⇣
v+w, {gi

V ,g
j
W }, {hµii, h! ji}

⌘i=n, j=m

i=1, j=1
. (15)

That is, the Minkowski sum is given by the sum of the centers
and the union of the generators/indeterminate sets.

We use rotatotopes to overapproximate the forward occu-
pancy map of each link by stacking rotatotopes representing
link volume on top of rotatopes representing joint positions:

Lemma 7. For any t 2 T and k 2 K, FOi(q(t;k)) ✓ Vi(t), where

Vi(t) =
M

j<i

 Y

n j
Mn(t) {l j}

!
�

0
BBBBBB@
Y

ni
Mn(t)Li

1
CCCCCCA ⇢W. (16)

Lem. 7 lets us overapproximate the RS: Li ✓
S

t2T Vi(t) =)
L ✓S

t,i Vi(t), as shown in Fig. 2. Alg. 2 computes Vi(t).
Though Vi(t) ⇢ W, many of its generators are ka-sliceable,

because they are the product of ka-sliceable matrix zonotope
generators. Denote Vi(t) = (x̂i(t), ĝ

j
i (t), h�̂ j

i (t)i)p(t). Formally, the
jth generator ĝ j

i (t) is ka-sliceable if there exists at least one
ha

n(t)i 2 h�̂ j
i (t)i with n  i. This means, by slicing by ka, we

can obtain a subset of Vi(t) corresponding to that parameter. We
make the distinction that a generator ĝ j

i (t) is fully-ka-sliceable
if all of its indeterminates are evaluated when sliced by ka, i.e.
h�̂ j

i (t)i ✓ S
niha

n(t)i. Fully-ka-sliceable generators are created
by multiplying ka-sliceable generators with each other or with
centers in (16). These generators are important because all of
their indeterminates are evaluated by the trajectory optimization
decision variable ka, which we use in Sec. IV-B2.

B. Constraint Generation

1) Theory: With the RS composed, we now use L to
find all unsafe trajectory parameters k 2 Ku ✓ K that could
cause collisions with obstacles. We treat Ku as a constraint for
trajectory optimization, shown in Fig. 2. Recall q�i,lim, q+i,lim,
and q̇i,lim are joint limits. Let O be a set of obstacles. At

each planning iteration, the unsafe trajectory parameters are
Ku = Klim[Kobs, where

Klim =
�
k | 9 t 2 T s.t. q(t;k) < q�i,lim or q(t;k) > q+i,lim

or |q̇(t;k)| > q̇i,lim
 (17)

Kobs =
�
k | Y \O , ;, (Y,k) 2L , O 2 O

 
. (18)

2) Implementation: We represent Klim with functions hlim :
Ka!R. Notice in (2) that q(t;k) is piecewise quadratic in k and
q̇(t;k) is piecewise linear in k, so the parameterized trajectory
extrema can be computed analytically. We construct hlim from
˙̃qi, qi,lim, and q̇i,lim, such that hlim(ka) < 0 when feasible.

To represent Kobs (depicted in Fig. 2), first consider a
particular ka. We test if the corresponding subset of each
rotatotope Vi(t) could intersect any obstacle O 2 O . We over-
approximate each O by a zonotope, which is always possible
for compact, bounded sets [26] that appear in common obstacle
representations such as octrees [27] or convex polytopes [28].
To proceed, we must test if two zonotopes intersect:

Lemma 8. [29, Lem. 5.1] For two zonotopes X = (x,gi, h�ii)n

and Y = (y,g j, h� ji)m, X\Y , ; i↵ y is in the zonotope Xbuf =
(x,gi, h�ii)n � (0,g j, h� ji)m, where the subscript indicates X is
bu↵ered by the generators of Y.

Since zonotopes are convex polytopes [29], by [26, Theorem
2.1], one can implement Lem. 8 by computing a half-space
representation (Abuf,bbuf) of Xbuf for which Abufz�bbuf  0 ()
z 2 Xbuf, where the inequality is taken elementwise. Using this
representation, X

T
Y = ; () max(Abufy� bbuf) > 0. We can

use Lem. 8 for collision avoidance by replacing X (resp. Y)
with a zonotope representing the arm (resp. an obstacle).

