
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Skill-based Shared Control

Christopher E. Mower1, João Moura1,2, and Sethu Vijayakumar1,2

1School of Informatics, The University of Edinburgh, Edinburgh, UK. 2The Alan Turing Institute, London, UK.

Abstract—Performing a number of motion patterns – referred
to as skills – (e.g., wave, spiral, sweeping motions) during
teleoperation is an integral part of many industrial processes
such as spraying, welding, and wiping (cleaning, polishing).
Maintaining these motions whilst simultaneously avoiding obsta-
cles and traversing complex terrain requires expert operators.
In this work, we propose a novel skill-based shared control
framework for incorporating the notion of skill assistance to aid
novice operators to sustain these motion patterns whilst adhering
to environmental constraints. Our shared control method uses
streaming joystick data to estimate the model parameters that
provide a description of the operator’s intention. We introduce
a novel parametrization for state and control that combines skill
and underlying trajectory models, leveraging a special type of
curve known as Clothoids. This new parameterization allows for
efficient computation of skill-based short term horizon plans,
enabling the use of a Model Predictive Control (MPC) loop.
We perform experiments on a hardware mock-up, validating the
effectiveness of our method to recognize a switch of intended
skill, and showing an improved quality of output motion, even
under dynamically changing obstacles. See our accompanying
video here: https://youtu.be/TwhsgA6fw6M.

I. INTRODUCTION

Many industrial applications require a human to teleoperate

a robotic device, typically under direct control [24], to perform

a manipulation task as part of a construction or manufacturing

process (e.g., Figs. (1a) and (1b)). During task execution, the

operator will often employ various motion patterns to achieve

different goals: in concrete spraying, an operator will switch

between circular and sweeping motions to regulate the rate of

concrete deposition and create a smooth lining [3]; in robot

assisted welding, the operator’s expertise on the desired weld

determine the choice among different weave patterns [7]; in

plastering, different patterns yield different moulds [4]; and in

the cleaning process of the train’s front panels, expert cleaners

repeatedly employ spiral brushing motion patterns [21]. These

motion patterns, which we will call skills, are crucial to the

success of the tasks.

Sustaining and smoothly executing these skills over the

duration of a task can be difficult, requiring extensive and

expensive training regimes, yet critical to performance. For

example, in concrete spraying during tunnel construction,

appropriately laying concrete is critical for preventing wasted

material and collapse. Such critical teleoperation tasks also

put considerable cognitive load on the operator. Further, there

are significant challenges to ensure the safety of the operators

when they operate close to the site (e.g., concrete falls away

This research is supported by Costain Group Plc., The Alan Turing Institute,
and EPSRC UK RAI Hub for Offshore Robotics for Certification of Assets
(ORCA, EP/R026173/1).

(a)

(b) (c)

Fig. 1: Industrial tasks such as (a) concrete spraying and (b)

welding [10] require highly skilled operators; (c) Lab mock-up

on a KUKA LWR in shared control mode; with online MPC

based skill estimation and switching.

from the wall after being sprayed, known as rebound [3]).

These circumstances make the automation of such operations

desirable. However, the crucial role of the operator’s domain

knowledge for the successful completion of such tasks moti-

vates a human-in-the-loop shared control approach.

Many shared control paradigms developed in the litera-

ture can be thought of as direct control within a restricted

workspace. This property benefits a novice by only allowing

them to operate within safe limits – a concept that lets

the operator largely dictate motion, under the principle of

minimal intervention [6, 28]. While the principle achieves the

crucial goal of minimally disrupting an operator, we advocate

that shared control systems should, in addition, assist novice

operators [9, 11]. Thus, our focus in this paper is to realise

a shared control framework that captures key skills while

ensuring the environment physical constraints are continuously

satisfied.

Other critical issues that the shared control literature ad-

dresses are, for instance, assisted guidance [26], human inten-

tion prediction [15, 17], appropriate blending between human

and autonomous policies [8], large time-delays [31], appropri-

ate teleoperation spaces [22], obstacle avoidance [6, 23, 27],

and representation and utilization of expert demonstrations [1].

However, these approaches tend to focus on cases where the

intention of the operator consists of some distinct goal, e.g.

 ���

https://youtu.be/TwhsgA6fw6M


an object to grasp. To the best of our knowledge, very few

approaches to shared control target the problem of how the

robot moves with regards to some skill. In this work, the goal

is to be able to reproduce skills, rather than simply getting

from one place to another.

Some shared autonomous methods provide assistance to

the operators by blending the current operator command with

an autonomous policy responsible for the adaptation to the

dynamic environment [18, 23]. However, these strategies lack

any anticipatory reasoning, i.e. early adaptation to predicted

future events. Consider the example of an unskilled operator

inadvertently driving a robot towards an obstacle. In such an

example, predicting the collision event and taking it in con-

sideration by continuously re-planning a sequence of control

commands over a receding horizon, in a Model Predictive

Control (MPC) fashion, could significantly improve the level

of assistance from the shared controller to the less skilled

operator. Moreover, such capabilities are key to being able

to produce skill-based controls, estimated from the operators

actions, in the face of changing physical constraints.

In this work, we propose a novel receding horizon shared

control method that continuously adapts future plans based

on the estimation of the operators’ skill intention. In order

to plan motions that respect the aforementioned skills, and

achieve computation times required for online teleoperation,

we formulate parameterized representations for the system

state and controls by making an important distinction between

a skill model and an underlying trajectory – based on a

special type of curve, Clothoids (see Sec. III for details). By

integrating the approaches mentioned above, we achieve the

following key contributions in this work:

• A novel model-based framework for shared control

that combines skill and underlying trajectory models,

enabling skill representation, estimation, and switching.

• Introduction of Clothoids as a suitable, adaptive repre-

sentation for the underlying predicted skill trajectory.

• A novel cost function that improves the computational

feasibility of the skill-based trajectory optimization whilst

respecting the principle of minimal intervention from an

operator intention perspective.

