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Abstract—This paper is about localising a robot in overhead
images using lidar. Specifically, we show how to solve both place
recognition and metric localisation of a lidar using only publicly
available overhead imagery as a map proxy. This is in contrast to
current approaches that rely on prior sensor maps. To handle the
drastic modality difference (overhead image vs. on the ground
lidar), our method learns a representation that purposely and
suitably transforms a given overhead image into a collection of 2D
points, allowing for direct comparison against lidar scans. After
both modalities are expressed as points, point-based methods can
then be leveraged to learn the registration and place recognition
task. Our method is the first to learn the place recognition of a
lidar using only overhead imagery, and outperforms prior work
for metric localisation with large initial pose offsets.

I. INTRODUCTION

Localisation is a central task for autonomous navigation
in large-scale, outdoor environments, and has been a core
problem for the mobile robotics community for over two
decades. For the purpose of this paper, we consider two types
of localisation: topological and metric. Topological locali-
sation, also known as place recognition, seeks to induce a
rough estimate of the robot’s pose, often apropos nothing.
Given a coarse initial pose estimate from place recognition,
metric localisation aims to compute a refined metric pose by
registering live sensor data against some sort of prior map.

Lidar has always been a popular sensor for localisation.
Both place recognition [7, 16} 23] [19] and metric localisation
[48. 15 2 I50]] using lidar are well-studied problems, as well as
methods that target global localisation [24} 12,51, 138]] by com-
bining place recognition and metric localisation and outputting
a metric pose, solving the “kidnapped robot” problem end-to-
end. Existing methods rely on the proposition that a reliable,
up-to-date lidar map is available, which may not be the case. In
this paper we present an alternative approach to localise a lidar
using only off-the-shelf, easily accessible overhead imagery,
which often captures geometric entities also observable by
ground lidar scans, providing cues for localisation.

An immediate challenge arises from the significant modal-
ity difference between overhead imagery and ground range
sensors. To address the modality difference between satellite
imagery and radar, [39] proposes to generate a synthetic radar
image from a pair of satellite and radar images. The synthetic
image is then in the same domain as live radar images and
can be used for registration. The experimental results using the
method in [39] are demonstrated for lidar metric localisation
against overhead imagery in a follow-up work [40].

Fig. 1: Top row: given an overhead image (left), we learn an occupancy
image (centre) that indicates how likely each pixel belongs to a space that will
produce a point return if scanned by a lidar. This results in high probability
for buildings and low probabilities for streets and roads. Ray-tracing the
occupancy image from near the centroid results in a pseudo point-cloud (right).
Bottom row: a lidar scan taken nearby, rotation-aligned with the overhead
image for better visualisation (left). Ray-tracing the lidar image and keeping
only the first return for each azimuth (centre), we arrive at a point-cloud (right)
that can be directly compared against the pseudo point-cloud (top right).

The method in [39] has two major limitations. Firstly, it is
strictly designed for metric localisation and as such cannot be
directly applied to place recognition. Secondly, the quality of
image generation in [39] is extremely dependent on the initial
offset, resulting in pose errors increasing disproportionally
with larger initial heading offsets. While the method in [39} 140]]
addresses the modality difference by generating synthetic lidar
images from overhead imagery, we take a different approach
where both overhead images and lidar scans are converted into
a collection of 2D points, allowing for the use of standard
point-based place recognition and pose estimation networks.

Specifically, given an overhead image, we learn an occu-
pancy image that indicates how likely each pixel is to induce a
range return by a ground lidar. This results in high probabilities
for pixels on buildings and structures, and low probabilities
for pixels on “free-space” such as roads and side-walks. We
then ray-trace from near the centroid of the occupancy image
along each azimuth until the first “occupied” pixel, emulating
the resulting point-cloud if a lidar near the centroid takes a
scan of its surrounding environment. This process is depicted
in Figure[T| with an actual lidar scan taken at roughly the same
position and rotation-aligned for visual reference.

To the best of our knowledge, our method is the first to
learn the place recognition of a ground range sensor using
only publicly available overhead imagery, and no GPS or prior



sensor maps. We evaluate our method for both place recog-
nition and metric localisation on publicly available datasets,
and show that we outperform the prior work in [39] in metric
localisation when the initial heading offset is large. Finally, we
demonstrate that although designed for lidar, our method can
also be used for radar place recognition and metric localisation
against overhead imagery after appropriate domain transfer.

II. RELATED WORK

A. Range Sensor Localisation against Overhead Imagery

While many works were proposed for visual localisation
using overhead imagery [27, 29} 135, 31} 22, [11], localising a
ground range sensor against overhead imagery remains a less-
targeted problem due to the challenging modality difference.

