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Abstract—In this paper, we first prove an interesting result
for point feature based SLAM. “When the covariance matrices
of feature observation errors are isotropic, the robot poses and
feature positions obtained in each Gauss-Newton iteration (when
solving a reformulated least squares optimisation based SLAM) are
independent of the feature positions in the previous step”. That is,
even if we reset the feature positions to different random values
before each iteration, the results after the iteration never change.
Building on this finding, we propose an algorithm to solve the
robot poses only (“localisation”) and show that the algorithm
generates exactly the same robot poses in each iteration as the
Gauss-Newton method (SLAM). The optimal feature positions
can be easily recovered using a closed-form formula after the
optimal robot poses are obtained.

Similarly, when the covariance matrices of odometry trans-
lation errors are also isotropic, we can prove that the SLAM
results are independent of both the feature positions and the robot
positions. Thus, we can have an “rotation-only algorithm” which
generates the same robot rotations as the full SLAM. Again,
the optimal robot positions and the optimal feature positions
can be computed from the obtained optimal robot rotations
using a closed-form formula. We have used multiple 2D and
3D SLAM datasets to demonstrate our research findings. The
video shows the interesting convergence results can be found
at https://youtu.be/j1T8toqGtDE. We expect the findings in this
paper can help SLAM researchers to further understand the
special structure of the SLAM problems and to further develop
more efficient and reliable SLAM algorithms.

I. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) has been
a key problem in robotics for about 30 years [4]. In the
state-of-the-art approaches for feature-based SLAM, given all
the relative odometry measurements and the relative feature
observations, under the assumption of (independent) Gaus-
sian noises, the feature-based SLAM problem is formulated
as a nonlinear least squares (NLLS) problem over all the
robot poses and feature positions [6]. Similarly, state-of-the-
art approaches for pose-graph SLAM have formulated the
problem as a NLLS problem over all the robot poses given
the relative pose measurements [20]. Based on the better
and better understanding of the special structrue of the high
dimensional SLAM problems, a lot of solvers for SLAM have
been developed for 2D/3D feature-based SLAM and pose-
graph SLAM (e.g. [14][13][2][12][1][19]). In particular, some
recently developed algorithms can efficiently recover certifi-
ably globally optimal solutions to the SLAM problems under
certain conditions using techniques ranging from semidefinite

relaxation and Riemannian Staircase procedure [21][3], sparse-
bounded sum of squares programming [17], and complex
number representation [7].

Researchers have shown that the SLAM problems become
considerably easier to solve when the noise covariance ma-
trices are isotropic. For example, in the tree-based network
optimizer [8][20], good convergence results from bad initial
values are reported for large pose-graphs when the noise
covariance matrices are isotropic. In [10], an unexpected con-
vergence of vanilla Gauss-Newton (GN) algorithm to the opti-
mal solution from random initial guesses in high-dimensional
feature-based SLAM problems has been reported, when the
noise covariance matrices are isotropic. In [5], the convergence
of GN algorithm in pose-graph SLAM is analysed where a
conservative estimate for the basin of attraction of the Max-
imum Likelihood estimate in pose-graph SLAM was derived
under the assumption of isotropic noise covariance matrices.
In [11][24][25], the objective function in SLAM is studied
when the noise covariance matrices are isotropic. They show
that in general a 2D m-step feature-based SLAM problem is
equivalent to a NLLS problem over only m variables (i.e.,
the robot orientations in m poses), in particular, they develop
clear conditions and algorithms that can be guaranteed to find
the globally optimal solution to the 1-step and 2-step SLAM
when the orientation information in odometry is not used.
Similarly, some dimension reduction results for pose-graph
SLAM has been presented in [23]. However, the dimension
reduction results presented in [25][23] cannot be used to obtain
an efficient SLAM algorithm for multiple steps SLAM since
the resulting reduced dimensional problem is very complicated
and no longer has the sparse structure.

Some modern SLAM solvers have also assumed the
isotropic noise covariance matrices. For example, in SE-
sync [21], the noises on the relative translations are assumed
to be Gaussian with isotropic covariance matrices, and the
pose-graph optimisation problem is efficiently solved through
semidefinite relaxation using Rienannian staricase optimisa-
tion on the Stiefel manifold. Similarly, Cartan-sync in [3]
uses the same isotropic covariance matrices assumption and
improved SE-sync by using the Cartan motion group and
introducing a novel preconditioner to accelerate the algorithm.
The isotropic noise covariance matrices assumption is also
used in [7], where a more compact unit complex number
representation instead of the matrix representation of SO(2)
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is used to speed up the semidefinite relaxation and Rienannian
staricase optimisation for 2D pose-graph and 2D feature-based
SLAM problems.

Recently in medical image computing, [18] proposed a di-
rect 3D multi-image registration method which simultaneously
optimises the relative poses of 3D Ultrasound images and the
intensities of the fused 3D image. It is shown that the relative
poses can be directly solved without considering the intensities
of the fused image. Inspired by [18], in this paper, we prove
that when the covariance matrices of feature observation
errors are isotropic, the robot poses and feature positions in
each iteration of GN algorithm is independent of the feature
positions in the previous step. We prove the result based
on Schur complement and we also propose an algorithm to
solve the robot poses only without having features in the state
vector. Once the optimal robot poses are obtained, optimal
feature positions can be obtained directly from a closed-form
formula. Similarly, when the covariance matrices of odometry
translation errors are also isotropic, the robot poses and feature
positions in each GN iteration are independent of both feature
positions and robot positions in the previous step. Thus, a
rotation-only algorithm can be used to obtain the optimal
robot rotations. Again, the optimal robot positions and feature
positions can be computed using a closed-form formula. The
results of both the pose-only and rotation-only algorithms are
shown to be identical to the corresponding full NLLS SLAM
algorithm in each iteration step. These new properties provide
us some further insights into the structure of SLAM problems.
We expect these new findings can help to further develop more
efficient SLAM solvers.