• An MPC implementation of the shared control method

that respects a motion pattern whilst ensuring (changing)

system constraints are satisfied.

• Hardware realization of our method on a KUKA-LWR

robot arm, including a shared-control user study, quanti-

tative comparisons, and several evaluations demonstrating

the method capabilities.

II. PROBLEM FORMULATION

A key nuance, specific to shared control, is the need for

incorporating a prediction of operator commands ĥ(t;hr) over

a future time period t ∈ Tf = [tc, tf ], where tc and tf are

the current and future time-stamp respectively, and raw human

signals from an interface (e.g. joystick) are given by hr(t) for

a window of previous commands t ∈ Tp = [tp, tc] such that

tp is a previous time-stamp. We assume the operator input

commands to be drawn from a space equivalent to the control

action space.

We can mathematically formalize a receding horizon shared

controller as a standard optimal control problem. A sequence

of the optimal control commands u(t) ∈ R
nu and the corre-

sponding sequence of system states x(t) ∈ R
nx are the result

from solving

x∗, u∗ = argmin
x,u

cost(x, u; ĥ) (1a)

subject to ẋ = f(x, u), x ∈ X(ẽ), u ∈ U (1b)

where f(·) represents the equations of motion, X(·) and U are

the sets of feasible states and controls respectively represented

by a combination of equality and inequality constraints, and

ẽ(t) is an environment model from sensing data.

Recent literature introduces two different approaches to

solve (1) for obstacle avoidance [6, 27]. Both of these

approaches minimize an objective function defined by

cost(x, u; ĥ) =
∫
Tf

‖x− x̂‖2Wx
+‖u− ĥ‖2Wu

dt where x̂ is the

solution of ẋ = f(x, ĥ) such that x(tc) = xc is known. Broad

et al. [6] sample N ≫ 1 controls {u}N ∼ U, exclude samples

such that x /∈ X(ẽ), and choose x, u with minimal cost.

Rubagotti et al. [27] use an off-the-shelf solver to compute

a local minimizer. Both works adhere to the principle of

minimal intervention - evident by the choice of cost function

- i.e. minimally adjust the operator input commands such that

the system constraints are satisfied. Additionally, despite both

approaches handling arbitrary prediction models ĥ, both their

experiments assume a simplistic model, i.e. ĥ(t) = hrc for all

t ∈ Tf such that hrc is the current raw operator command.

The main focus of this paper is to address the problem of

planning motions that respect a skill whilst satisfying system

constraints. The cost functions and prediction models in the

related literature fail to capture the key goal of maintaining a

prescribed motion pattern; therefore, the need for an alternative

approach that follows the principle of minimal intervention

while being the least disruptive to the operators’ intentions or

skill choice.

A generalized treatment of human-policy identification or

human intention detection is out-of-scope of this work – it

is a challenging problem with many factors often leading

to models that are computationally infeasible for online pre-

diction [25]. However, several domains we identified as our

target are conducive to some simplifying assumptions: we

assume (i) a given finite set of skill models denoted S , by

an expert operator, that contain all motion patterns required

for the completion of the task at hand, and (ii) the novice

operator is skilled enough to enact teleoperation motions that,

albeit sub-optimal, are identifiable by an off-the-shelf policy

prediction method given S .

Based on the formulation, we summarize the questions

addressed in this paper as follows:

(Q1): What is an appropriate state and control representa-

tion that both captures the intended skills and allows

the trajectories to bend and adapt in order to avoid

obstacles?

 ���



Experimental SetupDirect ControlSkill-based Shared Control

Environment

Robot

Human

Joystick

Inverse
Kinematics

∫

u(s; θ∗)
Trajectory
Optimization

Skill Estimation
& Identification

q

u ≡ h

θ̂ θ∗h

h

u

x

X(ẽ),U

switch

Fig. 2: Method outline. From right to left: the Experimental Setup illustrates an operator controlling the robot with a joystick

only using visual feedback of the task; the Direct Control maps control signals to joint state targets; and the Skill-based Shared

Control estimates skill parameters and optimizes the robot motions given continuous environment sensing.

(Q2): How to capture intentions of a human operator in the

form of motion patterns?

(Q3): How to plan trajectories that respect both the esti-

mated intended skill and the principle of minimal

intervention, while avoiding obstacles and remaining

computationally feasible for online teleoperation?

III. METHOD

In this section, we describe our proposed method for skill-

based shared control. Fig. 2 illustrates and summarizes our

proposed method.

A. Model representation

We start by making an observation on motion patterns that

we intend to reproduce. Observe three examples of welds

in Fig. 3 (upper); these show instances of patterned motions

around some central axis. Fig. 3 (lower) shows two instances

of patterns, a wave and cycloid, in a two-dimensional plane

exhibiting the same feature (pattern around a central axis). We

term this central axis (red) as the underlying trajectory and

denote by U . Let us denote the state trajectory - the trajectory

a robot will actually follow - by x (blue). In this work, we rely

on a distinction between the underlying trajectory U , a skill

representation Si that produces a pattern such that subscript i
denotes the ith skill from the skill set S , and the method by

which these are combined to form states x and controls u.

A key feature of the underlying trajectory is that it must

sustain the intended motion pattern while having the ability

to bend to avoid obstacles and satisfy changing environmental

constraints. Two approaches could be considered: (1) a model-

free approach where the optimization handles these require-

ments via constraints, or (2) a model-based approach where

these requirements are inherent to the model. We have found

that a model-based approach provides a suitable solution.

In order to describe our method, we introduce a change of

variable – let there exist some spatial parameter s related to

time by
ds

dt
= v(t) (2)

where v(t) is some velocity profile. Thus, for a time period

T = [ta, tb], integrating (2) such that a point, e.g. s(ta) = sa,

is known leads to s(t) defining S = [sa, sb]. In our work, we

set v(t) = v0 where v0 ∈ R is a constant parameter.