Similar to dense image registration, [13] directly aligns
lidar intensity maps onto satellite imagery using Normalised
Mutual Information, and relies on the accumulation of several
scans from accurate odometry. The methods in [25] [14] pre-
process the overhead images by performing edge detection
and semantic segmentation respectively, before comparing
against range sensor data. Hussein et al. [20] localised a
vehicle in a forest by matching tree stems detected by an on-
board lidar against tree crowns observed in overhead imagery.
Carle and Barfoot [9] localised a robot equipped with a
lidar within orbital elevation maps by detecting features from
topographic peaks. These methods are all examples of hand-
crafted methodologies designed for specific setups, and may
not necessarily generalise to more complex scenarios.

In light of this, RSL-Net [39] was proposed to use an end-
to-end learning-based strategy for solving the metric locali-
sation between satellite imagery and a ground radar or lidar,
remaining free of hand-crafted features or methods. However,
the work in [39] remains strictly limited to metric localisation,
while our method aims to also handle place recognition.

B. Localisation Using Other Publicly Available Data

Other publicly available resources have also been shown to
be useful for vehicle localisation, in particular road and build-
ing information from OpenStreetMap (OSM). The methods
in [8 [17]] localise by matching odometry trajectories to road
paths from OSM. Panphattarasap and Calway [30] learned a
light-weight descriptor to recognise intersections and gaps, and
localised by comparing against descriptors of the operating
environment built from building information in OSM. Yan
et al. [49] utilised a similar strategy for localisation using
OSM, but relied only on existing networks trained for point-
cloud semantic segmentation, and eliminated the need to train
new networks for recognising intersections and gaps.

Our method differs from [8, [17]] in that we do not need a
sequence of on-board measurements to compute odometry be-
fore a solution can be found. Compared to [30} 49], our method
seeks to infer the geometric rather than semantic relationship
between on-board sensor measurements and publicly available
data, and can therefore perform geometric registration.

C. Learning-based Point-Cloud Registration

Learning-based methods for point-cloud registration have
shown to be less prone to converging to local minima than
classical approaches such as ICP [6]. The method in [S3]]
learns local RGB-D descriptors with 3D convolutions for
matching. 3DFeatNet [50] samples point-clusters using Point-
Net++ [33], and learns local descriptors using a triplet loss
on point-clusters for feature alignment. Given a set feature
descriptors, the method in [10] learns weights for point corre-
spondences for downstream pose estimation, acting similar in
spirit as an outlier rejection step. DCP [44] learns a per-point
descriptor using DGCNN [45]], finds point correspondences by
matching learned descriptors, and computes the pose offset
using singular value decomposition (SVD). In particular, the
descriptors in [44] are optimised using only a loss on pose; the
end-to-end differentiability is made possible by taking softmax
rather than hard max when finding point correspondences. PR-
Net [43] builds upon DCP, allowing for partial-to-partial regis-
tration, by using Gumbel-Softmax for matching and iterative
alignment during registration. DeepGMR [52] learns point-
to-distribution rather than point-to-point correspondences by
representing a point-cloud as a Gaussian Mixture during
descriptor learning, and reduces computational complexity.

We utilise DCP [44]] for registration and learning descrip-
tors, as it outperforms other methods for our problem.

D. Deep Learning for Point-Cloud Place Recognition

A number of learning-based methods were proposed for
large-scale point-cloud place recognition. PointNetVLAD [41]]
combines PointNet [32] and NetVLAD [1]] to learn a per-point-
cloud global descriptor for retrieval. LPD-Net [28] aggregates
learned local features to produce a global descriptor for place
recognition, and is shown to outperform [41]. PCAN [54]
utilises attention to predict the significance of each local point
feature, and favours task-relevant features when aggregating
local features into a global one for retrieval. DH3D [15] learns
local descriptors with a description loss using ground truth
point correspondences, which can be used for registration. The
local descriptors are then fed to a PointNetVLAD layer with
attention to learn a global descriptor for place recognition.
Barnes and Posner [3] learned key-points from radar images
for odometry, and pooled local descriptors across spatial
dimensions into a global one per image for place recognition.

Our approach to learning place recognition is similar as [[15]]
in that we also re-use local descriptors learned for registration
when learning the global descriptor. However, rather than
applying a description loss, the local descriptors in our case
are learned using DCP [44]] with a loss on pose.