This paper is organised as follows. In Section II, the NLLS
formulation of SLAM is stated clearly. Section III derives an
alternative SLAM formulation when covariance matrices of
feature observation errors are isotropic. In Section IV, it is
proved that the results in each iteration of GN is independent
of the features and we propose a pose-only algorithm which is
equivalent to the full NLLS SLAM algorithm. In Section V,
we prove similar results when the odometry translation error
covariance matrices are also isotropic. In Section VI, examples
are presented to illustrate the results proved in this paper. Some
discussions on the relations with existing results are given in
Section VII. Finally Section VIII concludes the paper.

Notations: Throughout the paper, superscript T and −1
stand for, respectively, the transposition and the inverse of a
matrix; I denotes the identity matrix with compatible dimen-
sion; 0 represents the zero vector with compatible dimension;
and weighted 2-norm ‖e‖2C = eTCe, where C is a positive
definite matrix and e is a vector. The symbol diag(C1, . . . , Cn)
denotes a block-diagonal matrix whose diagonal blocks are
C1, . . . , Cn.

II. PROBLEM FORMULATION

We consider 2D or 3D point feature based SLAM prob-
lems. Suppose n point features {fi}ni=1 are observed from a
sequence of m+ 1 robot poses {ri}mi=0. We use Zi

k to denote
the observation made from pose ri to feature fk. We use Oi

(1 ≤ i ≤ m) to denote the odometry measurement between
pose ri−1 and pose ri. Both the observations and odometry
are corrupted by zero-mean Gaussian noises with covariance
matrices PZi

k
and POi

, respectively. Xfk denotes the position
of feature fk. Xri = {Ri, ti} denotes the rotation matrix and
translation vector of robot pose ri. The coordinate frame is
defined by the robot pose r0. That is, Xr0 = {I, 0} where I
is the 2× 2 (2D) or 3× 3 (3D) identity matrix.

The NLLS SLAM formulation [6] uses the odometry and
observation information to estimate the state containing all the
robot poses and all the feature positions

X , {Xr1 , · · · , Xrm , Xf1 , · · · , Xfn} (1)

and minimises the objective function

f(X) =

m∑
i=0

ni∑
j=1

‖Zi
kij
−HZi

kij (X)‖2
P−1

Zi
kij

+

m∑
i=1

‖HOi(X)‖2
P−1

Oi

(2)

where Oi = {Ot
i , O

R
i } is the odometry from pose ri−1 to

pose ri, Ot
i is the translation part while OR

i is the rotation
part (1 ≤ i ≤ m), Zi

kij
are observations (assume ni features

are observed from robot pose ri and kij is the global index of
the j-th feature observed from pose ri), and POi and PZi

kij

are the corresponding covariance matrices.
In the above least squares SLAM formulation, HZi

k(X) and
HOi(X) are the corresponding functions relating Zi

k and Oi

to the state X. An odometry measurement is a function of two
poses Xri−1 and Xri and is given by

HOi(X) =

[
Ot

i −RT
i−1(ti − ti−1)

dSO(OR
i , R

T
i−1Ri)

]
, (3)

where dSO(?, •) means the distance function on the Lie group
SO(2) or SO(3). One example is ‖ log(?>•)∨‖ where ∨

means the inverse of the skew-symmetric operator.
A single feature observation is a function of one pose

rotation and translation Xri and one feature position Xfk

which is given by

HZi
k(X) = RT

i (Xfk − ti). (4)

In particular, since Xr0 = {R0, t0} = {I, 0}, the odometry
function from pose r0 to pose r1 is given by

HO1(X) =

[
Ot

1 − t1
dSO(OR

1 , R1)

]
(5)

and the observation function from pose r0 to feature fk is
given by

HZ0
k(X) = Xfk . (6)

III. ALTERNATIVE FORMULATION WHEN COVARIANCE
MATRICES OF FEATURE MEASUREMENTS ARE ISOTROPIC

The NLLS in (2) can be simplified when the covariance
matrix of the feature measurement error PZi

kij

is isotropic for
every i and j. A matrix is isotropic means it is proportional to
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the identity matrix (sometimes also called spherical [23]). For
SLAM with range and bearing observations, the covariance
matrix PZi

kij

can be approximated by isotropic matrix and the
SLAM result are not affected much in real-world scenarios (as
seen in the experiments in Section VI).

When the covariance PZi
kij

are isotropic positive definite
matrices, we have

‖Zi
kij
−HZi

kij (X)‖2
P−1

Zi
kij

=‖Zi
kij
−RT

i (Xfkij
− ti)‖2P−1

Zi
kij

(7)

=‖(Xfkij
− (RiZ

i
kij

+ ti))‖2P−1

Zi
kij

. (8)

Here we have used the property that any isotropic matrix
P commutes any rotation matrix R, thus RTPR = P . The
expression in (8) is easier to deal with than that in (7) because
there is no product of variables in (8).