Let the underlying trajectory and skill representations be

described by U(s;ψ) and Si(s; ρi) respectively where ψ, ρi
are model parameters. For brevity, we collect all model pa-

rameters and denote by θi = (ψT , ρTi )
T . We combine these

models to describe the state trajectory by

x(s; θi) = U + SiU
′ (3)

where a dash ′ represents the derivative with respect to s. We

highlight here the need for the change of variables (2): the

model U ′ in (3) must have unit-norm so not to interfere with

the skill pattern Si. Due to a parameterized model (3), the

control actions u(·) are given by x′(·), and thus defined by

u(s; θi) = U ′ + S′

iU
′ + SiU

′′ (4)

where we have applied the product rule for differentiation.

Following assumption (i) in Sec. II, the skill set S is sub-

divided by skill models Si, each parameterized by ρi, i.e. S =
∪i{Si(s; ρi) : ρi ∈ R

mi}.

Let the skill model Si(s; ρi) describe some motion pattern

– that is specific to a given application domain, e.g. [7]

exemplifies various weave patterns in welding. Here, we state

a particular form used to represent wave and cycloid skills.

Let Si be a composition of the two functions σi(·) and ωi(·):

Si(s; ρi) = σiR(ωi) (5)

where R(·) defines a two-dimensional rotation matrix about

some angle, σi(·) can be thought of as a scaling and ωi(·) as

a rotation angle. A skill model Si can be therefore given by

simply defining the scalar valued functions σi and ωi.

During the development of our framework, various models

for the underlying trajectory were considered. For example, an

early considerations was a polynomial representation for U .

However, this lead to numerical instabilities in the trajectory

 ���



optimization. We have found that a model-based approach us-

ing Clothoids as a representation for the underlying trajectory

provides a suitable solution. The Clothoid representation – also

known as Euler curves, has some inherent properties such

as (1) linearly varying curvature, and (2) a compact repre-

sentation (small number of parameters), that will allow us to

realize online adaptation within our optimization framework.

Clothoids have been utilized in road design [20], path [5]

and attitude [13] planning, autonomous driving [19, 29], and

continuum robotics [14].

The Clothoid model of the underlying trajectory is given by

U ′ = [cos(α), sin(α)]T , such that (6a)

α′ = φ0 + φ1(s− sc) (6b)

for all s ∈ Sf = [sc, sf ] where α(s) describes the orientation

and φ = [φ0, φ1]
T ∈ R

2 describe the curvature of the Clothoid

trajectory. Note, α(s) is found by integrating (6b) such that

α(sc) = αc is known. The underlying trajectory parameters

are ψ = [φ0, φ1, αc]
T . Notice, for all α, U ′ has unit-norm.

We can find U by integrating (6a) given that U(sc;ψ) = Uc

is known. If the current robot state xc is known, then we

can obtain Uc = xc − SiU
′ by re-arranging (3). Note, the

analytic integral of (6a) can only be found in terms of a special

class of functions known as the Fresnel integrals [16]. To

avoid this difficulty, we instead compute U by approximation

using the multi-variable version of the Runge–Kutta 4 method.

Additionally, by simply defining more curvature parameters

φ0, φ1, multiple Clothoid segments can be concatenated to

form more elaborate underlying trajectories.

B. Skill estimation

As in related literature [8, 15, 17], we make the assumption

that we are able to infer operator intent conditioned on a

window of their previous input – note, intent may change.

In our case, the intent estimation consists of a selection of

parameters θ̂i, providing a description of the operators intent

within the context of skills.

We describe how to estimate θ̂i from a window of raw

interface signals hr(s) for s ∈ Sp = [sp, sc] that correspond

to the time window Tp = [tp, tc] where tc is the current time,

and tp is some previous time stamp such that tw = tc − tp
is a specified window duration. Note, since our method relies

on this window duration for tw seconds at the start of a task

we must control the robot in direct control - see the switch

in Fig. 2. We treat θi as decision variables. Under assumption

(ii) in Sec. II, we infer θ̂i by solving

θ̂i = argmin
θi

εi(θi) subject to θi ∈ ΘSE
i (7)

such that εi(·) is an error function defined by

εi(θi) =

∫

Sp

‖u(s; θi)− hr(s)‖2 ds+R(θi) (8)

where u(·) is defined in (4), R(·) is a regularization term,

and ΘSE
i is the set of possible values for θi represented by a

combination of inequality and equality constraints.

x

U

Fig. 3: Motion pattern examples. Upper: weave patterns used

in welding, credit Josh Welton [30]. These highlight patterns

implemented in industry to achieve different goals. Lower:

model-based trajectories for a wave and cycloid skill.

Regarding the regularization term R(·), we can use it to bias

the solution towards pre-specified goals. As an example, we

may wish to reduce the rate of change in the skill parameters

ρi, sustaining characteristics of the skill. For instance, in the

case of highly variable inputs, we can define the regularization

term as R(θi) = ‖ρi − ρ̂previ ‖2WR
where ρ̂previ is the previous

skill parameter solution and WR is some appropriate weighting

matrix. Alternatively, setting R(θi) = ‖φ‖2WR
penalizes φ, fa-

voring low curvature trajectories. Additionally, a combination

of weighted terms can address multiple goals.

C. Skill identification

Recall from Sec. III-A our skill set S is sub-divided by

a number of skill models Si. We identify the model Si and

corresponding values for θ̂i by solving (7) for each model and

chose the skill that results in the smallest error εi.

