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Abstract—Today, even the most compute-and-power con-
strained robots can measure complex, high data-rate video and
LIDAR sensory streams. Often, such robots, ranging from low-
power drones to space and subterranean rovers, need to transmit
high-bitrate sensory data to a remote compute server if they are
uncertain or cannot scalably run complex perception or mapping
tasks locally. However, today’s representations for sensory data
are mostly designed for human, not robotic, perception and thus
often waste precious compute or wireless network resources to
transmit unimportant parts of a scene that are unnecessary for
a high-level robotic task. This paper presents an algorithm to
learn task-relevant representations of sensory data that are co-
designed with a pre-trained robotic perception model’s ultimate
objective. Our algorithm aggressively compresses robotic sensory
data by up to 11 × more than competing methods. Further,
it achieves high accuracy and robust generalization on diverse
tasks including Mars terrain classification with low-power deep
learning accelerators, neural motion planning, and environmental
timeseries classification.

I. INTRODUCTION

Imagine a future Mars or subterranean rover that captures
high-bitrate video and LIDAR sensory streams as it charts
uncertain terrain, some of which it cannot classify locally.
How should these robots represent, compress, and transmit
their rich sensory data over bandwidth-limited wireless net-
works, especially if the intended audience is often a compute-
intensive, remote machine learning model, not necessarily a
human viewer? Indeed, even a single RGB-D (depth) camera
stream produces upwards of 45 Megabytes/second of data
[25], while the deep-space network only has a communication
bandwidth of 0.5-4 Megabits/second [2]. 1

More broadly, today’s representations for sensory data
mostly optimize for human, not robotic, perception and thus
try to faithfully represent every pixel or point-cloud in a scene
[4, 9]. Ideally, however, resource-constrained robots should
represent only salient parts of sensory streams for remote
perception and planning tasks to reduce the computational
cost of encoding, storing, and transmitting sensory data. This
paper presents a general algorithmic framework to learn such
concise, task-relevant representations. We note that several
recent works have used specialized deep neural networks
(DNNs) to improve LIDAR or JPEG image compression
[33, 22, 35], motivated by the observation that standard
compression schemes do not emphasize features that are most

1NASA estimate for Earth to Mars Reconnaissance Orbiter link [2].
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Fig. 1: Task-Relevant Communication for Perception: A compute-
limited robot learns how to compress sensory input x, transmit salient
features z, and decode the input x̂ so that it can directly leverage
a pre-trained, potentially “off-the-shelf” task module f(; θtask) at a
central server. By learning an encoder and decoder (gray) within
the context of a pre-trained task module’s goal, we only transmit
minimal, salient information. In the figure, only components in gray
(the encoder and decoder) are learned, while the task network f has
pre-trained, fixed parameters. Original sensory input x and task output
y (dashed lines) are only used for training.

sensitive for accurate machine perception [9, 4]. However, the
key novelty of our work is to use a general-purpose, pre-
trained task module to guide representation learning, which
allows us to easily generalize to multiple sensor modalities
unlike prior specialized point-solutions.

Specifically, as shown in Fig. 1, our design provisions a
pre-trained, differentiable task module at a central server,
which allows multiple robots to share an upfront cost of
training the model and benefit from centralized model updates.
Our key technical insight is to co-design a minimal sensory
representation that is tightly coupled with the task module’s
objective. Henceforth, co-design means that the pre-trained
task network parameters are fixed and the task objective guides
what salient parts of a sensory stream to encode. By also
learning a task-relevant decoder, we enable robots to leverage a
variety of pre-trained, publicly-available task modules without
modifying their required input dimensions. Our approach is
complementary to advances in on-robot computation and in-
stead pertains to compute-intensive, potentially collaborative,
tasks that require remote assistance. Indeed, our work is partly
inspired by recent proposals to place powerful servers in
deep space to assist future rovers and space telescopes with
compute-intensive machine learning tasks, data processing,
and storage before relaying selected data back to earth [11, 34].
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Literature Review: Recent work has applied information
bottleneck theory [32] to build controllers that focus on
actionable, task-relevant visual inputs for robust, generalizable
navigation and grasping policies [27, 26, 29]. In contrast, we
introduce a novel algorithm for co-designing communication
and machine perception, which uses pre-trained task modules
to learn salient, efficiently-computable representations. Our co-
design approach differs from specialized solutions that use
DNNs for JPEG image compression [22, 35] and instead uses
diverse, off-the-shelf task modules to learn representations
for images, obstacle point clouds, and environmental sensor
timeseries.

Our work is also related to cloud robotics [17, 19], where
robots use remote servers to augment their grasping [21],
object recognition [16], and mapping capabilities [24]. Prior
work balances cloud computing accuracy with communication
delay by learning when to query the cloud [5, 31]. Rather
than address when to communicate, we instead address how
to represent data for task-centric communication. Our work is
also related to variational and multi-task autoencoders [18, 12],
which compress inputs to minimize regularized reconstruction
loss, often with domain-specific output layers in the multi-
task case. In contrast, by instead focusing on task loss, we
compress sensory data 11× more than standard autoencoders.