Thus, when PZi
kij

are all isotropic, the objective function
in NLLS SLAM formulation (2) can be written as

f1(X) =

m∑
i=0

ni∑
j=1

‖Xfkij
− (RiZ

i
kij

+ ti)‖2P−1

Zi
kij

+

m∑
i=1

‖HOi(X)‖2
P−1

Oi

. (9)

Remark 1: Please note that although the objective function
f1(X) in (9) equals to the objective function f(X) in (2)
when the covariance PZi

kij

are isotropic, the two equivalent
NLLS problems (minimising f(X) and minimising f1(X))
have different nonlinear structures. We will prove in the next
section that when solving the reformulated NLLS problem
(minimising f1(X)), the result in each iteration step is inde-
pendent of features.

In the special case when no odometry information exists,
the objective function in NLLS SLAM formulation (9) can be
simplified as

f0(X) =

m∑
i=0

ni∑
j=1

‖Xfkij
− (RiZ

i
kij

+ ti)‖2P−1

Zi
kij

. (10)

IV. SOLVING POSES IN SLAM IS INDEPENDENT OF
FEATURES

The alternative formulation of the feature-based SLAM
problem in (9) is a standard NLLS problem. In this section,
we will prove that when GN iteration is used to solve this
NLLS problem, solving the robot poses is independent of the
features.

We first consider the case when no odometry exists. That
is, finding X defined in (1) such that the objective function
f0(X) defined in (10) is mimimised.

A. Gauss-Newton Iteration

Let X = {Xr,Xf} where Xr = {Xr1 , · · · , Xrm} contains
all the robot poses and Xf = [XT

f1
, · · · , XT

fn
]T contains all the

features in the state (1) respectively; Z = [..., (Zi
kij

)T , ...]T

be the measurement vector which contains all the feature
observations in (10); XZ

f = [..., XT
fkij

, ...]T containing all the
corresponding features in the state Xf w.r.t. the measurement
vector Z; HZ(Xr) = [..., (RiZ

i
kij

+ ti)
T , ...]T ; and Σ−1

Z =

diag(..., P−1
Zi

kij

, ...) be the weight which defined by combining

all the covariance matrices of feature measurements. The least
squares optimisation problem in (10) is to seek X such that

f0(X) = ‖FZ(X)‖2
Σ−1

Z

= (FZ(X))T Σ−1
Z FZ(X) (11)

is minimised, where

FZ(X) = XZ
f −HZ(Xr). (12)

A solution to (11) can be obtained by using the standard
GN iteration, which starts with an initial estimate X(0) and
iterating with X(k+1) = X(k)⊕∆1, where the update vector
∆ is the solution to2

JT Σ−1
Z J∆ = −JT Σ−1

Z FZ(X(k)) (13)

where J is the linear mapping represented by the Jacobian
matrix ∂FZ/∂X evaluated at X(k).

One important fact is that the Jacobian of FZ(X) w.r.t.
features is a constant matrix. Let A be the matrix indicating
which feature is observed in each observations. If a feature
observation Zi

kij
(row) is corresponding to feature Xfk (col-

umn), the corresponding element in A is 1. An example of the
matrix A can be shown as

A =


... Xfk Xfk+1 ...

Zi
k 0T 1 0 0T

Zi
k+1 0T 0 1 0T

Zi+1
k 0T 1 0 0T

Zi+1
k+1 0T 0 1 0T

.

From the fact that FZ(X) is linear in Xf and HZ(Xr) is
independent of Xf , we can easily obtain the following lemma.

Lemma 1: The Jacobian of function FZ(X) in (12) w.r.t.
robot poses Xr is independent of Xf . The Jacobian of function
FZ(X) w.r.t. features Xf is a constant matrix Jf = A⊗I and
XZ

f = JfXf , where I is the 2× 2 (2D) or 3× 3 (3D) identity
matrix and ⊗ is the Kronecker product.

B. The Independence of Poses and Features

We first prove the following theorem.
Theorem 1: In each step of GN iteration for minimising the

NLLS SLAM objective function in (10) (or (11)), the result
of robot poses and features is independent of the values of
features Xf in the previous step.
Proof. The linear equation (13) can be solved in a similar
way as in Bundle Adjustment problems [16]. Suppose (13) is
rewritten as [

U W
WT V

] [
∆r

∆f

]
=

[
br

bf

]
(14)

1⊕ is a special plus operator since rotation is involved.
2Here ∆ is different in each iteration step k. However, we are omitting the

“(k)” to simplify the equations. Similarly, we are omitting many “(k)”s in
the proof of Theorem 1.
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where ∆r and ∆f are the robot and feature parts of the update
of state vector ∆ = [∆T

r ,∆
T
f ]T in (13). U = JT

r Σ−1
Z Jr,

V = JT
f Σ−1

Z Jf , W = JT
r Σ−1

Z Jf , br = −JT
r Σ−1

Z FZ(X),
and bf = −JT

f Σ−1
Z FZ(X), where Jr = −∂HZ/∂Xr and

Jf = ∂XZ
f /∂Xf are the Jacobians w.r.t. robot poses and

features respectively in the Jacobian matrix J = [Jr, Jf ] in
(13).

