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Abstract—Simulation provides a safe and efficient way to
generate useful data for learning complex robotic tasks. How-
ever, matching simulation and real-world dynamics can be quite
challenging, especially for systems that have a large number of
unobserved or unmeasurable parameters, which may lie in the
robot dynamics itself or in the environment with which the
robot interacts. We introduce a novel approach to tackle such a
sim-to-real problem by developing policies capable of adapting
to new environments, in a zero-shot manner. Key to our
approach is an error-aware policy (EAP) that is explicitly made
aware of the effect of unobservable factors during training. An
EAP takes as input the predicted future state error in the target
environment, which is provided by an error-prediction function,
simultaneously trained with the EAP. We validate our approach
on an assistive walking device trained to help the human user
recover from external pushes. We show that a trained EAP for
a hip-torque assistive device can be transferred to different
human agents with unseen biomechanical characteristics. In
addition, we show that our method can be applied to other
standard RL control tasks.

I. INTRODUCTION

Simulation has a growing role in learning-based methods
to design control policies for robots as it provides a safe and
efficient way to generate useful data. However, for robotic
agents that are governed by complex dynamics or interact-
ing with a complex environment, it is challenging to identify
a model that captures the real-world dynamics accurately,
giving rise to the so called sim-to-real problem in trans-
ferring control policies. Among many factors responsible
for the sim-to-real gap, we are interested in addressing the
challenges involving unobserved or unmeasurable model
parameters, which may lie in the robot dynamics itself
or in the environment with which the robot interacts.
For example, for assistive robots that aid in locomotion,
the dynamics of the wearable robot is closely coupled
with humans, who show remarkably large variations in
their movements, such as variations in muscle activation
dynamics, muscle maximum force, fatigue, robot-human
interaction dynamics, delay in sensing/actuation, all of
which are difficult to measure and parameterize accurately.
Similarly, other types of robots, such as quadrupeds and
bipeds, also require accurate complex contact dynamics,
contact parameters, motor dynamics, delay in the system,

difficult to measure or model correctly.
Two broad approaches have been proposed to address

the sim-to-real issue: 1) Domain randomization and do-
main adaptation methods [22, 33, 27, 23, 28] which aim
to learn robust or universal policies by training them with
variations in the model parameters. These methods require
manual engineering of the range in which the parameters
are varied. For highly complex systems and environments,
domain randomization or adaptation often determines a
subset of parameters to be observable and leaves the
unpredictable effect of unobsered parameters to chance. 2)
System identification methods [35, 32, 14, 4], aim to identify
accurate models of the real robot to bring simulation closer
to reality. System identification can be interleaved with
policy learning—deploying the current policy in the target
environment to collect more data to further improve the
dynamic model [39, 26, 2]. Since the task-relevant training
data is difficult to acquire from the real world, system iden-
tification also needs to determine a subset of parameters
to be observable to avoid over fitting. Neither approach
has demonstrated reliable ability to transfer policies to the
real world when the combined dynamics of agent and
environment is highly unobservable.

In this work, we introduce a novel approach to tackle
sim-to-real problems in which the environment dynamics
has high variance and is highly unobservable. While our
approach is motivated by physical assistive robotic appli-
cations, the method can be applied to other tasks in which
many dynamic parameters are challenging to model. We
propose to train a policy explicitly aware of the effect of
unobservable factors during training, called an Error-Aware
policy (EAP). Akin to the high-level idea of meta learning,
we divide the dynamical environments into training and
validation sets and "emulate" a reality gap in simulation.
Instead of estimating the model parameters that give rise to
the emulated reality gap, we train a function that predicts
the deviation (i.e. error) of future states due to the emulated
reality gaps. Conditioned on the error predictions, the error-
aware policies (EAPs) can learn to overcome the reality gap,
in addition to mastering the task.

The main application in this work is to learn an error-
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aware policy for assistive device control, such as a hip-
exoskeleton that helps the user to recover balance during
locomotion. From biomechanical data of human gait, we
model multiple virtual human walking agents, each varying
in physical characteristics as well as parameters that affect
the dynamics such as joint damping, torque limits, ground
friction, and sensing and actuation delay. We then train a
single policy on this group of human agents and show that
that the learned EAP works effectively when tested on a
different human agent without needing additional data. We
extend the prior work, [18], that trained a control policy
for push-recovery assistive device for just one simulated
human agent, and develop an algorithm that enables the
learned policy to transfer to other human agents with
unseen biomechanical characteristics.