Finally, our work is complementary to methods that com-
press large DNNs to run on compute-limited robots, using
methods like weight pruning or knowledge distillation [3].
Despite such advances, state-of-the-art DNNs, such as trans-
formers for NLP (e.g., BERT [7]) or vision are still infeasible
to run on low-power, compute-limited robots. Thus, our work
addresses a viable alternative to transmit salient features for
remote, compute-intensive machine learning tasks.

Statement of Contributions: In light of prior work, our
contributions are three-fold. First, we introduce a novel for-
mulation that co-designs a distributed encoder/decoder with
a fixed task network. Second, we develop a novel algorithm
that aggressively compresses sensory data for diverse robotic
tasks. Third, we show how to flexibly allocate computation
between a compute-limited robot and server, which renders
our approach compatible with low-power DNN accelerators
like the Google Edge Tensor Processing Unit (TPU) [1].

Organization: This paper is organized as follows. In Sec. II,
we introduce a novel, general problem of co-designing sensory
representations for robotic perception. To address this problem,
Sec. III presents our co-design algorithm and highlights signif-
icant compression gains for an illustrative example of linear
systems. Then, Sec. IV evaluates our algorithm on diverse
perception tasks with compute-efficient DNNs. Finally, Sec.
V concludes with future directions.

II. PROBLEM STATEMENT

We now introduce the core compute modules for informa-
tion flow between a robot and a central server (Fig. 1), and
then formalize our problem statement. First, a robot measures
a sensory input x ∈ Rn, such as an image or LIDAR point
cloud. Without loss of generality, x could represent a single

sensory sample a robot wishes to transmit or a window w of
correlated samples measured from time t− w to t, such as a
segment of video, denoted by x = xt−w:t.
Robot Encoder: The encoder maps raw input x to a concise
representation z ∈ RZ , denoted by z = p(z|x; θenc.), where
θenc. are encoder model parameters, such as learned DNN
weights. Henceforth, z is referred to as a bottleneck represen-
tation, since it is compressed via an information bottleneck,
such as a DNN hidden layer, to a size Z � n.
Server Decoder: The encoder transmits bottleneck represen-
tation z over a wireless link to a differentiable decoder at
a central server, which generates a reconstructed estimate of
the raw sensory input x̂ = q(x|z; θdec.). The parameters of a
decoder model, such as a DNN, are denoted by θdec..
Server Task Network: Finally, the decoded input x̂ is di-
rectly passed through a pre-trained, differentiable task module,
which serves as the key distinction of our work from a
standard autoencoder. An example of a task module could be a
DNN object detector that predicts object locations and classes
ŷ = f(x̂; θtask) using model parameters θtask. Crucially, by
decoding to the original input dimension n, our approach
enables robots to directly utilize a plethora of pre-trained,
publicly-available task modules that expect an input dimension
n without re-training on custom bottleneck representations z.
In practice, the encoder, decoder, and task module can all be
DNNs. We assume sensory input x and its label y are drawn
from a domain-specific distribution D, such as the space of
all Mars terrain images and labels.

A. Task and Reconstruction Optimization Objectives

Our principal objective is to minimize the task loss
Ltask(y, ŷ; θtask), which compares the resultant task outputs
y = f(x; θtask) using original input x and predicted outputs
ŷ = f(x̂; θtask) using a decoded input x̂. Our key technical
insight is that robotic perception tasks can often tolerate con-
siderable distortion in the input estimate x̂, such as omitting
irrelevant parts of an image/map for classification/planning,
as long as the downstream task module f(; θtask) can still
achieve its goal. Thus, decoded input x̂ should only repre-
sent task-relevant features, which enables highly-compressed
representations z to be transmitted over a wireless link.

Optionally, a roboticist might want to also minimize re-
construction loss, in cases where decoded inputs x̂ should
be moderately human-interpretable to view or debug por-
tions of an image. For such scenarios, loss function
Lrecon.(x, x̂; θenc., θdec.) incentivizes faithful reconstruction of
a scene, which, in practice, could be the standard variational
autoencoder regularized loss [18]. We provide a general, flex-
ible co-design framework that allows a roboticist to optimize
a weighted combination of task and reconstruction loss, with
reconstruction loss weight λ ≥ 0:

Lweight(x, x̂, y, ŷ; θtask, θenc., θdec.) =

Ltask(y, ŷ; θtask) + λLrecon.(x, x̂; θenc., θdec.). (1)

Our experiments evaluate the scenario of strictly optimizing
for task loss (λ = 0) as well as various values of λ > 0,
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which introduces a regularization term to incentivize highly-
compressed representations that still yield human-interpretable
reconstructions. Having defined our optimization objective, we
now formalize our problem statement.