D. Trajectory optimization

We have established how to identify a skill model Si and

a corresponding parameter description θ̂i for the intended

state and control signals from a window of the operators

raw interface signals. Ideally, in the next control loop step

sn = s(tn) (i.e. tn = tc+δt where δt is the control loop cycle

duration), we would like to execute the trajectory that most

closely resembles the operator’s intent, i.e. x(sn; θ̂i), u(sn; θ̂i).
However, our shared control system must also be able to assist

a novice operator in avoiding collision with obstacles while

simultaneously maintaining the intended skill. Since our state

and control trajectories are functions of the parameters θi,
finding optimal parameters θ∗i by solving (1) directly leads

 ���



φ
0

φ 1

co
s
t x

,u
φ
0

φ 1

co
s
t θ

Fig. 4: Cost landscape comparison highlighting the convexity

in our objective function (right) as opposed to the typical

principle of minimal cost function over applying our state and

trajectory models (left). Note, costx,u = cost
(
x(θi), u(θi)

)

where cost is (1) substituting our models for x, u given by

(3) and (4) respectively, and costθ = cost(θi; θ̂i) is our cost

function (10). Note, in both cases all variables in θi are fixed

apart from φ0, φ1 for illustration purposes.

to a highly nonlinear scheme. During the development of

our method, we found that constrained optimization solvers

often fail to converge in this case. We resolve this issue by

adapting (1) and using a modified version of the cost function,

leading to the following optimization problem

θ∗i = argmin
θi

cost(θi; θ̂i) (9a)

subject to

x(s; θi) ∈ X(ẽ), u(s; θi) ∈ U, θi ∈ ΘTO
i (9b)

for all s ∈ Sf

such that

cost(θi; θ̂i) = ‖θi − θ̂i‖
2

WTO
(10)

where x(·) and u(·) are defined by (3) and (4) respectively,

ΘTO
i is the set of possible values for θi, and Sf = [sc, sf ]

corresponds the time horizon Tf as in (1). Note that we make

a differentiation between ΘSE
i and ΘTO

i . Depending on the

application goals you can restrict the range of possible values

that θi can take in both (7) and (9): for example, we may

wish to set the underlying trajectory initial orientation αc to

the value estimated in (7) – this is enforced in (9) by setting

the constraint αc = α̂c where α̂c is the value found by solving

(7). Notice also that since we have derived explicit equations

for x, u in terms of parameters θi, we are able to remove the

equations of motion1 as an equality constraint.

The cost function proposed here follows the criteria of the

principle of minimal intervention; however, our cost function

attempts to maintain the operators intentions as described

by the estimated parameters. Additionally, our cost function

design has the numerical benefit of being strictly convex with

respect to parameters θi, as schematically illustrated in Fig.

4. However, note the constraints are non-convex, meaning (9)

is still a nonlinear optimization problem - only convex in its

objective function (10).

1Recall the equations of motion are represented by f(·) in (1b)

Fig. 5: Wiping mock-up task where a user teleoperates a robot

to perform a wave motion pattern from right to left.

IV. EXPERIMENTS

We now describe an experimental setup for skill-based

shared control, specifically for a wiping task involving two

different skills defined explicitly. Note the conceptual similar-

ity between wiping, welding, and spraying, where the two-

dimensional task can directly map to a three-dimensional

workspace.

The goal of the experimental mock-up task is for a robot to

sweep a given area of a surface, e.g. see Fig. 5. We assume

the operator enacts one of two skills: (i) a wave skill where

the robot should travel in a wave back-and-forth across the

underlying trajectory, and (ii) a cycloid skill where the robot

should travel in circles around the underlying trajectory. Let

the states x ∈ R
2 define the position of the end-effector

on the wiping surface and the control input u ∈ R
2 as the

2D input planar velocity. The operator gives two-dimensional

inputs hr ∈ R
2 via a joystick.

Equation (5) defines a particular version of the skill repre-

sentation in terms of the scaling and rotational functions σi(·)
and ωi(·) respectively. Table I defines the wave, and cycloid

skills explicitly in terms of these two functions.

TABLE I: Skill representations.

Si Skill mi σi(s; ρi) ωi(s; ρi)

S1 Wave 3 ρ
(0)
1 sin

(

2πρ
(1)
1

(

s+ρ
(2)
1

)

)

π/2

S2 Cycloid 3 ρ
(0)
2 2πρ

(1)
2

(

s+ρ
(2)
2

)

For the skill estimation stage, the regularization function

is defined by R(θi) = ‖θi − θ̂previ ‖2WR
where θ̂previ is the

previous solution, and the constraints that define ΘSE
i are as

follows: θmin
i ≤ θi ≤ θmax

i bound the values of θi within

lower θmin
i and upper θmax

i limits, and αc = α∗

prev where

 ���



α∗

prev is the previous solution from the trajectory optimization

retrieved via a feedback loop as in Fig. 2. Note that on the very

first iteration of our method that θ̂previ and α∗

prev is undefined,

and so the regularization term R and this particular constraint

is relaxed for a single iteration.

In both the skill estimation and trajectory optimization, the

solvers are seeded with the previous solution. In the very

first iteration, a guess is given to the skill-estimation whereas

the trajectory optimization uses the solution from the skill

estimation θ̂i as the initial seed.

A. System description

We implemented our method within the CasADi frame-

work [2], and leverage the plugin for SNOPT [12] to solve (7)

and (9). Our method runs in an MPC loop: given a window

of previous operator inputs, we estimate θ̂i for all skills i
in separate processing threads, identify the intended skill by

comparing the cost of fittings (8), compute an optimal θ∗i
by solving (9) – resulting in a trajectory of states x(θ∗i ) and

controls u(θ∗i ), from which we execute the first step.

The pose of the whiteboard, used as the wiping surface for

the robot, is tracked using a Vicon motion capture system.

Participants interface with the system using a Thrustmaster T-

Flight HOTAS X joystick. The two main axes of the joystick

are mapped corresponding to the two dimensions of the

whiteboard, see Fig. 5. Our experiments were executed on a

PC running 64-bit Ubuntu 20.04 with a 16-core Intel Core i9-

9900KF CPU at 3.60GHz. Data was collected using a 7-DoF

KUKA LWR Arm.