However, since we use rotatotopes, we need the following:

Lemma 9. Any rotatotope MZ as in (13) can be overapproxi-
mated by a zonotope.

So, we can overapproximate the intersection of each Vi(t),
sliced by ka, with each O 2 O . Note, we only slice the fully-
ka-sliceable generators of Vi(t), and treat all other generators
conservatively by applying Lemma 9. That is, we do not slice
any generators that have any indeterminates in addition to
ha

i (t)i, and instead use those generators to (conservatively)
bu↵er obstacles.

To check intersection, we separate Vi(t) into two rotatotopes,

Vi,slc(t) =
⇣
xi(t),g

j
slc, h

j
slci

⌘
and Vi,buf(t) =

⇣
0,gn

buf, h�n
bufi

⌘
, (19)

such that Vi(t)= Vi,slc(t)�Vi,buf(t), where Vi,slc(t) has only fully-
ka-sliceable generators. That is, each h j

slci is a product of only
ha

i (t)i for one or more i 2 {1, · · · ,nq}. Note, the number of
generators/indeterminates in Vi,slc(t) and Vi,buf(t) is omitted to
ease notation. For any ka 2 Ka, since every generator of Vi,slc(t)
is ka-sliceable, slicing Vi,slc(t) by ka returns a point. We express
this with eval : P(W)⇥Ka! R3 for which

eval(Vi,slc(t),ka) = slice
⇣
Vi,slc(t),

�ha
i (t)i nq

i=1, {(i)}
nq
i=1

⌘
(20)

where (i) = (ka
i � ka

i )/�ka
i . Note, eval can be implemented as

the evaluation of polynomials.



Algorithm 3 qplan = makePlan(q̃, ˙̃q,qprev,O , f )

1: {Vi(t)} composeRS(q̃, ˙̃q) // Sec. IV-A2
2: (hobs,hlim) makeCons(q̃, ˙̃q,O , {Vi(t)}) // Sec. IV-B2
3: // solve (24) within tplan or else return qprev
4: qplan optTraj

⇣
f ,hobs,hlim, tplan,qprev

⌘
// Sec. IV-C2

Now, let Aobs and bobs be the halfspace representation of
Obuf = O�Vi,buf(t), and let x = eval(Vi,slc(t),ka). Then,

�{x}�Vi,buf(t)
�\O = ; () �max{Aobsx�bobs} < 0 (21)

where {x}�Vi,buf(t) is overapproximated as a zonotope by ap-
plying Lem. 9. We use (21) to overapproximate the parameters
Kobs (18) with hobs : N⇥T ⇥O ⇥Ka! R for which

hobs(⇤,ka) = �max
�
Aobs(⇤)eval(Vi,slc(t),ka)�bobs(⇤)

 
. (22)

where ⇤ = (i, t,O) for space. Here, Aobs(i, t,O) and bobs(i, t,O)
return the halfspace representation of O�Vi,buf(t). Importantly,
for each obstacle, time, and joint, hobs is a max of a linear
combination of polynomials in ka (per (20) and Alg. 1), so we
can take its subgradient with respect to ka [30] (also see [31,
Thm. 5.4.5]). This constraint conservatively approximates Kobs:

Lemma 10. If ka 2 Kobs, then there exists i 2 N, t 2 T, and
O 2 O such that hobs(i, t,O,ka) � 0.

C. Trajectory Optimization
1) Theory: ARMTD performs trajectory optimization over

K \ Ku for an arbitrary user-specified cost function f : K !
R (which encodes information such as completing a task).
ARMTD attempts to solve the following within tplan:

kopt = argmink
�
f (k) | k < Ku

 
. (23)

If no solution is found in time, the robot tracks the fail-safe
maneuever from its previous plan.

2) Implementation: We implement (23) as a nonlinear pro-
gram, denoted optTraj in Alg. 3.

argmin
ka 2Ka

�
f (ka) | hobs(i, t,O,ka) < 0, hlim(ka) < 0

 
(24)

where the constraints hold for all i 2 {1, · · · ,nq}, t 2 T, O 2 O .