B. Problem Statement

Problem 1 (Sensory Co-design for Machine Perception).
Given a differentiable task module f(; θtask) with fixed, pre-
trained parameters θtask, fixed bottleneck dimension Z, and
reconstruction loss weight λ ≥ 0, find robot encoder and
server decoder parameters θenc. and θdec. that minimize
weighted loss (Eq. 1) over data distribution D:

θ∗enc., θ
∗
dec. = argmin

θenc.,θdec.

E
(x,y)∼D

Lweight(x, x̂, y, ŷ; θtask, θenc., θdec.),

where x̂ = q(p(x; θenc.); θdec.) and ŷ = f(x̂; θtask).

Prob. 1 is widely applicable to resource-limited robots, such
as space and mining rovers, that can unlock large benefits of
remote computation if they send task-relevant information over
a bandwidth-limited network. The key novelty of our formula-
tion is that we leverage knowledge of a task objective, through
f(; θtask), to guide task-relevant representation learning of
encoder/decoder parameters θenc., θdec.. Our formulation is
related to multi-task learning for vision, which often considers
semantically-similar tasks, such as segmentation and object
detection [6]. In contrast, however, our weighted objective
has two semantically-different (and often competing) goals of
learning a sparse set of features for machine perception while
also regularizing for pixel-wise reconstruction for human-
interpretability. Further, we enable a roboticist to set bottleneck
size Z in a precise manner based on a network’s maximum
allowable data-rate. For example, the data-rate could be the
size of Z 32-bit floating point values sent at a certain com-
munication frequency.

C. Illustrative Example: Linear Systems Setting

To illustrate the compression benefits of optimizing for task
loss in Prob. 1, we consider a toy example where the encoder,
decoder, and task module are matrices. Specifically, consider
a simple robotic sensor network where a central server must
estimate a function y = Kx of a potentially large sensor mea-
surement x, without necessarily sending the full input x over
a wireless link. First, robot encoder matrix A = θenc. ∈ RZ×n

generates encoding z = p(x; θenc.) = Ax. After z is sent over
a wireless link, it is decoded to x̂ = q(z; θdec.) = Bz by linear
decoder B = θdec. ∈ Rn×Z . Finally, task matrix K ∈ Rm×n

generates the output of the linear estimation problem y ∈ Rm.
The task loss penalizes error in the linear estimate y = Kx,
and the reconstruction loss optionally penalizes error in the
sensor estimate x̂ in case elements of x̂ need to be sanity-
checked. Both the task and reconstruction loss are quadratic,
yielding weighted loss:

Lweight = ‖(Kx−KBAx)‖22︸ ︷︷ ︸
task loss

+λ ‖(x−BAx)‖22︸ ︷︷ ︸
recon.loss

. (2)

To show the full benefits of task-based compression, we now
provide an analytical solution for Prob. 1 for the special case
when λ = 0 (pure task loss objective).

Theorem 1 (Linear Task-Aware Compression). Consider task
matrix K ∈ Rm×n with rank r and compact singular value
decomposition (SVD) K = UΣV >, where U ∈ Rm×r and
V > ∈ Rr×n are semi-unitary. Then, for bottleneck dimension
r, setting A = V > and B = V solves Prob. 1 with zero
task loss ‖(Kx − KBAx)‖22 (Eq. 2 with λ = 0) for any
x ∈ Rn. Further, there are no encoder and decoder matrices
with bottleneck Z < r that achieve zero task loss.

Proof. The task loss is zero when, for any x ∈ Rn, y = Kx =
ŷ = KBAx. This is achieved when B = V and A = V >:

ŷ = KBAx = (UΣV >)︸ ︷︷ ︸
SVD(K)

× V︸︷︷︸
B

× V >︸︷︷︸
A

×x

= UΣV >x = Kx = y,

where V >V = Ir×r since V is semi-unitary. We now show
there are no other solutions with bottleneck Z < r. For the
sake of contradiction, suppose there exist Ã ∈ RZ×n, B̃ ∈
Rn×Z with Z < r that achieve zero task loss. Then:

rank(B̃Ã) ≤ min(rank(Ã), rank(B̃)) ≤ Z, and

rank(KB̃Ã) ≤ min(rank(K), rank(B̃Ã)) ≤ Z.

However, in order for Ã, B̃ to achieve zero task loss, we
must have Kx = KB̃Ãx for any x ∈ Rn, meaning we
must have K = KB̃Ã. However, this is a contradiction since
rank(KB̃Ã) ≤ Z < r = rank(K). Thus, we conclude there
are no solutions that achieve zero task loss for Z < r.

Compression benefits: Our key insight is that, by co-
designing with fixed task matrix K, we achieve zero task
loss with a compression gain of n

rank(K) compared to sending
full input x. However, we do not necessarily have zero
reconstruction loss since matrix V > is only semi-unitary,
meaning it is not required for V V > = BA to be an identity
matrix. In fact, if we want zero reconstruction loss, then we
have x̂ = BAx = x only when B = A−1, requiring B and
A to be square n×n matrices, yielding no compression gain.
Crucially, our solution differs from naı̈vely just computing
y = Kx directly at the robot, since we only transmit a small
representation z = V >x and use the modular task matrix K
at the server. Finally, we note that the choice of A = V > and
B = V is not unique for bottleneck r. For example, we can
scale the encoder to aA and decoder to bB where ab = 1.