We evaluate our approach on assistive wearable device by
quantifying the stability and gait characteristics generated
by an unseen human agent wearing the device with the
trained EAP. We present a comprehensive study of the
benefits of our approach over prior zero-shot methods such
as universal policy (UP) and domain randomization (DR).
We also provide results on some standard RL environments,
such as Cartpole, Hopper, 2D walker and a quadrupedal
robot.

II. RELATED WORK

A. Transfer of RL policies

A popular approach to transfer control policies is Do-
main randomization (DR). DR methods [22, 33, 27, 23, 28]
propose to train policies that are robust to variations in the
parameters that affect the system dynamics. Although some
of these methods have been validated in the real world
[22, 23], DR often requires manual engineering of the range
in which the parameters are varied to make sure that the
true system model lies within the range of variation. For a
complex robotic system, it is often challenging to estimate
the correct range of all the parameters because a large range
of variation could lead to lower task performance, whereas
a smaller range leads to less robust policies. To address the
demanding sample budget issue with domain randomiza-
tion, [21] presented a data-efficient domain randomization
algorithm based on bayesian optimization. The algorithm
presented in Mehta et al [20] actively adapts the randomiza-
tion range of variation to alleviate the need for exhaustive
manual engineering. Ramos et al [29] proposed an approach
to infer the distribution of the dynamical parameters and
showed that policies trained with randomization within this
distribution can transfer better.

Careful identification of parameters using data from the
real world, popularly known as system identification, has
also shown promising results in real-world robots. Tan
et al [32] and Hwangbo et al [14] carefully identified
the actuator dynamics to bring the source environment
closer to the target, Xie et al [35] also demonstrated that
careful system identification techniques can transfer biped
locomotion policies from simulation to real-world. Jegorova

et al [16] presented a technique that improves on exist-
ing system identification techniques by borrowing ideas
from generative adversarial networks (GAN) and showed
improved ability to identify the parameters of a system.
Similarly, Jiang et al [17] presented a SimGAN algorithm that
identifies a hybrid physics simulator to match the simulated
trajectories to the ones from the target domain to enable
policy adaptation. Yu et al [38] developed a method that
combines online system identification and universal policy
to enable identifying dynamical parameters in an online
fashion. Citing the difficulty in obtaining meaningful data
for system identification, [43] developed an algorithm that
probes the target environment to provide more information
about the dynamics of the environment. A few model
based approaches have also been successful in transferring
policies to a target domain [31, 6, 37].

Another popular approach of transferring policies in-
cludes utilizing data from the target domain to improve
the policy. Chebotar et al [4] presented a method that in-
terleaves policy learning and system identification, however
this requires deploying the policy in the target domain
every few iterations. This method would be impractical for a
system that interacts closely with a human because of safety
concerns. Yu et al [39] and Peng et al [25] presented latent
space adaptation techniques where the policy is adapted
in the target domain by searching for a latent space input
to the policy that enables successful transfer. Exarchos et al
[7] also presented an algorithm that achieved policy transfer
using only kinematic domain randomization combined with
policy adaptation in the target domain, similar to [39].

Yu et al [40] proposed Meta Strategy Optimization, a
meta-learning algorithm for training policies with latent
variables that can quickly adapt to new scenarios with a
handful of trials in the target environment. Among the
methods that use data from the target domain also include
meta-learning approaches like Bhelkale et al [2], in which
a model-based meta-reinforcement learning algorithm was
presented to account for changing dynamics of an aerial
vehicle carrying different payloads. In this approach, the pa-
rameters causing the variations in the dynamics are inferred
by deploying the policy in the target domain, which in turn
helps improve the policy’s performance. In Ignasi et al. [5],
the idea of model-agnostic meta-learning [9] was extended
to modelling dynamics of a robot. The authors presented an
approach to quickly adapt the model of the robot in a new
test environment while using a sampling-based controller
MPPI to compute the actions. [36] developed a zero-shot
transfer for policy by combining reinforcement learning and
a robust tracking controller with a disturbance observer in
the target environment. The validated the approach on a
vehicle driving task. Similarly, [8, 11] presented an approach
to combine bayesian learning and adaptive control by
learning model error and uncertainty.

For tasks such as assistive device control for human lo-
comotion, it is potentially unsafe and prohibitive to collect
sufficient task-relevant data in the real world which pre-
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vents us from using methods such as system identification
or transfer learning approaches that need data in the target
environment. In addition to this, human dynamics exhibit
large variations due to many unobserved parameters, this
makes it challenging to define the right parameters for the
system model in simulation and also in finding the right
range of parameter variation for an approach like DR.