Theorem 11. Any feasible solution to (24) parameterizes a
trajectory that is collision-free and obeys joint limits over the
time horizon T .

ARMTD uses Alg. 3 at each planning iteration. If the arm
does not start in collision, this algorithm ensures that the arm
is always safe (see [13, Remark 70] or [11, Theorem 1]).

V. Demonstrations

We now demonstrate ARMTD in simulation and on hard-
ware using the Fetch mobile manipulator (Fig. 1). ARMTD
is implemented in MATLAB, CUDA, and C++, on a 3.6
GHz computer with an Nvidia Quadro RTX 8000 GPU. See
our video: youtu.be/ySnux2owlAA. Our code is available:
github.com/ramvasudevan/arm planning.

Fig. 3: A Random Obstacles scene with 8 obstacles in which CHOMP [6]
converged to a trajectory with a collision (collision configurations shown in
red), whereas ARMTD successfully navigated to the goal (green); the start
pose is shown in purple. CHOMP fails to move around a small obstacle close
to the front of the Fetch.

A. Implementation Details

1) Manipulator: The Fetch arm has 7 revolute DOFs [32].
We consider the first 6 DOFs, and treat the body as an obstacle.
The 7th DOF controls end e↵ector orientation, which does not
a↵ect the volume used for collision checking. We command the
hardware via ROS [33] over WiFi.

2) Comparison: To assess the di�culty of our simulated
environments, we ran CHOMP [6] via MoveIt [34] (default set-
tings, straight-line initialization). We emphasize that CHOMP
is not a receding-horizon planner [34]; it attempts to find a
plan from start to goal with a single optimization program.
However, CHOMP provides a useful baseline to measure the
performance of ARMTD. To the best of our knowledge, no
open-source, real-time receding-horizon planner is available for
a direct comparison. Note, we report solve times to illustrate
that ARMTD is real-time feasible, but the goal of ARMTD is
not to solve as fast as possible; instead, we care about finding
provably collision-free trajectories in the allotted time tplan.

3) High-level Planner: Recall that ARMTD performs trajec-
tory optimization using an arbitrary user-specified cost function.
In this work, in each planning iteration, we create a cost func-
tion for ARMTD using an intermediate waypoint between the
arm’s current configuration and a global goal. These waypoints
are generated by a high-level planner (HLP). Note, the RS and
safety constraints generated by ARMTD are independent of the
HLP, which is only used for the cost function. To illustrate that
ARMTD can enforce safety, we use two di↵erent HLPs, neither
of which is guaranteed to generate collision-free waypoints.
First, a straight-line HLP that generates waypoints along a
straight line between the arm and a global goal in configuration
space. Second, an RRT* [35] that only ensures the arm’s end
e↵ector is collision-free. Thus, ARMTD can act as a safety
layer on top of RRT*. Note, we allot a portion of tplan to
the HLP in each iteration, and give ARTMD the rest of tplan.
We cannot use CHOMP as a receding-horizon planner with
these HLP waypoints, because it requires a collision-free goal
configuration.

4) Algorithm Implementation: Alg. 2 runs at the start of
each ARMTD planning iteration. We use a GPU with CUDA
to execute Alg. 2 in parallel, taking approximately 10–20 ms
to compose a full RS. The constraint generation step in Alg. 3

https://youtu.be/ySnux2owlAA
https://github.com/ramvasudevan/arm_planning


is also parallelized across obstacles and time steps (this takes
approximately 10–20 ms for 20 obstacles).

We solve ARMTD’s trajectory optimization (24) using
IPOPT [36]. The cost function f is ||q(tf;k)�qdes||22, where qdes
is the waypoint specified by the HLP (straight-line or RRT*)
at each planning iteration. We compute analytic gradients/sub-
gradients of the cost function and constraints, and evaluate the
constraints in parallel. IPOPT takes 100–200 ms when it finds
a feasible solution in a scene with 20 random obstacles.