Then, the whole linear system (14) can be solved by
first solving the update of reduced robot system using Schur
complement

(U −WV −1WT )∆r = br −WV −1bf (15)

and then performing back-substitution to get the feature update

V∆f = bf −WT ∆r. (16)

It should be mentioned that, the linear system solved using
Schur complement in Bundle Adjustment is only for reducing
the computational complexity [16][22], Bundle Adjustment
problems do not have the independent properties proved in
this paper.

Now we prove that solving the update of robot pose in (15)
is independent of the features Xf .

In fact, we can rewrite (15) as

(JT
r Σ−1

Z Jr − JT
r Σ−1

Z Jf (JT
f Σ−1

Z Jf )−1JT
f Σ−1

Z Jr)∆r

=− JT
r Σ−1

Z (XZ
f −HZ(Xr))

+ JT
r Σ−1

Z Jf (JT
f Σ−1

Z Jf )−1JT
f Σ−1

Z (XZ
f −HZ(Xr)).

(17)

From Lemma 1, Jf is a constant and Jr does not depend
on Xf , thus the coefficient matrix on the left hand side of (17)
is independent of Xf . Again from Lemma 1, back substitute
XZ

f = JfXf to the second term on the right hand side in (17),
we have

JT
r Σ−1

Z Jf (JT
f Σ−1

Z Jf )−1JT
f Σ−1

Z JfXf = JT
r Σ−1

Z XZ
f . (18)

Thus, (17) can be rewritten as

JT
r VfJr∆r = JT

r VfH
Z(Xr) (19)

where

Vf = Σ−1
Z − Σ−1

Z Jf (JT
f Σ−1

Z Jf )−1JT
f Σ−1

Z . (20)

As (19) is independent of feature Xf , we have proved that the
update of robot poses ∆r solved by (15) is independent of
the features Xf . Thus the updated robot pose Xr + ∆r is also
independent of features Xf .

After the update of robot poses ∆r is calculated using (19),
the updated features can be obtained by calculating the feature
update ∆f using ∆r and (16)

Xf + ∆f = Xf + V −1bf − V −1WT ∆r. (21)

The last term V −1W∆r on the right hand side of (21) is
independent of features Xf . The second term V −1bf can be
rewritten as

− (JT
f Σ−1

Z Jf )−1JT
f Σ−1

Z (JfXf −HZ(Xr))

=− Xf + V −1JT
f Σ−1

Z HZ(Xr).
(22)

Back substitute (22) into (21), the updated features can be
calculated by

Xf + ∆f = V −1(JT
f Σ−1

Z HZ(Xr)−WT ∆r) (23)

which is also independent of features Xf .
Now, we have proved in each iteration, the result of both

features and robot poses are independent of features. Thus the
proof of Theorem 1 is completed. Q.E.D.

Now comes to our main result. Since the first term in (9) is
the only term contains features Xf , thus we can easily extend
the proof of Theorem 1 to prove the following theorem for
the NLLS SLAM problem in (9).

Theorem 2: In each step of GN iteration for minimising
the NLLS SLAM objective function in (9), the result of robot
poses and features is independent of the values of features Xf

in the previous step.
Remark 2: It should be noted that, Theorem 2 holds only

for the alternative formulation of NLLS SLAM problem in
(9), not for the original formulation in (2), even when the
covariances of feature observation noises are isotropic. In
the original formulation of NLLS SLAM problem in (2),
the Jacocian w.r.t. robot poses is dependent on features (see
function HZi

k(X) in (4)). That means the similar statement as
in Lemma 1 does not hold.

C. Linear Solution to Features

After the optimal solution of the robot poses X̂r is obtained,
the SLAM problem in (11) becomes a linear least squares
problem to minimise

‖FZ(Xf )‖2
Σ−1

Z

= (JfXf −HZ(X̂r))T Σ−1
Z (JfXf −HZ(X̂r)).

(24)
Then, the optimal solution of features X̂f can be obtained by
solving the linear system

V X̂f = JfΣ−1
Z HZ(X̂r). (25)

This step is the same as what has been proposed in many
related work such as [25]. The foundamental reason is that
when all the robot rotations are fixed, the SLAM problem of
minimising (2) is a linear least squares problem which has a
closed-form solution.

D. An Equivalent Pose-Only Algorithm

Applying Theorem 2, we can have an algorithm that only
solve robot poses but is equivalent to the original GN SLAM
algorithm in each step. The details are given in Algorithm 1.

As solving robot poses is independent of the features, we
only need to initialise robot poses using odometry, and then
update robot poses iteratively using (19). Since the objective
function (9) is not evaluated in each iteration anymore, the
algorithm is identified as converged when ∆r(k) is close to
zero. After the optimal solution of the robot poses X̂r is
obtained, the optimal solution of features X̂f can be obtained
by using (25).

Remark 3: It should be mentioned that, giving the data as-
sociation, Vf in (20), and V and Jf in (25) are constant, which
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Algorithm 1 An equivalent pose-only algorithm
Input: Feature measurements {Zi

kij
}, odometry {Oi}

Output: Optimal robot poses X̂r and features X̂f

1: Initialise Xr(0) using {Oi}
2: Pre-calculate V , Jf and Vf
3: for k = 1; k <= τk & ‖∆r(k)‖2 > τ∆r

; k + + do
4: Evaluate Jr, HZ(Xr) at Xr(k)
5: Solve linear system (19) to get ∆r(k)
6: Update robot poses Xr(k + 1) = Xr(k)⊕∆r(k)
7: end for
8: Solve linear system (25) to get features X̂f

can be calculated prior to the iteration. Thus, in each iteration,
only the Jacobian w.r.t. robot poses Jr and HZ(Xr) need to
be evaluated using the current robot poses and observations
Z, which makes the algorithm efficient.