D. Illustrative Example: Weighted Linear Setting

We now generalize our previous result for the weighted
linear setting with λ > 0. The key highlight of our solution is
that the optimal linear encoder/decoder to minimize weighted
task loss are simply a solution to a low-rank approximation
problem. To establish this result, we first concatenate N
examples drawn from training dataset (x, y) ∼ D into a
sample matrix X ∈ Rn×N . Given the dataset X and a
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bottleneck constraint Z, minimizing the weighted task loss
(Eq. 2) in the linear setting amounts to solving:

argmin
A,B

N∑
i=1

(X̂i −Xi)
>(K>K + λI)(X̂i −Xi) where

X̂ = BAX, rank(B) ≤ Z and rank(A) ≤ Z. (3)

In the above problem, the i-th column of X and X̂ are given
by Xi and X̂i respectively. The following theorem solves
Problem 1 for the weighted linear setting (Eq. 2) by reducing
it to a canonical low-rank approximation problem.

Theorem 2 (Linear Weighted Compression). The linear set-
ting of Problem 1 is a canonical low-rank approximation
problem with an analytical solution for an optimal encoder
matrix A and decoder matrix B.

Proof. (Sketch) We first note that the real matrix K>K+λI
is positive semi-definite, which admits an eigen-decomposition
denoted by Y ΛY >, where Y is orthogonal. Denoting the
Frobenius norm of a matrix as ||·||F , we can write the weighted
task loss for Problem 1 in the linear setting as:

N∑
i=1

(X̂i −Xi)
>(K>K + λI)(X̂i −Xi)

=

N∑
i=1

(X̂i −Xi)
>(Y ΛY >)(X̂i −Xi)

=||Λ
1
2 Y >X̂− Λ

1
2 Y >X||2F .

Thus, the solution to Problem 1 with a bottleneck Z in
the linear setting can be written in the following low-rank
approximation form:

argmin
A,B

||Λ
1
2 Y >BAX︸ ︷︷ ︸

approximation

−Λ
1
2 Y >X︸ ︷︷ ︸
original

||2F where

rank(B) ≤ Z and rank(A) ≤ Z. (4)

Thus, as stipulated by the Eckhart-Young theorem, the
solution to Eq. 4 is the rank Z truncated singular value
decomposition (SVD) of matrix Λ

1
2Y >X, denoted by UΣV >.

For the SVD, U ∈ Rn×Z is semi-orthogonal, V ∈ RN×Z is
semi-orthogonal, and Σ ∈ RZ×Z represents a diagonal matrix
of singular values. Thus, an encoder of A = U>Λ

1
2Y > and

decoder of B = (Λ
1
2Y >)−1U are solutions since:

Λ
1
2 Y >BAX︸ ︷︷ ︸

approximation

= Λ
1
2 Y > (Λ

1
2 Y >)−1U︸ ︷︷ ︸

B

U>Λ
1
2 Y >︸ ︷︷ ︸
A

X

= U(U>Λ
1
2 Y >X) = UΣV >︸ ︷︷ ︸

optimal rank Z approximation

.

Weighted Linear Results: For the weighted λ > 0 case,
we solve Prob. 1 using the SVD as in Theorem 2. Fig.
2 shows results for a toy linear problem with input and
output dimensions n = 6 and m = 3, where we achieve
optimal task performance with a 2× compression gain. Our
toy example shows that, even for linear systems, we achieve
large compression gains by co-designing with a task objective,
which mirror our subsequent results with complex DNNs.
While we note our theory only applies to linear systems, such
a theoretical underpinning is informative to understand our
results for complex DNNs.
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Fig. 2: Task-aware compression for linear systems. When the
encoder, decoder, and task module K are matrices, we achieve zero
task loss by only sending a representation of size rank(K) compared
to a measurement of size n. Our co-design scheme (orange, blue)
yields lower task loss for much smaller z compared to task-agnostic
methods (red). Further, we achieve better reconstruction loss and
more stable training than an end-to-end method (black), which does
not guide learning by fixing task module K.

III. TASK-AWARE CO-DESIGN ALGORITHM

In general, analytically solving Problem 1 is challenging,
especially when the task network and encoder/decoder are
DNNs. We now present Algorithm 1, which learns an en-
coder/decoder that approximately solves Problem 1. Impor-
tantly, our algorithm yields experimental results that match
analytical calculations for simple linear settings and also scales
to deep learning tasks, presented in Sec. IV.