III. OVERVIEW

A. Problem Overview

We consider the problem of localising a ground lidar using
overhead imagery. Specifically, we utilise satellite images from
Google Maps |'| and project 3D lidar point-clouds to the z —y

Uhttps://developers.google.com/maps/documentation/maps-static/overview.
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plane from a top-down perspective, producing 2D, “birds-eye”
view lidar images. We discard points with z values less than
0 when creating the lidar images, to remove points on the
ground. We denote satellite images and lidar images as I°
and I”, respectively. Furthermore, all overhead images and
lidar images are pre-processed to have the same resolution.

For place recognition, we consider a set of satellite images
queried along known routes within an operating environment,
{I#},i = 1,2,---, Ny, and lidar images taken across time-
stamps during live traversal {IJ.L},j = 1,2,--- ,Np. For
each IJL7 we seek to find its nearest spatial neighbour from
{I?}, thus providing a coarse estimate of the vehicle’s global
position as the latitude and longitude coordinates of each I?
are known. For simplicity, we assume the satellite images are
queried along the same routes as the vehicle’s live traversal,
and that Ng = Ny, such that for every IZ, there is at least
one correct spatial match from the set {If"Z }, and vice versa.
For metric localisation, instead, given spatially proximal I7
in {I7} and IJL in {IJL} with an unknown initial pose offset,
we seek to solve their SE(2) pose difference expressed as
[+ y 6]. For simplicity, from now on the indices i and j
will be dropped in the context of metric localisation.

B. Image Generation vs. Point Learning

A widely used strategy for dealing with modality difference
between two types of images is to apply image-to-image
transfer methods such as Pix2Pix [21] or CycleGAN [55].
However, standard image-to-image transfer methods are not
appropriate for transferring between satellite images and lidar
images. Due to occlusion and a range sensor’s limited field-
of-view (FOV) compared to overhead images, regions in a
satellite image may contain lidar returns in one satellite-lidar
pair, but none in another, as shown in Figure |Z[ As a result,
the mapping from I° to I* is one-to-many, which is not a
function, and such a direct mapping is not suitable for learning
with neural networks which are function approximators.

Fig. 2: Two satellite-lidar image pairs taken 10 seconds part, where lidar
measurements (white points) are overlaid on top of satellite images with
ground truth pose. The areas enclosed by the white and orange rectangles
are identical patches in the satellite images. Image patches enclosed by the
orange rectangles have lidar returns in the first satellite image, but none in the
second; the reverse is true for image patches enclosed by the white rectangles.
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To handle such ambiguity, the image generation in RSL-Net
[39] is conditional on both a satellite image and a live radar
image, where the exact appearance of the synthetic image is
dictated by the live radar image, and the synthetic image is
pixel-wise aligned to the satellite image. In particular, as CNNs
are non—equivarianﬂ to rotation [26], RSL-Net seeks to infer

2A mapping f : X — Y is equivariant to a group of transformations &,
if Vo € ®, 3 € ¥ such that 1 (f(x)) = f(#(x)),Vx € X.

the rotation offset prior to image generation:

h(ILT9) — 1L, g(IE 19) — TF, (1)
where I” and 1° are a pair of lidar and satellite images that
are spatially proximal but have an unknown SFE(2) offset,
IL is 1F rotated to be rotation-aligned with I°, and ILis a
synthetic lidar image pixel-wise aligned with I°. Here h and
g are functions for inferring the rotation offset and generating
synthetic images, and are approximated by CNNs.

It can be immediately seen that because CNNs are not
equivariant to rotation, the performance of image generation
in network g of Equation (I) is greatly dependent on the
capability of network h, as any residual rotation offset between
IZ and I® will adversely affect the quality of image generation.
Moreover, because the modality transfer requires a spatially
proximal pair of I” and I° to have already been found, it has
no capability to solve the retrieval (place recognition) problem.

We show in Section that by representing both I” and
I¥ as 2D points, our method naturally handles the modality
difference between the two domains, and learns a one-to-one
mapping that is less ill-posed than image generation.

IV. METHODOLOGY

A. Learning Lidar Occupancy from Overhead Imagery

Given a satellite image I°, we learn an occupancy image
0 using a lidar image I” pixel-aligned to I° with ground
truth pose for supervision. Specifically, O should provide
information on the likelihood of each pixel to cause a range
return if a lidar situated near the image centroid takes a scan.
The pixel values in O are in the range [0,1], where larger
values indicate higher probability that a pixel is on “occupied”
space, such as on buildings, and smaller values indicate “free-
space”, such as on streets and side-walks.