Since Algorithm 1 computes Xr using linear system (19)
which is equivalent to (15), its result is exactly the same as the
robot poses obtained from the GN method in every iteration
step. The feature X̂f is computed from (25) after the algorithm
converges, thus the final result of robot poses and features are
identical to the final result of GN.

In summary, we have proved that “for the GN iteration
algorithm for solving the NLLS SLAM problem (9), there is an
equivalent pose-only iteration algorithm that produces exactly
the same results in each iteration step”.

V. SOLVING ROTATIONS IN SLAM IS INDEPENDENT OF
TRANSLATIONS

When the covariance matrices of the translation part of
the odometry errors are also isotropic, we can prove that
for GN SLAM algorithm, there is an equivalent rotation-only
algorithm that can obtain exactly the same result in each
iteration. Some details are given below.

When the covariance of odometry POi
has the format

POi = diag(POt
i
, POR

i
) (26)

with POt
i

being an isotropic positive definite matrix and
POR

i
being any positive definite matrix, the odometry term

‖HOi(X)‖2
P−1

Oi

in (2) becomes

‖Ot
i −RT

i−1(ti − ti−1)‖2
P−1

Ot
i

+ ‖dSO(OR
i , R

T
i−1Ri)‖2P−1

OR
i

= ‖(ti − ti−1)−Ri−1O
t
i‖2P−1

Ot
i

+ ‖dSO(OR
i , R

T
i−1Ri)‖2P−1

OR
i

.

(27)

Thus, when PZi
kij

and POi are all isotropic, the objective

function in NLLS SLAM formulation (2) can be written as

f2(X) =

m∑
i=0

ni∑
j=1

‖(Xfkij
− ti)−RiZ

i
kij
‖2
P−1

Zi
kij

+

m∑
i=1

‖(ti − ti−1)−Ri−1O
t
i‖2P−1

Ot
i

+

m∑
i=1

‖dSO(OR
i , R

T
i−1Ri)‖2P−1

OR
i

. (28)

The second term in (28) is about the relative translation of
the odometry, it has a very similar form to the first term
about feature observation which is the same as that in (9).
Thus, following the same line as the proofs of Theorem 1 and
Theorem 2, we can prove the following theorem.

Theorem 3: In each step of GN iteration for minimising the
NLLS SLAM objective function in (28), the result of robot
poses and features is independent of the values of features
Xf as well as the robot translations Xt = [tT1 , ..., t

T
m]T in the

previous step.
Proof. Assume that no measurements of the orientations of

the robots exist, the objective function of (28) can be simplified
as:

f3(X) =

m∑
i=0

ni∑
j=1

‖(Xfkij
− ti)−RiZ

i
kij
‖2
P−1

Zi
kij

+

m∑
i=1

‖(ti − ti−1)−Ri−1O
t
i‖2P−1

Ot
i

. (29)

We first prove that solving (29) by GN method, the result
in each iteration is independent of features Xf and the robot
translations Xt in the previous step.

By separating the rotations from translations and fea-
tures in the state vector, let X = {XR,Xtf}, where
XR = {R1, · · · , Rm} contains all the rotations of the
robot poses and Xtf = [XT

t ,X
T
f ]T contains all the trans-

lations of the robot poses Xt and the features Xf ; let
XZOt

tf = [..., (Xfkij
− ti)T , ..., (ti − ti−1)T , ...]T contain all

the corresponding translations and features in the state Xtf

w.r.t. the feature observation vector Z and the translation
of odometry measurement vector Ot = [..., (Ot

i)
T , ...]T ;

HZOt

(XR) = [..., (RiZ
i
kij

)T , ..., (Ri−1O
t
i)

T , ...]T ; and
Σ−1

ZOt = diag(..., P−1
Zi

kij

, ..., P−1
Ot

i
, ...) be the weight which

defined by combining all the covariance matrices of feature
measurements and translation of odometry measurements. The
least squares optimisation problem in (29) is to seek X such
that

f3(X) = ‖FZOt

(X)‖2
Σ−1

ZOt
= (FZOt

(X))T Σ−1
ZOtF

ZOt

(X)

(30)
is minimised, where

FZOt

(X) = XZOt

tf −HZOt

(XR). (31)

Similar method as shown in Section IV-B can be used to
solve (30), the linear equation in each GN iteration can be
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rewritten as [
Ū W̄
W̄T V̄

] [
∆R

∆tf

]
=

[
bR

btf

]
, (32)

where ∆R and ∆tf are the rotation and translation-feature
parts of the update of state vector X. Ū = JT

RΣ−1
ZOtJR, V̄ =

JT
tfΣ−1

ZOtJtf , W̄ = JT
RΣ−1

ZOtJtf , bR = −JT
RΣ−1

ZOtFZOt

(X),
and btf = −JT

tfΣ−1
ZOtFZOt

(X), where JR = −∂HZOt

/∂XR

and Jtf = ∂XZOt

tf /∂Xtf are the Jacobian matrices of
FZOt

(X) w.r.t. the rotation and translation-feature respec-
tively. Similar to Lemma 1, Jtf is also constant and XZOt

tf =
JtfXtf . Therefore, using Schur complement, the update of
robot rotation can be solved by