Alg. 1 takes as input a bottleneck dimension Z, set based
on communication data-rate limits, and user-desired recon-
struction weight λ, on line 1. Then, it randomly initializes
the encoder/decoder parameters on line 2, which are learned
during training unlike task parameters θtask (line 3). The
main loop repeats for T learning rounds, where we sample
inputs from labeled training dataset D = {xi, yi} where each
(xi, yi) ∼ D (line 5), encode/decode sensory data (lines 6-
7), and finally invoke the task module on line 8. The key step
for co-design is line 9, where we backpropagate weighted loss
Lweight (Eq. 1) to update parameters θenc., θdec., while keeping
the task parameters θtask fixed. Importantly, Alg. 1 can be
run offline given a training dataset and desired bottleneck Z
to avoid passing large gradients over a wireless link. Then,
a robot can deploy the trained encoder and decoder, and
periodically improve them with more field data.

A. Wide applicability of our Co-design Algorithm

While simple, Alg. 1 is a powerful, general solution for
task-relevant communication. A principal benefit is that we can
either invoke a pre-trained task module fully remotely, or also
flexibly adjust the split of computation between a resource-
constrained robot and server. In the latter scenario, depicted
in Fig. 5a, we can take a large, pre-trained DNN and only
execute a fraction of layers locally on the robot to flexibly
adjust for resource constraints. Then, we can insert a minimal,
learned encoder p to compress an intermediate result, transmit
bottleneck z, and then decode with q to continue computation
with the bulk of the pre-trained model at a server. Importantly,
only the distributed encoder and decoder are trained, unlike the
fixed task module. Further, by adjusting reconstruction weight
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Algorithm 1: Task-Relevant Compression Co-design

1 Set bottleneck dimension Z, reconstruction weight λ
2 Randomly initialize encoder/decoder params. θ0enc., θ

0
dec.

3 Clamp pre-trained model f(; θtask) params. θtask
4 for τ ← 0 to T do
5 Sample {x, y} from dataset D with y = f(x; θtask)
6 Encode z = p(z | x; θτenc.)
7 Decode x̂ = q(x | z; θτdec.)
8 Compute Predictions ŷ = f(x̂; θtask)
9 θτ+1

enc. , θ
τ+1
dec. ←

BACKPROP
[
Lweight(x, x̂, y, ŷ; θtask, θ

τ
enc., θ

τ
dec.)

]
10 end

Result: Return learned parameters θTenc., θ
T
dec.

λ, which serves as a regularizer, we can significantly reduce
reconstruction error with only a marginal gain in bottleneck
size z. Our ability to flexibly set λ leads to the following
variants of Alg. 1:
1. Task-Aware-Weighted (TASKNET): Our core contribution
is the weighted task-aware training scheme, henceforth re-
ferred to as TASKNET. By accounting for the pre-trained task
network f(; θtask) when encoding sensory inputs, TASKNET
achieves low task loss for much less transmitted data z. We
emphasize that TASKNET refers to our co-design training
scheme and is compatible with any domain-specific, pre-
trained task module f . TASKNET’s reconstruction loss weight
λ (Eq. 1) can be flexibly set by a roboticist per application. All
our experiments performed a scan over evenly-spaced values
of λ and only plotted one representative curve, in orange, for
visual clarity.
2. Fully Task-Aware: To quantify the full compression benefits
of optimizing only for an end-task, we consider the special
case of TASKNET when λ = 0, which is suitable for scenarios
when video inputs are automatically classified in real-time by
a DNN and not intended for a human viewer. This scheme,
always colored in blue, achieves the lowest task loss for the
smallest representation size Z, which is ideal for scenarios
with strict network bandwidth limits. We now evaluate both
variants of Alg. 1, as well as benchmark schemes, on large-
scale deep learning experiments.

IV. EXPERIMENTAL RESULTS

To evaluate TASKNET, we first introduce two benchmark
algorithms and then describe common evaluation metrics for
all schemes. Then, we highlight the wide utility of TASKNET
across various sensing modalities and task DNN modules, for
tasks ranging from Martian terrain classification to motion
planning and environmental timeseries classification. Further,
we benchmark performance on the standard MNIST dataset.
To recreate our work, we provide all software, data, and pre-
trained DNNs for the Edge Tensor Processing Unit (TPU) and
servers at https://sites.google.com/view/tasknet.