B. Switching intended skill

We start by demonstrating our methods capability to identify

a skill and a change in the operators’ intention solely from

streaming joystick data. An operator starts by performing

a wave skill, and then switches to a cycloid roughly 20

seconds after the method starts. Fig. 6 (right) shows the

trajectory resulting from applying control commands using our

method. Fig. 6 (upper-left) shows the velocity profile of the

commanded versus applied control as well as the instantaneous

deviation between the two. Fig. 6 (lower-left) demonstrates

the evolution of the skill fitting costs and instance of the skill

switch identification.

C. Static obstacle avoidance and solve duration comparison

Next we demonstrate our method’s ability to continuously

adhere to environmental constraints while maintaining the

features of the estimated skill. We now introduce a bound-

ary, represented in (9b) as an inequality constraint given by

xmin ≤ x(s; θi) ≤ xmax for all s ∈ Sf . Fig. 7 (upper)

shows the trajectory taken by the robot and its corresponding

underlying trajectory. It also shows the trajectory that results

from applying the same operator commands in a direct control

mode, leading to a collision – highlighted by the black dotted

lines.

An important consideration of any teleoperation system is

that the overall computational time should remain below a

certain threshold to allow for reasonable sampling frequen-

cies. Fig. 7 (lower) shows the skill estimation and trajectory

optimization solver duration for each MPC loop cycle for

this obstacle avoidance experiment. The average number of

iterations was 16.9± 5.1 and 2.4± 3.3 and the average CPU

time was 4.9±1.1ms and 1.4±0.2ms for the skill estimation

and trajectory optimization, respectively. The average total

CPU time was 6.3 ± 1.2ms, well under the 20ms threshold

for a 50Hz operation.

D. Obstacle avoidance in a dynamic environment

A key requirement for the adoption of shared control

systems in industry, such as the construction sector, is the

ability to modify control inputs in the face of dynamic

(changing) environmental constraints. Due to the MPC-nature

of our method we are able to adapt online to changes in the

environment whilst maintaining the skill features.

We tracked a straight edge using a Vicon motion capture

system (see Fig. 8) and incorporated this in our trajectory

optimization step by including d(x, ν) ≥ 0 for all s ∈ Sf as

a dynamic constraint in (9b). Here, d(·) is a signed distance

function, which computes the distance to the line for feasible

states (negative otherwise) while ν is the pose of a Vicon

tracking marker – updated at each control loop cycle.

An experimenter moved the straight edge within the

workspace of the robot using a motion unknown to the

operator. Fig. 8 demonstrates that our method was able to

avoid the obstacle whilst maintaining the required skill.

E. User Study

In this section, we describe our user study. The goal of this

experiment is to analyze the relation between the quality of

the inputs, provided by the participants, and the quality of

the resulting motion patterns for our method in comparison to

direct control.

We conducted a within-subjects experiment, evaluating the

performance of 11 participants (9 male, 2 female). In our

previous work we observed that certain habits (i.e. playing

computer games) can effect task performance. Using the same

criteria as in [22], we classified four participants as highly

familiar with computer games.

1) Participant protocol: Participants were tasked with con-

trolling the robot to perform a wiping task straight along the

whiteboard, right to left, for two different skills (wave and

cycloid) and in two different modes: direct control (DC) and

shared control (SC). After consent was taken, the participant

was given a practice run to familiarize themselves with the

joystick.

We presented the skills to the user in a fixed order: wave

then cycloid. The order in which we presented the modes DC

and SC were randomized. We informed the participants they

would teleoperate under an assistive (i.e. shared control) and

non-assistive (i.e. direct control) modes of control without

specifying the sequence. At the start of each skill block,

a demonstration of the skill was played on the robot so

they could easily envisage the task they were required to

 ���



−2

0

2

0

2

4

0 10 20 30 40 50 60
0

0.5

1

1.5

·10−2 DC SC,Wave SC,Cycloid

V
el

.
[m

s−
1
]

·10−2

‖
h
−

u
‖
[m

s−
1
]

·10−2

Time [s]

ε i
[m

s−
2
] h0/h1

u0/u1

‖h− u‖

Wave

Cycloid

0.10.20.30.4

0.2

0.25

0.3

x0 [m]

x
1
[m

]

Start xr

DC,Wave

SC Start xr

SC,Wave

Skill Switch xr

SC,Cycloid

End

Fig. 6: Skill switch experiment. Upper-left: input commands in the velocity space, the resulting velocity controls, and the

difference between the two signals. Lower-left: corresponding fitting error εi(·) for both skills indicating (by the vertical

dashed red line) the moment the skill switches. Right: robot trajectory (note that the robot moves from right to left).

0.150.20.250.30.350.40.45

0.1

0.2

x0 [m]

x
1
[m

]

Start xr

DC,Wave

SC Start xr

SC,Wave

End U

Boundary

20 30 40 50 60 70 80
0

5

10

15

Time [s]

D
u

ra
ti

o
n
[m

s]

Skill Est. Traj. Opt. Total 100 Hz

Fig. 7: Static obstacle avoidance experiment. Upper: shows

the trajectory produced by direct control where the operator

inadvertently leads the robot into constraint violation and also

the trajectory produced by shared control - the robot moves

from right to left. Lower: reports the computation times for

the skill estimation, the trajectory optimization, and the total

time.

perform. For each of the four trials, the user was asked to

perform one unrecorded practice run, then another recorded

trial. Participants were able to visually observe the current

state of the robot without being given any visual feedback

about the robots trail across the board, and thus were unable

to monitor the resulting trajectory.

2) Measures and analysis: During each trial, we collected

joystick signals hr, and target positions xr (in the whiteboard

coordinate frame) at a sampling frequency of 50Hz. Note

that superscript r refers to the fact that these values are raw

signals. Recall from Sec. III-B, our method relies on a direct

control initialization that lasts for a certain window duration

tw before shared control is activated. The data corresponding

to this initialization was removed for both the direct control

and shared control results so that the comparison between the

two modes was fair.