JT
RVtfJR∆R = JT

RVtfH
ZOt

(XR), (33)

where

Vtf = Σ−1
ZOt − Σ−1

ZOtJtf (JT
tfΣ−1

ZOtJtf )−1JT
tfΣ−1

ZOt . (34)

In addition, similar to 23, the updated robot translations and
features can be calculated as

Xtf + ∆tf = V̄ −1(JT
tfΣ−1

ZOtH
ZOt

(XR)− W̄T ∆R). (35)

Since both (33) and the right hand side of (35) are independent
of Xtf , in each step of GN iteration for minimizing (29), the
result is independent of the values of features Xf and the
robot translations Xt in the previous step. The conclusion can
be extended to the NLLS problem in (28) since the third term
in (28) is independent of features and the robot translations.
Therefore, the proof of Theorem 3 is completed. Q.E.D.

After the optimal solution of the robot rotation X̂R is
obtained, the SLAM problem in (29) becomes a linear least
squares problem and the optimal solution of robot translations
and features can be obtained by solving the linear system

V̄ X̂tf = JtfΣ−1
ZOtH

ZOt

(X̂R). (36)

Therefore, similar to Algorithm 1, when the covariance ma-
trices of both feature observations and odometry translations
are isotropic, we can have a “rotation-only algorithm” that only
solves the rotations of the robot poses XR = {R1, ..., Rm},
and its results in each iteration step are identical to that of GN
for solving (28). The “rotation-only algorithm” is summarised
in Algorithm 2.

VI. EXPERIMENTAL RESULTS

In this section, the theorems proposed in this paper will be
numerically demonstrated using different 2D and 3D feature-
based SLAM datasets. Then, the proposed pose-only algorithm
and rotation-only algorithm are validated and compared to the
NLLS SLAM solved using GN iterations.

Algorithm 2 An equivalent rotation-only algorithm
Input: Feature measurements {Zi

kij
}, odometry {Oi}

Output: Optimal robot rotations X̂R, robot positions X̂t and
features X̂f

1: Initialise XR(0) using {OR
i }

2: Pre-calculate V̄ , Jtf and Vtf
3: for k = 1; k <= τk & ‖∆R(k)‖2 > τ∆R

; k + + do
4: Evaluate JR, HZOt

(XR) at XR(k)
5: Solve linear system (33) to get ∆R(k)
6: Update robot rotations XR(k + 1) = XR(k)⊕∆R(k)
7: end for
8: Solve linear system (36) to get robot positions X̂t and

features X̂f

A. 2D Feature-Based SLAM

For 2D feature-based SLAM, the Victoria Park dataset [9]
and DLR dataset [15] are used. Identity matrices are used as
the covariance of errors of feature measurements and odom-
etry, to make the covariance used in the SLAM algorithms
isotropic. For GN based NLLS SLAM, the initialisation is
done by first initialising robot poses using odometry, and then
using the initialised poses and the first observation of each
feature to initialise feature positions as shown in Fig. 3(a) and
Fig. 4(a).

1) NLLS SLAM with Random Features: GN for NLLS
SLAM using the alternative formulation described in (9) (Full-
NLLS) is first implemented. To validate Theorem 2, we also
modify the algorithm by resetting the features in the state
vector as random values at the beginning of each iteration.
This modified algorithm is called Random-F. Examples of
the random features used are shown in Fig. 1(a) for Victoria
Park dataset and Fig. 2(a) for DLR dataset. Visual inspection
shows that after the state is updated in each iteration, the poses
and features obtained in Random-F are the same as the ones
obtained from Full-NLLS at the same iteration (see the video).
The final results of Random-F are shown in Fig. 1(b) and Fig.
2(b), which are the same as those from Full-NLLS (Fig. 3(b)
and Fig. 4(b)).

To quantatatively confirm the results in each iteration are the
same for Random-F and Full-NLLS, we compare the objective
function values and the squares of 2-norm of the update of
robot poses ‖∆r‖2 at each iteration of the two algorithms.
For Random-F, we evaluate the objective function at the end
of each iteration after the state vector is updated. And then
features are reset to random values to be used in the next
iteration. Here we only compare the update of robot poses,
since the updates of features from the two algorithms are
suppose to be different because of the random features used
in Random-F. As we can see from Fig. 5, for both Victoria
Park and DLR datasets, the objective function values and the
squares of 2-norm of the update of robot poses for Random-
F at each iteration are exactly the same as the ones for
Full-NLLS. Thus, we can see from the results that giving
random features at each iteration does not change the result
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Fig. 1. NLLS SLAM with random features at the beginning of each iteration
(Random-F) using Victoria Park dataset: (a) An example of random features
and (b) Random-F result. Red lines are the robot trajectories and black dots
are the features.

-40 -30 -20 -10 0 10 20 30 40

X (m)

-20

-10

0

10

20

30

40

Y
 (

m
)

Random Feature

Pose
Feature

(a) Random Feature

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

X (m)

-25

-20

-15

-10

-5

0

5

10

15

Y
 (

m
)

Final Result

(b) Random-F Result

Fig. 2. NLLS SLAM with random features at the beginning of each iteration
(Random-F) using DLR dataset.

at all, which demonstrates the independence result described
in Theorem 2.