The training of O is realised by taking into account the
sensing nature of lidars. As also noted in [46], in a lidar image
with no ground points, ray-tracing along each azimuth, pixels
from the centroid to immediately in front of the first range
return is likely to be on free-space. Pixels with range returns
are likely to be on occupied space, for example on building
facades. Moreover, for pixels with no return and situated
behind the first return along their azimuth, we are uncertain if
they are on occupied or free space. Using this knowledge,
for each I we can construct a binary certainty mask M
after thresholding I”, as shown in Figure 4| Ray-tracing can
be performed efficiently in parallel by transforming the lidar
image to polar (range-azimuth) coordinate representation with
a finite number of discretised azimuths.

Here M is a binary image where M(i,j) = 1 if we are
certain whether pixel [, j] is on occupied space or free-space,
and M(i,7) = 0 if we are uncertain about the occupancy
of pixel [i,j]. Shown in Figure 4] in this process we have
also created a binary lidar image I*f, where 171 (i, j) = 1 if
1(i,§) > ~ and 1*1(i, j) = 0 otherwise, and  is a threshold
we choose. In particular, we set v to 0.2 in our experiments.
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Fig. 3: To generate the occupancy image O, we use an U-Net architecture with 8 down-sample convolution blocks (each followed by Leaky ReLU and
BatchNorm) and 8 up-sample convolution blocks (each followed by ReLU, BatchNorm, and dropout, except the last block), with skip connections between
layers. We use 4 x 4 kernels with a stride of 2. The number on each block indicates the number of channels after the corresponding layer. The network takes
in a 6-channel input (3 from I + 3 from I*?), and produces a 1-channel output, followed by a sigmoid.

Fig. 4: Given a lidar image IZ we first threshold IZ to produce a binary
lidar image I-T (left) where 17T (4,5) is 0 or 1 for any pixel [4, ], with 1
indicating return and O indicating no return. Ray-tracing I“T, pixels from the
centroid until the first return in IX1 along each azimuth are labelled as 1 in
the corresponding certainty mask M (right). All pixels that are 1 in IZT are
also labelled as 1 in M. All other pixels in M are labelled as 0.

Given I® and I* pixel-wise aligned using ground truth pose,

we can learn an occupancy image as
fo(I%) = O, )

where f, is a function for generating O, parametrised by a
deep network. The supervision signal comes from M and I%:

Cocc = - ZM(Zvj) [ILT(Zvj) : IOgC)(Z,])+
ij 3)
(1 —151(4,4)) - log (1 — O(i, ))].

The loss term in Equation (3)) is a standard weighted binary
cross entropy loss, where M are the weights and I%T are the
labels. Notably, the loss only back-propagates through a small
fraction of pixels where we are certain about the occupancy
information, rather than through all pixels when using an L,
loss for image generation as in RSL-Net [39]. By taking into
account the nature of the sensor within the training procedure
through the certainty mask M, our method naturally handles
the occlusion and limited FOV of range sensors, and does not
suffer from the ambiguity in learning a one-to-many mapping
as described in Section

Finally, we found that overhead roadmap images, which
are also publicly available from Google Maps, can provide
additional semantic information that facilitates the learning of
the occupancy image. Formally, we learn f, as

fo(I%,1%) = O, 4)

where 17 is a roadmap image queried at the same location as
I°. We parametrise f, using a U-Net architecture [34], shown
in Figure [3] We show in Figure [5] that at inference time when
evaluated on unseen images, using I? as an auxiliary input
makes f, more robust against regions in I° with a strong pixel
intensity gradient but do not correspond to a boundary between

free and occupied space, such as shadows. We pretrain f, for
100 epochs prior to downstream tasks.

Flg 5 Left: an unseen satellite image I° at inference. Centre left: the
corresponding 17 queried at the same location as I°. The circled region
corresponds to a strong gradient in IS caused by shadows, and results in
some pixels in this region inferred as occupied where they should be on free-
space when we learn f,(I°) — O (centre right). The occupancy image is
more robust against shadows if we use I'* as an auxiliary input (right).

B. Points Extraction from Occupancy Image

Given the learned occupancy image O, we can emulate the
resulting point-cloud as if a lidar takes a scan from near the
centre of O, which we express as N 2D points where each
point is a pixel coordinate. Similarly as when constructing
M, we are confident that along each azimuth, the first pixel
labelled as occupied space in Ois likely to cause a range return
when scanned by a lidar. Nevertheless, it is uncertain whether
the pixels behind the first occupied pixel will be “seen” by a
lidar. As such, we ray-trace O, and keep only the first occupied
pixel along each azimuth as a point return when forming the
pseudo point-cloud. Our method for extracting a point-cloud
from an occupancy image is detailed in Algorithm [I| In our
experiments, we use images of size 256 x 256, and also set
both N4 and Ny to 256, resulting in P € R256%2,

C. Finding the Origin for Ray-Tracing

By default, Algorithmray-traces from the centroid of O. A
degenerate solution occurs if the centroid is on occupied space,
in which case the value of the first pixel in every azimuth is
larger than v, and Algorithm 1| returns a circular point-cloud.