We measure the quality of the joystick and applied control

signals by fitting an ideal signal using our model (4), i.e. for

each trial we compute

Fh =
1

T
min
θi

N∑

k=0

∥∥u
(
s(tk); θi

)
− hrk

∥∥2

subject to θi ∈ Θi

(11)

where T is the duration of the trial used here to normalize

the fitting, tk are time stamps, N is the number of data

points collected. Similarly, we measure the quality of the target

position signals xr by computing

Fx =
1

T
min
θi

N∑

k=0

∥∥x
(
s(tk); θi

)
− xrk

∥∥2

subject to θi ∈ Θi

(12)

where x(·) is our model defined by (3). In both (11) and (12)

we set the parameter sc = 0 and constrain the variables for

the Clothoid curvature φ to zero, since the task was to perform

a skill around an underlying trajectory with no curvature. We

leave all other parameters in θi unconstrained.

For both Fh and Fx, smaller values indicate more accurate

fitting and thus higher performance. Note that even though

our shared control method produces trajectories based on the

models we fit here, we do not expect zero fitting error for our

 ���



0.20.4

0.2

0.4

x0 [m]

x
1
[m

]

0.20.4

x0 [m]

0.20.4

x0 [m]

0.20.4

x0 [m]

xr

Wave
xc x∗ Boundary

Fig. 8: Dynamic obstacle avoidance experiments at four snapshots in time. The obstacle (red boundary) is sensed using the

Vicon Motion Capture system, and represented as parameterized constraints in (9). Note, the robot moves from right to left.

method since we allow the method to adapt to the input from

the human (i.e. θ̂i is modified online).

An example from two participants for each skill are shown

in Fig. 9. We observe that, visually, the quality of the direct

control signals is far poorer than the shared control.

The results of the computed fittings are shown in Fig. 9.

For the wave skill, we observe that shared control leads to

similar average performance for Fx, whereas the results for

the cycloid skill clearly lead to a reduction in the fitting error.

For the shared control mode, both the mean and variance of

Fh are higher than that of the direct control signals, i.e., the

operators joystick signals become more varied in the shared

control mode as opposed to the direct control. This might be an

indication that our shared control method leads to a reduction

in the participants cognitive load - however, we acknowledge

that further study would be required to prove or disprove this

hypothesis. Despite more varied joystick signals, our method

is able to produce more accurate signals for the cycloid skill.

However, there is little change when comparing the average

fitting Fx for the wave. This could be an indication that our

method has more corrective interventions in scenarios with

more complex skills.

V. DISCUSSION

Next we discuss a few interesting observations in depth

and sketch future directions. In the user study (Sec. IV-E),

it was reported verbally by some participants that the speed

of the robot changed at certain points of the pattern. Setting

the speed of the underlying trajectory in (2) as a constant, i.e.

v(t) = v0, enables a spatial-temporal coupling between the

underlying trajectory and state trajectory that leads to increases

and decreases in speed at certain stages of the pattern (e.g. for

the wave, at peaks/troughs the speed through the pattern is

slow, whereas the speed at the mid points is faster). Whilst

this parameter adapts to the users commands, the change

in speed through the state trajectory is still perceivable and

we hypothesize this may adversely affect user experience. To

counter this effect, future work will explore richer models for

v(t) that removes this coupling.

Our skill switching experiment (Sec. IV-B) demonstrates the

ability of the shared controller to react to an operator’s change

of intention. Fig. 6 (right) highlights this change with a red

dot. While conducting the experiment, we observed that there

is a slight delay from when the user starts to produce a cycloid

to when the controller identifies this switch. The question of

whether this leads to user dissatisfaction remains open. We

could potentially minimize this misalignment by accelerating

the skill-identification process. However, our focus in this

work was to introduce a novel conceptual framework for skill-

based shared control, and thus we relegate this analysis and

extension to future work.

Our method, in its current formulation, is restricted to a

certain window duration tw that must be enforced for all skill

models. This could potentially lead to difficulties when tuning

parameters, especially in the face of, for example, a line skill

(defined by σi = 0, ωi = 0) - we may see a bias in the

skill identification step towards a particular skill as opposed

to any other without an adaptive window size. We plan to

investigate the effect of additional skills on the skill estimation

and identification steps.

Fig. 7 (upper) shows how our skill-based shared control

method adapts a trajectory to avoid a boundary. The trajectory

curves smoothly whilst ensuring the wave skill. Visually, the

wavelength of the resulting trajectory seems slightly smaller.

This might be due to the regularization term of the skill iden-

tification, added in order to avoid over-fitting the operator’s

commands which have a fairly high variance (Fig. 6).

Fig. 7 (lower) shows the solver duration’s for the skill iden-

tification and trajectory optimization steps. For the majority of

cases (∼99%), the total duration stays under 10ms, compatible

for online teleoperation. This particular experiment considers

 ���



4.5

·10−2

0.5 1

0.5

1

1.5

2

2.5

·10−2Fh [m2 s−3]

F
x
[m

2
s−

2
]

wave DC

wave SC

cycloid DC

cycloid SC

0.10.20.30.4

0.15

0.2

0.25

0.3

0.35

x0 [m]

x
1
[m

]

0.10.20.30.4

x0 [m]

xr

DC,Wave xr

SC,Wave xr

DC,Cycloid xr

SC,Cycloid

Start SC Start End

Fig. 9: User study experiment. Upper: scatter plot comparing

fitting error in the input commands and resulting trajectories

with the corresponding box plots. Note, the box plots share

the same axes as the scatter plot. Lower: participant shared

control examples where the robot moves from right to left.

only a single skill. Considering more skills will increase

the total duration of the skill identification, if performed

sequentially. However, the skill identification step for multiple

skills are mutually exclusive, and so we can avoid this issue by

exploiting multi-threading or GPU hardware to perform these

computations in parallel.