2) The Proposed Pose-Only Algorithm: The proposed algo-
rithm which only solves robot poses (Pose-Only) as shown in
Algorithm 1 is also implemented. The results using Victoria
Park and DLR datasets are compared to Full-NLLS and
Random-F. Since features are not considered in Pose-Only,
only robot poses are in the state vector and it can be initialised
by just using odometry. For Pose-Only, the features in the
results are computed by the linear method in (25) after the
optimal robot poses are obtained. The final results obtained
from Full-NLLS, Random-F and Pose-Only are are exactly the
same as shown in Fig. 3(b) and Fig. 4(b).

The objective function value and the squares of 2-norm of
the update of robot poses at each iteration from Pose-Only are
also compared to those from Full-NLLS and Random-F. Here,
since the objective function does not need to be evaluated
in Pose-Only (see Algorithm 1) and features are not in the
state vector, for comparison purpose, in each iteration, after
the robot poses are updated, we compute the linear solution to
the features as described in (25) by considering the updated
poses as constant, and then compute the objective function in
(9) using both robot poses and features. The features are only
used in this way to calculate the objective function value at
each iteration. They are not needed in Pose-Only algorithm.
As shown in Fig. 5, the squares of 2-norm of the updates of
robot poses at each iteration for Full-NLLS, Random-F and
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Fig. 3. Comparison of different algorithms using Victoria Park dataset: (1)
Full-NLLS; (2) Proposed pose-only algorithm (Pose-Only); (3) NLLS with
random feature and random robot positions (Random-F&T); and (4) Proposed
rotation-only algorithm (Rotation-Only). Note that the last step of Pose-Only
(Rotation-Only) is to compute the features (and robot positions) by solving a
linear system.
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Fig. 4. Comparison of different algorithms using DLR dataset: (1) Full-NLLS;
(2) Proposed pose-only algorithm (Pose-Only); (3) NLLS with random feature
and random robot positions (Random-F&T); and (4) Proposed rotation-only
algorithm (Rotation-Only).

Pose-Only are exactly the same, which numerically validate
that Pose-Only is equivalent to Full-NLLS in (9). The objective
function value at each iteration for Pose-Only is different from
(slightly smaller than) those for the other two algorithms. This
is because the features obtained by using the linear method in
(25) is optimal w.r.t. the updated robot poses at each iteration,
which is similar to the method proposed in [13]. Thus, the
features calculated in this way are different from those in the
state vector in Full-NLLS at the beginning, but will become
the same when the algorithms converge.

3) SLAM with Random Features and Random Robot Po-
sitions, and Rotation-Only Algorithm: To validate Theorem
3, the GN method for the NLLS SLAM defined in (28)
(Full-NLLS) is implemented but given random features and
random robot positions at the beginning of each iteration
(Random-F&T). Examples of random features and random
robot positions used are shown in Fig. 6. The results of
Victoria Park dataset and DLR dataset, together with the
objective function and the squares of 2-norm of the update
of robot rotation ‖∆Φ‖2 at each iteration are shown in Fig.
3(b), Fig. 4(b) and Fig. 8, respectively. The rotation-only
algorithm proposed in Section V which only solves a reduced
robot rotation system (without considering features and robot
positions in the state vector) as shown in Algorithm 2 is
also implemented (Rotation-Only) and validated using the two
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Fig. 5. The objective fucntion and update of robot poses at each iteration
for (1) GN SLAM (Full-NLLS), (2) NLLS with random features (Random-F)
and (3) proposed pose-only algorithm (Pose-Only): (a) Victoria Park dataset
and (b) DLR dataset. The objective fucnion does not need to be evaluated in
Pose-Only and only calculated for comparison. The update of robot poses at
each iteration for different algorithms are exactly the same.
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Fig. 6. Examples of random features and random robot positions used before
each iteration in Random-F&T.

datasets. Similar to Pose-Only, the final result from Rotation-
Only is obtained by first optimising the robot rotations and then
calculating the features and robot positions linearly by using
the optimal robot rotations. Results from both Random-F&T
and Rotation-Only are exactly the same as the one obtained
from Full-NLLS for (28). And similar to the results in Section
VI-A2, the squares of 2-norm of the update of robot rotation
at each iteration for all these three algorithms are the same,
with the objective function value of Rotation-Only smaller
than those of the other two algorithms before the algorithms
converge (see Fig. 8).

B. 3D Feature-Based SLAM

For 3D feature-based SLAM, a simulated dataset is used
with a trajectory of 870 poses and uniformly distributed
features in the environment as used in [26]. Both Full-NLLS
in (9) and the proposed Pose-Only algorithm (for 3D scenario)
are performed. The initial guess obtained from odometry and
first feature observations for Full-NLLS is shown in Fig. 9(a).
The same initial guess of robot poses is used for Pose-Only.
And the final results from both algorithms are shown in Fig.
9(b). The obtained poses and features from Full-NLLS are
exactly the same as the optimal poses obtained from Pose-
Only and the optimal features obtained from the linear method
(25) using the optimal poses. We further compared the robot
poses at each iteration from the two algorithms. The maximum
absolute difference between the two sets of robot poses at the
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Fig. 7. Robot rotation results from different SLAM algorithms: (1) Full-
NLLS; (2) NLLS with random features and random robot positions (Random-
F&T); and (3) The proposed rotation-only algorithm (Rotation-Only).
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Fig. 8. The objective fucntion values and the squares of 2-norm of the
update of robot rotation at each iteration for (1) GN NLLS SLAM (Full-
NLLS), (2) NLLS with random features and robot positions (Random-F&T),
and (3) proposed rotation-only algorithm (Rotation-Only). The squares of 2-
norm of the update of robot rotations at each iteration for different algorithms
are exactly the same.