5) Hyperparameters: To reduce conservatism, we partition
Kv

i into nJRS 2 N equally-sized intervals and compute one JRS
for each interval. At runtime, for each joint, we pick the JRS
containing the initial speed ˙̃qi. In each JRS, we set �ka

i =

max
n
ra2 , ra1 |kv

i |
o
, with ra1 ,ra2 > 0 so the range of accelerations

scales with the absolute value of the mean velocity of each
JRS. This reduces conservativism at low speeds, improving
maneuverability near obstacles.

We also use these values: tplan = 0.5 s, tf = 1.0 s, �t = 0.01 s,
nJRS = 400, q̇i,lim = ⇡

rad
s , q̈i,lim = ⇡/3 rad

s2 , ka
i = 0 rad

s2 , ra1 = 1/3s�1,
and ra2 = ⇡/24 rad

s2 . For collision checking, we overapproximate
the Fetch’s links with cylinders of radius 0.146 m.

B. Simulations
1) Setup: We created two sets of scenes. The first set,

Random Obstacles, shows that ARMTD can handle arbitrary
tasks (see Fig 3). This set contains 100 tasks with random (but
collision-free) start and goal configurations, and random box-
shaped obstacles. Obstacle side lengths vary from 1 to 50 cm,
with 10 scenes for each nO = 4,8, ...,40.

The second set, Hard Scenarios, shows that ARMTD guar-
antees safety where CHOMP converges to an unsafe trajectory.
There are seven tasks in the Hard Scenarios set: (1) from below
to above a table, (2) from one side of a wall to another, (3)
between two vertical posts, (4) from one set of shelves to
another, (5) from inside to outside of a box on the ground,
(6) from a sink to a cupboard, (7) through a small window.
These are shown in the supplementary document.

2) Results: Table I presents ARMTD (with a straight-line
HLP) and CHOMP’s results for the Random Obstacles sce-
narios. ARMTD reached 84/100 goals and had 0/100 crashes,
meaning ARMTD stopped safely 16/100 times without finding
a new safe trajectory. CHOMP reached 82/100 goals and had
18/100 crashes. CHOMP always finds a trajectory, but not
necessarily a collision-free one; it can converge to infeasible
solutions because it considers a non-convex problem with
obstacles as areas of high cost (not as hard constraints). We did
not attempt to tune CHOMP to only find feasible plans (e.g., by
bu↵ering the arm), since this incurs a tradeo↵ between safety
and performance. Note, in MoveIt, infeasible CHOMP plans
are not executed (if detected by an external collision-checker).

We report the mean solve time (MST) of ARMTD over all
planning iterations, while the MST for CHOMP is the mean
over all 100 tasks. Directly comparing timing is not possible
since ARMTD and CHOMP use di↵erent planning paradigms;
we report MST to confirm ARMTD is capable of real-time
planning (note that that ARMTD’s MST is less than tplan = 0.5).

Random Obstacles % goals % crashes MST [s] MNPD
ARMTD + SL 84 0 0.273 1.076

CHOMP 82 18 0.177 1.511

TABLE I: MST is mean solve time (per planning iteration for ARMTD with a
straight-line planner, total for CHOMP) and MNPD is mean normalized path
distance. MNPD is only computed for trials where the task was successfully
completed, i.e. the path was valid.

Hard Scenarios 1 2 3 4 5 6 7
ARMTD + SL S S S S S S S

ARMTD + RRT* O O O S O S O
CHOMP C C C C C C C

TABLE II: Results for the seven Hard Scenario simulations. ARMTD uses
straight-line (SL) and RRT* HLPs. The entries are “O” for task completed,
“C” for a crash, or “S” for stopping safely without reaching the goal.

We also report the mean normalized path distance (MNPD)
of the plans produced by each planner (the mean is taken
over all 100 tasks). The normalized path distance is a path’s
total distance (in configuration space), divided by the distance
between the start and goal. For example, the straight line from
start to goal has a (unitless) normalized path distance of 1.
ARMTD’s MNPD is 24% smaller than CHOMP’s, which may
be because CHOMP’s cost rewards path smoothness, whereas
ARMTD’s cost rewards reaching an intermediate waypoint
at each planning iteration (note, path smoothness could be
included in ARMTD’s cost function).