A. Evaluation Metrics and Benchmark Algorithms

The principal objective of Prob. 1 is to minimize task
loss, and optionally minimize weighted reconstruction loss,
in scenarios where decoded inputs x̂ need to be inspected.
As such, we show that TASKNET achieves (A) low task
loss (i.e. high task accuracy) and (B) flexibly achieves low
reconstruction loss for small bottleneck sizes z. To assess the
effects of compression on task loss, we quantify the task loss
achieved by passing uncompressed, original sensory inputs x,
without an information bottleneck, into the task network f .
This metric, henceforth referred to as the uncompressed input
task loss, represents the best task accuracy we can achieve
without network constraints, and is pictured by the green
dashed line in all task loss figures (e.g. Fig. 3). Further, all
figures show results on each domain’s test dataset. We test the
above metrics on the following two benchmarks that represent
conventional paradigms for networked perception:
1. Task-Agnostic: For each bottleneck dimension Z, this
scheme trains a standard variational autoencoder to minimize
reconstruction loss, and simply passes the decoded input x̂
through the pre-trained task module f(; θtask). The task-
agnostic scheme is always colored in red in all figures.
2. End-to-End: This scheme has the exact same encoder, de-
coder, and task module architectures as the others, but allows
the task parameters θtask to be updated. In principle, an end-to-
end approach can achieve the same compression and accuracy
as our task-aware co-design approach since all parameters can
be optimized for the ultimate weighted task loss. However,
in practice, all end-to-end schemes took longer to train and
performed worse than TASKNET for small bottlenecks z when
the networks got stuck in local minima during training, such
as in Fig. 3 for Z = 2 and Z = 4. In essence, an end-to-end
approach does not exploit the structure of task network f for
faster, more stable representation learning. We now evaluate
all schemes.

B. Digit Classification with an Information Bottleneck

We first benchmark TASKNET on the standard MNIST
[20] dataset, where task network f(; θtask) was a publicly-
available ResNet DNN for digit classification [10]. Fig. 3a
illustrates that TASKNET (orange) achieves the same lower-
bound classification error as passing original, unperturbed
images to the task DNN, even for images that are compressed
with an extremely small bottleneck of size Z = 3. In contrast,
the task-agnostic scheme (red) is still not able to achieve
the lower bound classification error even for a much larger
bottleneck of Z = 32, showing that TASKNET improves the
compression ratio by 10× over a standard autoencoder with
better task accuracy. Fig. 3b shows that TASKNET decodes
images x̂ with low reconstruction loss, which yields human-
interpretable, but highly compressible, decoded samples that
are visualized in Fig. 4. While we did a sweep over recon-
struction weights λ, we plot results for λ = 0.01, which was
chosen to reflect similar emphasis on compressed accuracy and
reconstruction loss. Further, our learned encoder p and decoder
q were standard 3-layer convolutional variational autoencoders
that added a small overhead of only < 7% extra compute
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Fig. 3: MNIST test dataset results: TASKNET achieves the same
lower-bound classification error as passing original images through
the task network (green) for a small bottleneck Z = 3. In contrast,
a task-agnostic method, in red, obtains worse classification error for
even larger Z = 32 since it does not emphasize salient features for
classification.

Weighted TaskNet (! > #)
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Fig. 4: Motivation for regularization with a reconstruction loss.
The key benefit of adding a reconstruction weight with λ > 0 in
our task loss (Eq. 1) is to yield decoded images that are human-
interpretable, as shown for our warm-up MNIST example. In each
panel, we show original images x in the top row and decoded images
x̂ in the bottom row. Top Panel, TASKNET with λ = 0.01: Clearly,
adding a regularization term with a representative reconstruction
weight λ = 0.01 in Eq. 1 learns representations that are highly-
compressible with Z = 4, but yield interpretable decoded samples
x̂ that a human can debug. Bottom Panel, λ = 0: In contrast,
if we purely optimize for a machine’s task loss with reconstruction
weight λ = 0.0, decoded images x̂ (bottom row) are not human-
interpretable, motivating our weighted co-design approach.

compared to solely running task network f . In the end-to-end
scheme, the task network is also learned during training.

C. Compute-Efficient Mars Terrain Classification

To test TASKNET with complex vision DNNs, we consider a
scenario where a low-power Mars rover encodes terrain images
for remote classification at a powerful orbiting compute server,
a scenario inspired by recent proposals [11]. We used Martian
terrain images from NASA’s HiRise Dataset [8], consisting
of 8 classes including dunes, craters, impact ejecta, and other
formations. The labeled HiRise Dataset images [8] are several
hundreds of megabytes large, unlike the larger HiRise panora-
mas we use for our subsequent motion planning experiments
in Sec. IV-D. Task network f(; θtask) is an EfficientNet-B0
DNN, which is the smallest of a family of DNNs that trade
off accuracy and model complexity [30]. Our EfficientNet has

5.36 million parameters and classification accuracy of 95.7%
on 7303 HiRise test images.

Given the relatively large size of the vision DNN, we want
to flexibly split computation between a compute-limited robot
and server. Notably, as shown in Fig. 5a, we can exploit
a common architecture in many modern DNNs, which are
composed of sequential blocks of several convolutional layers,
to adjust the extent of on-robot compute. For example, Fig. 5a
shows how EfficientNet block-4c consists of all parameters
from the input to a specific layer l and block-5c has all
successive parameters until layer l′ > l. As per Alg. 1, we
first train the full, modular EfficientNet. Then, we constrain
the robot to only run part of the large DNN until a specific
block b, which yields an intermediate convolutional feature
map, and then insert our minimal task encoder p(; θenc.)
to compress the feature map to encoding z. Encoding z is
transmitted to a remote server, which uses our task decoder
q(; θdec.) to reconstruct the original feature map generated by
block b and resumes computation for a final classification.
Importantly, only the encoder/decoder are learned with the
fixed EfficientNet.