same iteration is less than 10−9, which means the robot poses
obtained from Full-NLLS are exactly the same as the ones
from Pose-Only at each iteration. These validate Theorem 2
in 3D scenario and validate that only solving robot poses using
Pose-Only in the 3D scenario is also equivalent to Full-NLLS.

VII. DISCUSSIONS

In this section, we discuss the relations between the results
of this paper and some related results in the literature.

In [10], some surprising convergence results have been
presented for 2D GN SLAM algorithm (for SLAM problem
minimising (2)) with Victoria Park dataset when isotropic
covariance matrices are used. It has been empirically shown
that starting from random initial values for robot poses and
features, the algorithm can converge to the correct solution
80% of the time. In this paper, what we have proved is that
as long as the initial values of robot rotations used are the
same, the GN SLAM algorithm (for minimising (28)) with
arbitrarily reset robot translations and feature positions in each
step will generate exactly the same results, since the GN
results are independent of the robot translations and feature
positions. Our conclusion holds for both 2D and 3D cases.
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Fig. 9. Comparison of different algorithms using simulated 3D dataset: (1)
Full-NLLS; (2) Proposed pose-only algorithm (Pose-Only).

Please note although the objective functions in (2) and (28) are
mathematically equal (when covariance matrices are isotropic),
the two GN algorithms for solving these two problems behave
differently because of the different nonlinear structures. As a
result, the independence property proved in this paper does
not hold for GN SLAM algorithm that minimising (2).

In [24][25], it has been shown that the m-step 2D feature-
based SLAM problems can be obtained by solving a NLLS
problem over only m variables (i.e., the robot orientations in
m poses). However, when marginalising the variables of robot
positions and feature positions, the resulting low dimensional
NLLS problem of robot orientations is very complicated and
no longer sparse, although the low dimensional NLLS problem
is equivalent to the original NLLS problem. This makes the
solving of the reduced dimensional problem very inefficient
except for very small problems such as 1-step and 2-step
SLAM problems. In this paper, we use formula derived from
Schur complement to compute the same rotations as those in
the GN algorithm in a much more efficient way. That is, the
results of the proposed rotation-only algorithm is identical to
that of GN for solving problem (28) in each iteration step.
Thus we achieve dimension reduction at the algorithm level
instead of the problem level as in [25]. Again, our results hold
for both 2D and 3D.

In [13], the separable structure of SLAM is utilised in a
different way. In each iteration of SLAM solver such as g2o,
the whole state vector including both the robot poses and
feature positions are solved using standard operation (such
as in GN). Then, in some of the selected steps, the obtained
robot positions and feature positions are ignored and replaced
by the robot positions and feature positions calculated using
the obtained robot rotations, in order to generate a better state
for the next iteration. In this paper, we only compute the robot
rotations using a formula derived from Schur complement,
which is shown to be independent of the robot position and
feature values. After obtaining the optimal robot rotations, we
compute the optimal robot positions and feature positions only
once (as in Algorithm 2).

In some modern algorithms for solving pose-graph SLAM
such as [21] and planar pose-graph and feature-based SLAM
such as [7], the original SLAM problem is first reformulated
as a rotation only problem, and then semidefinite relaxation
and Riemannian staircase optimisation are applied. Similarly,
in the proof of the region of attraction for GN in [5], the pose-
graph SLAM problem is also transferred into an orientation

only problem first to facilitate the analysis. This is closely
related to our finding that “solving rotations is independent of
translations”. Thus we believe the underlining property of the
SLAM with isotropic covariance matrices has been implicitly
used to generate some of the state-of-the-art results.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proved some interesting properties
for 2D and 3D point feature-based SLAM with isotropic
covariance matrices. First, when the covariance matrices for
feature observation errors are isotropic, we prove that when
solving a reformulated nonlinear least squares SLAM problem,
the result in each Gauss-Newton (GN) iteration is completely
independent of the feature values. Thus a pose-only algorithm
is proposed to generate the same results as the original
GN method. Second, when the covariance matrices for the
translation part of the odometry errors are also isotropic, we
prove that the result in each GN iteration is also completely
independent of the robot translations. Thus, a rotation-only
algorithm can be used to generate the same results as the
original GN method. Experimental results using 2D and 3D
datasets confirmed the properties.

These new properties provide us more insights into the
fundamental nonlinear structure of the SLAM problems with
isotropic covariance matrices. In this paper, we have focused
on clearly presenting these properties to the SLAM commu-
nity for further investigations and exploiting, and leave the
development of efficient SLAM solvers using these properties
to our future work.

We are also in the process of analysing other related
problems with the aim of identifying similar properties, such
as pose-graph SLAM, occupancy grid map based SLAM
problems, multiple 3D point sets registration problems, etc. We
are expecting to see some good applications of these properties
in robotics in the near future.
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