Given an h x h patch around the centroid of O, we can
compute the distance of a pixel within the patch to its nearest
occupied pixel. Then, a pixel that is furthest away from its
nearest occupied pixel is likely to be on free-space and not
enclosed by occupied pixels. Denote such pixel location as
[i*,7*], proper ray-tracing can be ensured if we use [i*,j*
as the origin, rather than the image centroid of 0. Figurel—gll
is a simple drawing that depicts a 10 x 10 patch where the
centroid is on occupied space, and the distance of a particular
pixel (cyan) to its nearest occupied pixel is traced. Such a
process of finding the origin for ray-tracing, as well as the



Algorithm 1: Forming a pseudo point-cloud
Input:
O // learned occupancy image of size H x H
Parameters:
Ny // number of discretised azimuths
Ng // number of discretised ranges
5y /I pixel intensity threshold for occupancy
Output:
PS c RN AX2
s € RNVa
Initialise:
PS <~ 0N AX2
s+ Oy A
0"« 0O // transform O to range-azimuth
// representation resulting in Ny X N4 polar image Or
for i =1,2,--- Ny do

for j =1,2,--- /Ny do

if OP(i,7) > ~ then

/I 2D point-cloud
/I scores for registration

// assign [O O] if no range return
/Il assign a score of 0 if no range return

P3(i,:) «

[ ohe cos(i)  Jigne-sin(if~)]

s(i) « 1

break // break and iterate to the next ¢

ray-tracing process itself in Algorithm [T} can be conducted
efficiently in parallel with tensor operations.

Fig. 6: A 10 x 10 image patch where the centroid is on occupied space,
which are labelled as white pixels. For a particular pixel in this patch (cyan),
we can compute its distance (green) to the nearest occupied pixel. The pixel
within the patch that is the furthest away from its nearest occupied pixel is
chosen as the origin for ray-tracing in Algorithm

D. Learning Pose Estimation

Given a lidar image I” spatially proximal to I¥, we can
extract a point-cloud P* € RN4*2 using Algorithm |I| with I”
rather than O as the input. In this process, only the first range
return along each azimuth is kept in P¥, making P* more
compatible to P, since P has only one point per azimuth.

Given PL and P spatially proximal but with an unknown
SE(2) offset, we use DCP [44] to solve for their pose dif-
ference. DCP was shown to outperform ICP on non-identical
point sets [44]], and in addition learns descriptors that can be
used later for place recognition. DCP utilises DGCNN [45]]
and a Transformer [42] module to compute a d-dimensional
descriptor per point, performs a soft matching, and uses SVD
(as detailed in [37]) for pose estimation. When computing
the covariance matrix in SVD, we weigh each correspondence
using the score vector s from Algorithm [I] such that azimuths
in O with no return do not contribute to pose estimation.

DCP outputs an estimated rotation matrix R € R?*2 and a
translation vector t € R?. We can establish a loss term using
ground truth R and t :

&)

where I is the identity matrix and X is a relative weighting
between the rotational and the translational components.

We use an L loss rather than L loss as in [44], since L;
loss is more robust against the non-identical point-clouds P*
and P? in our case. We set A\ = 10 in our experiments. The
points extraction step in Algorithm |I| is fully differentiable,
allowing the loss in Equation (5) to not only optimise the
DCP network, but also fine-tune the pretrained network for f,,
without needing to also apply the loss in Equation (3)). The
data flow for pose estimation is shown on the left of Figure [7]

‘Cpose = H{: - tH1 + A HRRT — I‘

’
1

E. Learning Place Recognition

After the networks are trained for pose estimation, the
DGCNN+Transformer module in DCP is optimised for pro-
ducing local descriptors useful for registration. Given a point-
cloud P € RV*2 and its local descriptors D € RY*? we use
a PointNetVLAD [41] layer to learn a k-dimensional global
descriptor d, shown on the right of Figure

To optimize the PointNetVLAD layer, we fix the network
parameters for f, and DCP, and apply a triplet loss using
descriptors from positive (spatially proximal) and negative
(spatially distant) pairs of P° and P¥. Formally, this is

Lyr = [[la5 —at],~ a5 —a*], +m] . ©

where m is the triplet margin which we set as 1, [a] denotes
max(a,0), and d¥ is the global descriptor for point-cloud
P~ from a lidar image I”. d°* is the global descriptor for
pseudo point-cloud P+ from a pair of satellite and roadmap
images I°t and 1%t queried at a spatially proximal location
as I¥. d%~ is the global descriptor from I°~ and 1%~ spatially
distant and have no geometric overlap with I”.