Fig. 5b details several configurations where the robot only
encodes inputs up to EfficientNet block b, but still achieves
within 1.5% of the uncompressed input task loss. For example,
Figs. 5b and 6 show by computing until block-4c, TASKNET
achieves 3.87 × lower classification error than conventional
task-agnostic methods, with a small bottleneck of Z = 128
32-bit floating-point values. This enables our scheme to send
only 3.27% of data compared to the full feature map of size
14 × 14 × 80. However, by introducing our learned robot
encoder p and server decoder q (pictured in Fig. 5a), we intro-
duce a small overhead of < 7.37% extra compute compared to
simply running the original EfficientNet, as shown in Fig. 7a.
In practice, this small compute overhead is tolerable given the
accuracy benefits of querying a powerful remote server with
a small transmitted data representation.

Robot compute savings: Notably, by only devoting compu-
tational effort to encode task-relevant information, TASKNET
reduces robot computation to only 8.5% of overall compute,
compared to the 91.5 % delegated to a remote server (Fig. 7a).
As such, TASKNET is significantly more efficient than naı̈vely
just splitting a compute-intensive DNN in half or running it
fully on-board, which could be infeasible for micro-robots or
miniature satellites like KickSats [23].

D. Robotic Motion Planning with Neural Networks

To demonstrate TASKNET’s utility for motion planning, we
consider a scenario where a low-power drone takes an aerial
terrain image and sends a compressed representation to a
remote server, which generates a collision-free motion plan
for a swarm of ground robots. Our task network f(; θtask) is
a Motion Planning Network (MPNET), a recently published
planner [28] that generates collision-free paths an order of
magnitude faster than conventional sampling-based planners
such as RRT* [15], but with virtually the same path cost.
MPNET consists of an obstacle encoder network, such as a
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Fig. 5: Mars terrain classification. (Left) Flexible allocations of robot and server compute: In a nominal configuration, our co-design
algorithm fully runs a modular perception model at a remote server and simply encodes task-relevant features at a robot, as shown in Fig.
1. However, a key benefit of our approach is that we can also flexibly divide computation for a large perception model between a robot and
server. As shown above, we can take a pre-trained EfficientNet and insert a learned, task-relevant encoder (yellow) to map an intermediate
feature map to a bottleneck representation z. Once z is transmitted, the learned decoder (yellow) uncompresses the intermediate feature map
so that computation can continue at a remote server with the rest of the pre-trained EfficientNet. Unlike classical approaches that simply
split large DNNs between devices [14, 13], we co-learn an encoder/decoder (yellow) along with the pre-trained parameters (green) for high
accuracy with a small Z. (Right) We plot the accuracy for various pictured allocations between robot and server compute. Specifically,
we plot TASKNET with λ = 0 for scenarios where the robot only runs up to EfficientNet block b locally and achieve within 1.5% of the
uncompressed input error rate (green dashed line) at block 4c and beyond for Z = 128.
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Fig. 6: Terrain classification. TASKNET achieves much lower
classification error than task-agnostic methods (red), where even a
bottleneck dimension of z = 128 corresponds to sending only 3.27
% of data compared to original convolutional feature maps. While
our method incurs a compute overhead by adding a task-relevant
encoder and decoder, it is less than 7.37% of total computation. Such
overhead is worthwhile for robots to unlock the accuracy of remote
computation while transmitting minimal data.

contractive autoencoder, which maps an obstacle point-cloud
to an embedding of dimension up to Z = 28. Then, MPNET’s
planning network maps the obstacle embedding z as well
as current and goal robot configurations to predict the next
navigation waypoint. The original MPNET DNN planners for
two and three dimensional environments are up to 41 MB and
69 MB in size. While of moderate size compared to large
perception DNNs, they are too large to run on low-power
accelerators like the Edge TPU, which runs only compressed
DNNs that fit in 8MB of on-chip memory.

In our experiments, the MPNET encoder runs on the robot,
but the pre-trained planning network runs on a remote server
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Fig. 7: (a) By only encoding task-relevant information, TASKNET
reduces on-robot computation compared to what is delegated to a
remote server (purple). (b) TASKNET generalizes better than the
original MPNET on out-of-domain Mars terrain data to find more
feasible paths (y-axis).

to potentially plan paths for a robotic swarm. Crucially, rather
than transmitting a large obstacle embedding z0 as in the
original MPNET, we insert a small encoder at the robot
which generates a minimal representation z � z0, which
is sent across a wireless link, decoded to z0, and passed
into the planning network to generate a motion plan. As
described in Alg. 1, we only learn the encoder and decoder
to generate compressed environment encoding z and use
the original MPNET planning network. Since the original
embedding z0 is not human-interpretable, we plot results for
λ = 0 though we thoroughly evaluated λ uniformly. Our task-
relevant encoder/decoder consist of a small fully connected
neural network, leading to a compute overhead of only < 2%
more parameters.
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Fig. 8: Neural Motion Planning on Mars Terrain Data: Our task-aware motion planner generalizes to unseen Martian terrain data for
much smaller point-cloud embedding sizes z compared to a publicly-available neural motion planner.