VI. CONCLUSIONS

In this paper we have introduced a novel framework for

skill-based shared control. We demonstrate that our system

is able to identify different skills, react to changes in oper-

ator intentions, and re-plan whilst accounting for changing

environmental constraints. Our framework follows from a

novel representation for state and control that exploits a

well-established geometrical primitive, i.e. Clothoids, and a

parametric model of skills. We show that our shared control

method is computationally efficient for online teleoperation

within a Model Predictive Control framework, that enables its

adaptability to dynamically changing constraints. Furthermore,

we validated our method in a lab mock-up on a KUKA LWR

and showed its capability to identify skill switches. Our user

study provides some early evidence that this approach to

shared control leads to improved quality of output motions,

while potentially reducing the operators cognitive load. In

future work, we intend to investigate (i) the incorporation of

learned skill representations based on expert demonstrations,

rather than pre-specified analytical models; (ii) the modelling

of the velocity profile of the state trajectory, as we observed

that such component might significantly impact the user

experience; and (iii) the use of probabilistic approaches for

improving the inference of the operator’s intended skill.

REFERENCES

[1] Firas Abi-Farraj, Takayuki Osa, Nicoló Pedemonte Jan

Peters, Gerhard Neumann, and Paolo Robuffo Gior-

dano. A learning-based shared control architecture

for interactive task execution. In IEEE International

Conference on Robotics and Automation (ICRA), 2017.

doi:10.1109/ICRA.2017.7989042.

[2] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B.

Rawlings, and Moritz Diehl. Casadi: a software frame-

work for nonlinear optimization and optimal control.

Mathematical Programming Computation, 11(1):1–36,

2019. doi:10.1007/s12532-018-0139-4.

[3] Michael Ballou. Shotcrete rebound – how much is

enough? Shotcrete magazine, American Shotcrete As-

sociation, 2003.

[4] Joshua D. Bard, David Blackwood, Nidhi Sekhar, and

Brian Smith. Decorative robotic plastering - a case study

of real-time human machine - collaboration in high-skill

domains. Proceedings of the 33rd eCAADe Conference

- Volume 2, Vienna University of Technology, Vienna,

Austria, 2015.

[5] Mišel Brezak and Ivan Petrović. Real-time approxima-

tion of clothoids with bounded error for path planning

applications. IEEE Transactions on Robotics, 30(2):507–

515, 2014. doi:10.1109/TRO.2013.2283928.

[6] Alexander Broad, Todd Murphey, and Brenna Argall.

Highly parallelized data-driven mpc for minimal inter-

vention shared control. In Proceedings of Robotics: Sci-

ence and Systems (RSS), Freiburg im Breisgau, Germany,

2019. doi:10.15607/RSS.2019.XV.008.

[7] Heitor Abdias da Silva Pereira, Marcelo Cavalcanti

Rodrigues, and João Vitor Lira de Carvalho Firmino.

Implementation of weave patterns by path parameter-

ization in the simulation of welding processes by the

finite element method. The International Journal of

Advanced Manufacturing Technology, 104(1):477–487,

2019. doi:10.1007/s00170-019-03861-5.

 ���

https://doi.org/10.1109/ICRA.2017.7989042
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/TRO.2013.2283928
https://doi.org/10.15607/RSS.2019.XV.008
https://doi.org/10.1007/s00170-019-03861-5


[8] Anca D. Dragan and Siddhartha S. Srinivasa. A policy-

blending formalism for shared control. The International

Journal of Robotics Research (IJRR), 32(7):790–805,

2013. doi:10.1177/0278364913490324.

[9] Nima Enayati, Giancarlo Ferrigno, and Elena De Momi.

Skill-based human–robot cooperation in tele-operated

path tracking. Autonomous Robots, 42(5):997–1009,

2018. doi:10.1007/s10514-017-9675-4.

[10] Mustafa Suphi Erden. Manual welding with robotic

assistance compared to conventional manual welding.

In IEEE 14th International Conference on Automation

Science and Engineering (CASE), pages 570–573, 2018.

doi:10.1109/COASE.2018.8560489.

[11] Mustafa Suphi Erden and Aude Billard. Hand impedance

measurements during interactive manual welding with a

robot. IEEE Transactions on Robotics (T-RO), 31(1):

168–179, 2015. doi:10.1109/TRO.2014.2385212.

[12] Philip E. Gill, Walter Murray, and Michael A. Saunders.

SNOPT: An SQP algorithm for large-scale constrained

optimization. SIAM Review. A Publication of the Soci-

ety for Industrial and Applied Mathematics, 47:99–131,

2005. doi:10.1137/S1052623499350013.

[13] Vicent Girbés, Gloria Vanegas, and Leopoldo Armesto.

Clothoid-based three-dimensional curve for attitude plan-

ning. Journal of Guidance, Control, and Dynamics, 42

(8):1886–1898, 2019. doi:10.2514/1.G003551.

[14] Phanideep S. Gonthina, Apoorva D. Kapadia, Isuru S.

Godage, and Ian. D. Walker. Modeling variable curvature

parallel continuum robots using euler curves. In IEEE

International Conference on Robotics and Automation

(ICRA). IEE, 2019. doi:10.1109/ICRA.2019.8794238.

[15] Kris Hauser. Recognition, prediction, and planning for

assisted teleoperation of freeform tasks. Autonomous

Robots, 35(4):241–254, 2013. doi:10.1007/s10514-013-

9350-3.

[16] Mark A. Heald. Rational approximations for the fresnel

integrals. Mathematics of Computation, 44(170):459–

461, 1985. doi:10.1090/S0025-5718-1985-0777277-6.

[17] Shervin Javdani, Henny Admoni, Stefania Pellegrinelli,

Siddhartha S. Srinivasa, and J. Andrew Bagnell.

Shared autonomy via hindsight optimization for tele-

operation and teaming. The International Journal

of Robotics Research (IJRR), 37(7):717–742, 2018.

doi:10.1177/0278364918776060.