V. EXPERIMENTAL RESULTS

We validate our method using the Oxford Radar RobotCar
Dataset [4] and the KITTI Raw Dataset [18]. The lidar
data is collected using Velodyne HDL-32E for RobotCar and
Velodyne HDL-64E for KITTI. Both datasets have longi-
tude/latitude data for each time-stamp to query for overhead
images. The resolution for I°, 1% and I” are 0.4332 m/pixel
in the RobotCar dataset and 0.4592 m/pixel in KITTL. We
use images of size 256 x 256 in all of our experiments.

Our method is the first to learn the place recognition of a
lidar using only overhead imagery, and we benchmark against
a baseline method that trains a VGG-16 network [36] with
BatchNorm followed by a NetVLAD [l] layer directly on
the lidar and overhead images, using triplet loss. For pose
estimation, we compare against recent work [39] on learning
the metric localisation between range sensors and satellite
imagery. For a fair comparison, our choice of training,
validation, and test trajectories in each dataset is made as
close to the lidar experiments in [40]] as possible. Specifically,
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Fig. 7: Data flow at forward pass. Left: for pose estimation, given a spatially proximal pair of O and IZ, we extract point-clouds P and P respectively,
using Algorithm [I] The DGCNN+Transformer module in DCP learns local descriptors for each point-cloud, which are then used for soft matching to establish
correspondences. The final SVD module in DCP returns the estimated pose offset between PS and PL. Right: for place recognition, given local descriptors
D € RN X4 for a point-cloud P € RN *2, we use PointNetVLAD to produce a global descriptor d € R¥, which can be used for retrieval.

for RobotCar, the training trajectories in sequences no.2, no.5,
and no.6 are used for training while we only validate and test
on no.2. For KITTI, the training data consists of sequences
20110929_drive0071, 20110930_drive0028,
20111003_drive0027, and 20111003_drive0034,
where 20111003_drive0034 is split into training and test
trajectories. 20110926_drive0117 forms the validation
set. The test trajectory lengths are approximately 1.26 km
for RobotCar and 1.44 km for KITTI. The data splits can be
visualised in Figure [8]

\
Y| | Y
P

Fig. 8: Trajectories are split into training (blue), validation (red), and test
(green) for all sequences in RobotCar (left) and 20111003_drive0034
in KITTI (right). Regions near the intersections between splits are discarded
(cyan) to avoid any overlap between training, validation, and test trajectories.

The training takes three stages. We first pretrain f, for 100
epochs using the loss in Equation (3), where we apply random
rotations for data augmentation. We then train f, and the DCP
network end-to-end on pose estimation, using the pose loss
in Equation (5). Finally, we fix the network parameters of
fo and DCP, and optimise a PointNetVLAD layer for place
recognition using the triplet loss in Equation (6). We use a
fixed learning rate of 2 x 10~* in stages 1 and 3, and 1 x 10~*
in stage 2. We train stages 2 and 3 for 140 epochs and choose
the check-point with the best validation set performance.

A. Metric Localisation

To evaluate metric localisation, we assume place recognition
is solved such that we have spatially proximal pairs of I* and
IS (and I7*) where their initial pose offset is no larger than
a certain amount. Our method then registers point-clouds P*
and P to solve for a relative SE(2) pose offset.

We compare against RSL-Net [39] where the initial pose
offset is a uniform distribution in each of x,y, and 6 within a
certain range. Specifically, we consider initial offsets that are
large in both rotation and translation, large in rotation but small
in translation, and large in translation but small in rotation. The
mean metric localisation errors for various initial pose offsets
are summarised in Tables [l and

In the original work [39, 40], RSL-Net was only evaluated
on experiments with small rotation offset in the range of
[—22.5°,22.5°] where it shows low errors; yet, we show its
accuracy degrades rapidly for larger initial offsets, and it is
outperformed by our method. In terms of inference time, the
forward pass for all modules takes approximately 0.075 s
altogether on a 1080Ti GPU, running approximately 25%
faster than RSL-Net which runs at 10 Hz.

1) Introspection: For overhead imagery situated along a
narrow, straight road, the pseudo point-cloud P° can be
roughly symmetrical along its principal direction, shown in
Figure 0] In such cases, our method sometimes outputs an
estimated R that is approximately 180° off from the true
offset as such a solution is equally “correct” for symmetrical
point-clouds. The point-cloud registration problem is ill-posed
if symmetry exists along at least one direction, in particular if
the initial rotation offset can be anywhere from —7 to .