Fig. 7b shows the percentage of collision-free, feasible paths
(y-axis) generated by our TASKNET co-designed planner and
the original MPNET on the same 110 test environments and
40K test paths provided by the MPNET authors. In all cases,
if a feasible, collision-free path is found, its path length is
within 1% of the path generated by the RRT∗ planner. Our
key result is that TASKNET achieves collision-free paths with
costs and failure rate within 1% of the original MPNET, but
with much smaller environment encodings z. For example,
TASKNET achieves good performance for z = 4 as opposed
to z = 28 for the original MPNET, leading to a compression
gain of 7×.

Generalization of motion planner to unseen domains: We
further tested the TASKNET motion planner on obstacle point
clouds from the Mars HiRise dataset, where the red point
clouds in Fig. 8 represent regions above 30 degrees of
elevation. Even though MPNET and TASKNET’s train and
test environments had point clouds representing polygonal
obstacles, TASKNET adapts to curved contours of never-
before-seen Mars terrain with small bottlenecks z.

Fig. 7b validates the above observation on over 40.5K paths,
where both MPNET and TASKNET performed similarly on
the first two scenarios of seen and unseen environments in
MPNET’s original test data. Specifically, a seen test envi-
ronment was observed by the planner during training, albeit
with different start and end test configurations [28]. Our key
experimental result is shown in the third column of Fig.
7b, where TASKNET significantly outperforms the original
MPNET for small bottlenecks z = 4, 8 on out-of-domain Mars
terrain data. We hypothesize that TASKNET generalizes better
for small z since it focuses the limited information capacity
of the bottleneck to represent salient features for planning,
and sacrifices reconstruction loss, which is irrelevant to the
task goal. Since we only had access to a large, out-of-domain
dataset for the Mars example, we plan to further stress test
TASKNET’s generalization capabilities in future work.

E. Environmental sensor timeseries anomaly detection

To highlight how TASKNET generalizes to multiple sensor
modalities, we emulated the scenario of a micro-robot, po-
tentially part of a swarm, that streams environmental sensory

data to a remote server for anomaly detection. We used
an environmental sensor that connects to the Edge TPU to
measure light, temperature, pressure, and humidity timeseries.
The task network f(; θtask) is a compact neural network that
classifies each timeseries window of length w, xt−w:t, into
three sensor conditions yt. The first class yt = 0 represents
if the sensor is being tightly clamped and tampered with,
which leads to a rapid fluctuation in the light and humidity
measurements. The second class yt = 1 represents when
the sensor reads a temperature spike, for which we generate
training data by placing a hot hair-dryer over the sensor. The
third class yt = 2 represents natural environmental variation
without anomalies. We collected two weeks of sensor data
for a total of 30 training and 30 test traces of 5 minutes
each, equally balanced across all three classes. The task
network f(; θtask), which was trained on stochastic, diverse
timeseries, achieved a promising 90% test accuracy. Fig. 9
shows that TASKNET aggressively compresses the timeseries
measurements and outperforms the task-agnostic benchmark.
Furthermore, we plot for λ = 1 which reflects similar weight
between reconstruction loss and accuracy. Overall, our diverse
results show the promise of provisioning publicly-available
task modules at a central server and co-designing minimal
representations for networked perception.

Limitations of our work: Our current method requires a
constraint on the maximum bottleneck Z, based on wireless
network capacity, and performs a search over increasing sizes
z. A promising future direction is to automatically deter-
mine the optimal representation dimension Z∗ that minimizes
weighted loss. Further, we could extend our experiments to
compress LIDAR point clouds and long segments of video.

V. DISCUSSION AND CONCLUSIONS

This paper presents a novel framework to aggressively
compress rich robotic sensory data for the ultimate needs of a
machine sensing task, which allows robots to reduce on-board
computation and communication bandwidth by up to 11 ×. A
key benefit of our co-design algorithm is that it is rooted in
linear systems theory and gracefully scales to complex DNNs.
We envision that our co-design algorithm can be applied to
a variety of resource-constrained robots that need to distill
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Fig. 9: Environmental Sensing: TASKNET achieves low reconstruc-
tion loss and matches the low classification error rate achieved when
using original sensor data.

sensory data for remote inference, such as future Mars Rovers,
microrobots, and even low-power drones that collaborate by
communicating over 5G wireless networks.

In future work, we plan to extend our algorithm to create
minimal, task-relevant representations for cooperative control
and develop representations that generalize across several
tasks, leveraging ideas from multi-task and meta-learning.
While our approach reduces on-board computation, we plan
to also quantify the power consumption of communicating
minimal representations. Finally, given our promising results
with EfficientNets and deep learning accelerators, we plan to
deploy our algorithm on a networked robotic autonomy stack
which supports remote inference and tele-operation.
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