Table II presents results for the Hard Scenarios. With the
straight-line HLP, ARMTD does not complete any of the tasks
but also has no collisions. With the RRT* HLP [35], ARMTD
completes 5/7 scenarios. CHOMP converges to trajectories
with collisions in all of the Hard Scenarios.

C. Hardware
See our video: youtu.be/ySnux2owlAA. ARMTD com-

pletes arbitrary tasks while safely navigating the Fetch arm
around obstacles in scenarios similar to Hard Scenarios (1) and
(4). We demonstrate real-time planning by suddenly introducing
obstacles (a box, a vase, and a quadrotor) in front of the
moving arm. The obstacles are tracked using motion capture,
and treated as static in each planning iteration. Since ARMTD
performs receding-horizon planning, it can react to the sudden
obstacle appearance and continue planning without crashing.

VI. Conclusion
This work proposes ARMTD as a real-time, receding-horizon

manipulator trajectory planner with safety guarantees. The
method proposes novel reachable sets for arms, which enable
safety. ARMTD can enforce safety on top of an unsafe path
planner such as RRT*, shown in both simulation and on hard-
ware. Of course, ARMTD has limitations: it may not perform
in real time without parallelization, is only demonstrated on 6-
DOF planning problems, and has not yet been demonstrated
planning around humans. However, because ARMTD uses
time-varying reachable sets, it can readily extend to dynamic
environments, uncertainty such as tracking error, and planning
with grasped objects. The results in this work show promise
for practical, safe robotic arm trajectory planning.

http://roahmlab.com/s/RSS_2020_armtd_supplement.pdf
https://youtu.be/ySnux2owlAA


References
[1] F. Pfei↵er and R. Johanni, “A concept for manipulator tra-

jectory planning,” IEEE Journal on Robotics and Automation,
vol. 3, no. 2, pp. 115–123, Apr. 1987.

[2] T. Kunz and M. Stilman, “Time-Optimal Trajectory Generation
for Path Following with Bounded Acceleration and Velocity,”
in Robotics: Science and Systems, 2012.

[3] S. M. LaValle and J. J. Ku↵ner Jr., “Randomized kinodynamic
planning,” The International Journal of Robotics Research,
vol. 20, no. 5, pp. 378–400, 2001.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, 1996.

[5] S. M. LaValle, Planning Algorithms. New York, NY, USA:
Cambridge University Press, 2006.

[6] M. Zucker, N. Ratli↵, A. D. Dragan, M. Pivtoraiko, M. Klin-
gensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa,
“Chomp: Covariant hamiltonian optimization for motion plan-
ning,” The International Journal of Robotics Research, vol. 32,
no. 9-10, pp. 1164–1193, 2013.

[7] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion plan-
ning with sequential convex optimization and convex collision
checking,” The International Journal of Robotics Research,
vol. 33, no. 9, pp. 1251–1270, 2014.

[8] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental Tra-
jectory Optimization for Real-Time Replanning in Dynamic
Environments,” 2012.

[9] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris,
“Robot Motion Planning on a Chip,” in Robotics: Science and
Systems, 2016.

[10] T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path
planning for a robot arm in changing environments,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct. 2010, pp. 5906–5911.

[11] K. Hauser, “On responsiveness, safety, and completeness in
real-time motion planning,” Autonomous Robots, vol. 32, no. 1,
pp. 35–48, Jan. 2012.

[12] A. Majumdar and R. Tedrake, “Funnel libraries for real-
time robust feedback motion planning,” arXiv preprint
arXiv:1601.04037, 2016.

[13] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R.
Vasudevan, “Bridging the Gap Between Safety and Real-
Time Performance in Receding-Horizon Trajectory Design for
Mobile Robots,” ArXiv e-prints arXiv:1809.06746, Sep. 2018.