L 1 - . . e L. .
Fig. 9: Satellite images IS (1 and 3) and the corresponding pseudo point-
clouds PS (2 and 4) on narrow, straight roads show a strong symmetry.

We can introspect whether P is a symmetrical point-cloud
by taking the Chamfer distance after a rotation by 7 :

dchamfer = Z dmin (p§7 R‘n'PS)v (7)
K]

where each p7 € R? is a point in P¥, dy.(p, P) is the
minimum distance from a point p to any point in point-
cloud P, and R, € R?*2 is a rotation by 7. While such
an introspection methodology only considers symmetries of ,
man-made structures in practice tend to result in a 7 symmetry.
Given 7.q, a threshold on the Chamfer distance, we can treat
a solution as “confident” if P* results in a Chamfer distance
from Equation (7)) that is larger than .4, in which case P* is
regarded as non-symmetrical. For initial offsets for z,y, and
in the range 10 pixels, =10 pixels, and +180° respectively,
Figure [0 shows the mean 6 error for solutions considered
as confident, and the percentage of solutions considered as

confident, evaluated on RobotCar, for various values of ~.q.



Initial offset for x, +25, £25, +180 +10,£10,4+180 +25, 425, 4+90 410, 4+10,£90 +25, 425, £45 425, +25, £22.5

y, and 6 (pixel, pixel, °) T Y 0 T Y 0 T Y 0 T Y [ T Y 0 T Y [
RSL-Net [39] 745 9.51 68.53 | 6.08 8.05 58.69 | 12.45 13.03 34.79 | 590 6.81 10.75 | 585 7.04 2.36 | 5.33 5.89 2.08
Ours 9.77 10.28 49.18 | 4.84 4.77 2536 | 743 10.18 11.41 | 4.39 413 7.16 | 634 7.85 553 | 589 7.54 3.50

TABLE I: Lidar metric lo

calisation errors for various ranges of initial

offset, evaluated on RobotCar. The units are pixels for  and y and degrees for 6.

Initial offset for z, +25,+25, £180 +10,£10, £180 +25,£25,+£90 +10,£10,+90 | +£25,425,+45 | +25,+25,4+22.5

y, and 0 (pixel, pixel, °) T Y 0 T Y 0 T Y [ T Y 0 T Y [ T Y [
RSL-Net [39] 729 1193 7093 | 533 745 6728 | 5.62 949 11.19 | 456 7.61 836 | 554 9.93 2.56 | 534 6.08 1.59
Ours 691 11.22 62.79 | 3.71 4.50 34.51 | 589 889 9.10 | 344 441 6.73 | 514 6.97 452 | 5.08 7.15 3.70

TABLE II: Lidar metric

localisation errors for various ranges of initial offset, evaluated on KITTI. The units are pixels for  and y and degrees for 6.

Initial offset for z, +25,£25, £180 410, £10, 180 +25,£25, +£90 +10, £10, +90 +25,+£25,+£45 | +25,425,422.5

y, and 0 (pixel, pixel, °) T Y 0 T Y 0 T Y [ T Y [ T Y 0 T Y [
RSL-Net [39] 711 849 6278 | 3.27 4.69 59.04 | 7.86 827 8.51 | 3.43 430 13.73 | 7.17 848 3.80 | 6.47 7.45 290
Ours 8.47 11.38 49.62 | 4.86 538 3590 | 741 9.55 17.02 | 4.10 4.64 13.00 | 6.25 8.07 7.44 | 6.55 7.78 5.59

TABLE III: Radar metric localisation errors for various ranges of initial offset, evaluated on RobotCar. The units are pixels for = and y and degrees for 6.
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Fig. 10: Percentage of solutions considered “confident” and the mean 6 error
of confident solutions, for various values of 7.4, evaluated on RobotCar.
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Fig. 11: Percentage of top-1 retrievals falling within a certain distance away
from the true position.

B. Place Recognition

In this experiment, we first query the overhead images using
the GPS longitude/latitude at each time-stamp during the test
route traversal. In a more realistic scenario, while the routes
to be evaluated can be known beforehand to gather overhead
images ahead of time and use as a prior map, the exact driving
path may be different in the live traversal, for example due to
driving on different lanes along the same road. To simulate
this, we add uniform errors in the range [—5 m,5 m] to each
of the x and y direction when querying for overhead images.