[18] Sina Nia Kosari, Fredrik Rydén, Thomas S. Lendvay,

Blake Hannaford, and Howard Jay Chizeck. For-

bidden region virtual fixtures from streaming point

clouds. Advanced Robotics, 28(22):1507–1518, 2014.

doi:10.1080/01691864.2014.962613.

[19] Pedro F. Lima, Marco Trincavelli, Jonas Martensson, and

Bo Wahlberg. Clothoid-based model predictive control

for autonomous driving. In European Control Conference

(ECC). IEEE, 2015. doi:10.1109/ecc.2015.7330991.

[20] Hormoz Marzbani, Reza N. Jazar, and M. Fard. Bet-

ter road design using clothoids. In Ingemar Denbratt,

Aleksandar Subic, and Jörg Wellnitz, editors, Sustainable

Automotive Technologies 2014, pages 25–40. Springer

International Publishing, 2015. doi:10.1007/978-3-319-

17999-5 3.

[21] João Moura, William Mccoll, Gerard Taykaldiranian,

Tetsuo Tomiyama, and Mustafa Suphi Erden. Automa-

tion of train cab front cleaning with a robot manipulator.

IEEE Robotics and Automation Letters (RA-L), 3(4):

3058–3065, 2018. doi:10.1109/LRA.2018.2849591.

[22] Christopher E. Mower, Wolfgang Merkt, Aled Davies,

and Sethu Vijayakumar. Comparing alternate modes

of teleoperation for constrained tasks. In IEEE

15th International Conference on Automation Science

and Engineering (CASE), pages 1497–1504, 2019.

doi:10.1109/COASE.2019.8843265.

[23] Christopher E. Mower, João Moura, Aled Davies, and

Sethu Vijayakumar. Modulating human input for shared

autonomy in dynamic environments. In IEEE Inter-

national Conference on Robot and Human Interactive

Communication (RO-MAN), 2019. doi:10.1109/RO-

MAN46459.2019.8956304.

[24] Günter Niemeyer, Carsten Preusche, and Gerd Hirzinger.

Telerobotics. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2008. doi:10.1007/978-3-540-30301-5 32.

[25] Ozgur S. Oguz, Zhehua Zhou, and Dirk Wollherr. A hy-

brid framework for understanding and predicting human

reaching motions. Frontiers in Robotics and AI, 5:27,

2018. doi:10.3389/frobt.2018.00027.

[26] Louis B. Rosenberg. Virtual fixtures: Perceptual tools

for telerobotic manipulation. In IEEE Virtual Re-

ality Annual International Symposium, pages 76–82,

Washington, DC, USA, 1993. IEEE Computer Society.

doi:10.1109/VRAIS.1993.380795.

[27] Matteo Rubagotti, Tasbolat Taunyazov, Bukeikhan

Omarali, and Almas Shintemirov. Semi-autonomous

robot teleoperation with obstacle avoidance via

model predictive control. IEEE Robotics and

Automation Letters (RA-L), 4(3):2746–2753, July

2019. doi:10.1109/LRA.2019.2917707.

[28] Wilko Schwarting, Javier Alonso-Mora, Liam Pauli, Ser-

tac Karaman, and Daniela Rus. Parallel autonomy

in automated vehicles: Safe motion generation with

minimal intervention. In IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE, 2017.

doi:10.1109/icra.2017.7989224.

[29] Júnior A. R. Silva and Valdir Grass. Clothoid-

based global path planning for autonomous vehicles

in urban scenarios. In IEEE International Confer-

ence on Robotics and Automation (ICRA). IEE, 2018.

doi:10.1109/ICRA.2018.8461201.

[30] Josh Welton. How do you get those weaved welds?

thefabricator.com/thewelder, 2014.

[31] Zhang Ya-kun, Li Hai-yang, Huang Rui-xue, and

Liu Jiang-hui. Shared control on lunar spacecraft

teleoperation rendezvous operations with large time

delay. Acta Astronautica, 137:312 – 319, 2017.

doi:10.1016/j.actaastro.2017.04.014.

 ���

https://doi.org/10.1177/0278364913490324
https://doi.org/10.1007/s10514-017-9675-4
https://doi.org/10.1109/COASE.2018.8560489
https://doi.org/10.1109/TRO.2014.2385212
https://doi.org/10.1137/S1052623499350013
https://doi.org/10.2514/1.G003551
https://doi.org/10.1109/ICRA.2019.8794238
https://doi.org/10.1007/s10514-013-9350-3
https://doi.org/10.1007/s10514-013-9350-3
https://doi.org/10.1090/S0025-5718-1985-0777277-6
https://doi.org/10.1177/0278364918776060
https://doi.org/10.1080/01691864.2014.962613
https://doi.org/10.1109/ecc.2015.7330991
https://doi.org/10.1007/978-3-319-17999-5_3
https://doi.org/10.1007/978-3-319-17999-5_3
https://doi.org/10.1109/LRA.2018.2849591
https://doi.org/10.1109/COASE.2019.8843265
https://doi.org/10.1109/RO-MAN46459.2019.8956304
https://doi.org/10.1109/RO-MAN46459.2019.8956304
https://doi.org/10.1007/978-3-540-30301-5_32
https://doi.org/10.3389/frobt.2018.00027
https://doi.org/10.1109/VRAIS.1993.380795
https://doi.org/10.1109/LRA.2019.2917707
https://doi.org/10.1109/icra.2017.7989224
https://doi.org/10.1109/ICRA.2018.8461201
https://www.thefabricator.com/thewelder
https://doi.org/10.1016/j.actaastro.2017.04.014

	Introduction
	Problem formulation
	Method
	Model representation
	Skill estimation
	Skill identification
	Trajectory optimization

	Experiments
	System description
	Switching intended skill
	Static obstacle avoidance and solve duration comparison
	Obstacle avoidance in a dynamic environment
	User Study
	Participant protocol
	Measures and analysis


	Discussion
	Conclusions