[14] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. R. Ward, S. Worrall,
M. Johnson-Roberson, and R. Vasudevan, “Towards Provably
Not-At-Fault Control of Autonomous Robots in Arbitrary Dy-
namic Environments,” in Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, Jun. 2019.

[15] S. Kousik, P. Holmes, and R. Vasudevan, “Safe, Aggressive
Quadrotor Flight via Reachability-Based Trajectory Design,”
Dynamic Systems and Control Conference, vol. 3, Oct. 2019,
V003T19A010.

[16] M. Altho↵, A. Giusti, S. B. Liu, and A. Pereira, “E↵ortless
creation of safe robots from modules through self-programming
and self-verification,” Science Robotics, vol. 4, no. 31, 2019.

[17] T. G. A. A. A. Singletary P. Nilsson, “Online Active Safety
for Robotic Manipulators,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Nov.
2019.

[18] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac,
and C. J. Tomlin, “FaSTrack: A modular framework for fast
and guaranteed safe motion planning,” in 2017 IEEE 56th

Annual Conference on Decision and Control (CDC), Dec.
2017, pp. 1517–1522.

[19] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J.
Tomlin, “Decomposition of Reachable Sets and Tubes for a
Class of Nonlinear Systems,” IEEE Transactions on Automatic
Control, vol. 63, no. 11, pp. 3675–3688, Nov. 2018.

[20] T. Fraichard and J. J. Ku↵ner, “Guaranteeing motion safety for
robots,” Autonomous Robots, vol. 32, no. 3, pp. 173–175, 2012.

[21] A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control and
verification of high-dimensional systems with dsos and sdsos
programming,” in 53rd IEEE Conference on Decision and
Control, IEEE, 2014, pp. 394–401.

[22] B. Paden and R. Panja, “Globally asymptotically stable
‘PD+’controller for robot manipulators,” International Journal
of Control, vol. 47, no. 6, pp. 1697–1712, 1988.

[23] A. Giusti and M. Altho↵, “E�cient Computation of Interval-
Arithmetic-Based Robust Controllers for Rigid Robots,” in
2017 First IEEE International Conference on Robotic Com-
puting (IRC), Apr. 2017, pp. 129–135.

[24] A. Girard, “Reachability of uncertain linear systems using
zonotopes,” in International Workshop on Hybrid Systems:
Computation and Control, Springer, 2005, pp. 291–305.

[25] M. Altho↵, “An Introduction to CORA 2015,” in Proc. of the
Workshop on Applied Verification for Continuous and Hybrid
Systems, 2015.

[26] M. Altho↵, “Reachability analysis and its application to the
safety assessment of autonomous cars,” PhD thesis, Technische
Universität München, 2010.

[27] D. Meagher, “Geometric modeling using octree encoding,”
Computer graphics and image processing, vol. 19, no. 2,
pp. 129–147, 1982.

[28] J.-M. Lien and N. M. Amato, “Approximate convex decom-
position of polyhedra,” in Proceedings of the 2007 ACM
symposium on Solid and physical modeling, 2007, pp. 121–131.

[29] L. J. Guibas, A. Nguyen, and L. Zhang, “Zonotopes as bound-
ing volumes,” in Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, Society for Industrial
and Applied Mathematics, 2003, pp. 803–812.

[30] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,”
lecture notes of EE392o, Stanford University, Autumn Quarter,
vol. 2004, pp. 2004–2005, 2003.

[31] E. Polak, Optimization: algorithms and consistent approxima-
tions. Springer Science & Business Media, 2012, vol. 124.

[32] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich,
“Fetch and freight: Standard platforms for service robot appli-
cations,” in Workshop on Autonomous Mobile Service Robots,
2016.

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.
Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source
Robot Operating System,” in ICRA workshop on open source
software, Kobe, Japan, vol. 3, 2009, p. 5.

[34] D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing
the Barrier to Entry of Complex Robotic Software: a MoveIt!
Case Study,” CoRR, vol. abs/1404.3785, 2014.

[35] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The international journal of robotics
research, vol. 30, no. 7, pp. 846–894, 2011.
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