Other than the modality difference, a major challenge when
compared against standard lidar-to-lidar place recognition is
the arbitrary rotation offset between lidar scans and overhead
imagery. In standard lidar-based place recognition, because the
vehicle will likely face the same (or exactly opposite) direction
when driving along the same route, spatially proximal lidar
scans from two traversals will have little rotation offset (or
approximately 7). However, overhead images are expressed in
a fixed orientation (North-up), while lidar scans in their local
reference frame do not have a privileged orientation. As such,
without another sensor (e.g., a magnetometer) to measure the
global heading, spatially proximal lidar and overhead image

pairs can in fact be offset by an arbitrary rotation, increasing
the comparison complexity. To foster robustness to rotation,
we apply random rotations in the range [, 7] between P
and PX when learning local descriptors, and between PS5+
and P” when training the PointNetVLAD layer.

1) Top-1 Accuracy: Given a database of all pairs of satellite
and roadmap images {17 1%} i = 1,--- N queried along
the test trajectory, we form a pseudo point-cloud and output
a global descriptor for each sample, resulting in a database of
map global descriptors {d?}. For some lidar image IJL taken
along the test trajectory and its associated global descriptor
d%, the top-1 retrieval is the closest df € {df'} in terms of
Euclidean distance. Figure shows the percentage of top-
1 match within certain distances away from the true position.
We compare against a baseline method that feeds {I°, 17} and
1L to a VGG16+NetVLAD network and learns a triplet loss,
where the best baseline performance comes from representing
all input as polar images prior to passing through the network,
and using two different networks for the two sources.

On the RobotCar Dataset, which features a city environ-
ment, our method achieves a high accuracy, having over half
of all top-1 retrievals falling within 50 m of the true position.
The test set for KITTI, featuring a residential area, is much
more challenging as residential areas have more structurally
repetitive and fewer geometrically distinctive places. Regard-
less, our method consistently outperforms the baseline method.

2) Failure Cases: Overhead images queried at different
locations may result in structurally similar point-clouds P,
leading to false top-1 retrievals, as depicted in Figure

3) Precision and Recall: To evaluate precision and recall,
we sample a threshold gesc uniformly from the minimum Eu-
clidean distance between any diS to any dJL, to the maximum.
A pair d and d} is considered a positive retrieval if their
Euclidean distance is within vgesc, and otherwise negative.
Two locations are considered a true match if their distance is
within 25 m, and false match if it is greater than 50 m. We
consistently outperform the baseline as shown in Figure [14}

C. Extending to Radar Localisation using Overhead Imagery

Our method relies on the premise that in a lidar image,
pixels from the centroid to the first return along each azimuth
is considered free-space. This is not a valid assumption for
scanning radar images that are prone to speckle interference.
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Fig. 12: Qualitative results frorp the test set of RobotCar (rows 1 and 2) and KITTI (rows 3 and 4). From left to right: satellite image I° (a), roadmap
image 17 (b), occupancy image O (c), lidar image 1L (a), point-clouds PS (e) and PL (f). All images are pose-aligned for better visualisation.

A

Fig. 13: Failure cases: a lidar image 1% along the test route (left), the
satellite image and the associated pseudo point-cloud corresponding to the true
position (centre), and the falsely retrieved satellite image and its associated
pseudo point-cloud (right), evaluated on RobotCar (top) and KITTI (bottom).
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Fig. 14: Precision and recall curve for various descriptor distance thresholds.
However, we can reliably transform radar images to the
appearance of lidar images using unpaired image-to-image
transfer [53], specifically the methodology in [47].

Fig. 15: Radar images (1 and 3) transformed into the appearance of lidar
images (2 and 4) using the Cyclegan implementation in [47].

Figure [T5] shows the synthetic lidar images created from

radar images. Once radar images are transformed into the
appearance of lidar images, they are used as input in our
method as usual for training and inference. We evaluate on the
RobotCar Dataset, which also has data from a Navtech radar,
and use the same sequences and splits as in the RobotCar lidar
experiments. The metric localisation and place recognition
results are shown in Table [[TI] and Figure [I6

Precision Recall Curve on RobotCar (radar)
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Fig. 16: Place recognition results using radar.

D. Additional Qualitative Results

Additional qualitative results are shown in Figure [12]

VI. CONCLUSION AND FUTURE WORK

In this paper we introduce a novel method that solves both
place recognition and metric localisation of lidar using only
publicly available overhead imagery. Specifically, the modality
difference is handled in a natural way by representing both
data sources as point sets. While our method is the first to learn
the place recognition of a ground lidar using overhead imagery,
it also outperforms a prior method on metric localisation when
the initial pose offset is large. While the method as detailed in
this paper is standalone and requires only overhead imagery,
a future work would be a large-scale lidar localisation system
with prior lidar maps, where solutions using overhead imagery
are used as auxiliary signals to further improve accuracy.
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