B. Adaptation for Assistive Devices

Assistive devices such as exoskeletons provide unique
challenges for domain adaptation due to the large variations
between individuals who pilot the device. Zhang et al [42]
reported a human-in-the-loop optimization approach for
ankle exoskeletons to account for this variability, however,
this approach takes a few hours per individual to find
the optimal control law. Jackson et al [15] presented a
unique heuristic-based approach to design a control law
that adapts to the person’s muscle activity. While these
methods work well for steady-state walking, the large num-
ber of data required to optimize for in the case of [42]
and the complex muscle responses involved during push
recovery make it an infeasible application. Several recent
works have incorporated a learning-based approach to
tackling the problem of adaptation, Peng et al [26] adopted
a reinforcement learning approach to learn assistive walking
strategies for Hemiplegic patients, which was tested on real
human patients and showed robustness and adaptability.
However, it requires online data to update the actor-critic
network. This process involves deploying a policy on a
patient to collect data, for a task like push recovery it might
be challenging to collect relevant data required for updating
the policy without compromising the patient’s safety. Both
[13] and [41] combined dynamic motion primitives (DMPs)
and learning approaches to adapt control strategies for
different individuals. Majority of the work with assistive
devices have primarily focused on walk assistance and not
on push-recovery like this paper addresses.

III. ZERO-SHOT TRANSFER WITH ERROR-AWARE POLICY

We present a method to achieve the zero-shot transfer of
control policies in partially observable dynamical environ-
ments. We consider robotic systems and environments with
unobservable or unmeasurable model parameters, which
make building accurate simulation models difficult.

We present a novel policy architecture, an Error-Aware
Policy (EAP), that is explicitly aware of errors induced
by unobservable dynamics parameters and self-corrects its
actions according to the errors. An EAP takes the current
state, observable dynamic parameters, and predicted er-
rors as inputs and generates corrected actions. We learn
an additional error-prediction function that outputs the
expected error. Both the error-aware policy and the error-
prediction function, are iteratively learned using model-free
reinforcement learning and supervised learning.

Figure 1: Overview of An Error-aware Policy (EAP). An EAP
takes the “expected” future state error as an additional
input. The expected error is predicted based on the current
state s, observable parameters µ, and an uncorrected action
a that assumes zero error.

A. Problem Formulation

We formulate the problem as Partially Observable Markov
Decision Processes (PoMDPs), (S,O, A,P,R,ρ0,γ), where S is
the state space, O is the observation space, A is the action
space, P is the transition function, R is the reward function,
ρ0 is the initial state distribution and γ is a discount factor.
In our formulation, we make a clear distinction between ob-
servable model parameters µ and unobservable parameters
ν of the agent and environment. Observable quantities are
parameters that can be easily measured such as masses or
link lengths, whereas unobserved quantities are challenging
to estimate, such as circuit dynamics or backlash. Therefore,
both µ and ν affect the transition function P (s′|a,s,µ,ν).
Since we can configure our simulator with both µ and ν,
we can randomly sample µ and ν and create a list of K
different environments D = {(µ0,ν0), (µ1,ν1), · · · , (µK ,νK )},
but it is hard to obtain ν at testing time. In this case, the
transition function will be abbreviated as P (s′|s,a,µ).

Instead of estimating the values of unobserved quantities,
we capture the effect of these parameters by defining a
metric called a state-error. When transferring from one
environment to another, the action a applied at a given state
s will produce different next states due to the differences
in both µ and ν, in other words, a state-error.

We hypothesize that a policy which is explicitly aware of
the state-error would be able to make better decisions by
self-correcting its action. We call this an error-aware policy
π(a|s,µ,e) (EAP), which takes in observable parameters
µ as well as the “expected” future state error in a new
environment e as input (Figure 1).

We present a novel training methodology using model-
free reinforcement learning that involves learning two func-
tions: an error-aware policy and an error prediction func-
tion. First, we learn an error-aware policy that takes the
output of error prediction function E as an input and has
the ability to generalize to novel environments in a zero-
shot manner. Simultaneously, we learn an error-prediction
function, which takes as inputs the state s, an uncorrected
action a and observable parameters µ, and outputs the
expected state error e when a policy trained in one en-
vironment is deployed to a different one E : (s,a,µ) 7→ Rn .
We will discuss more details of training in the following
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sections.

Algorithm 1: Train an Error Aware Policy.

1: Input: Environments D = {(µ0,ν0), · · · , (µK ,νK )}
2: Pre-train π(a|s,µ0,e = 0) for P (s′|s,a,µ0) reference

environment with e = 0
3: while not done do
4: Sample an environment with (µ,ν) from D
5: for each policy update iteration do
6: Initialize buffer B = {}
7: Update an error function E using Algorithm 3
8: B = Generate rollouts using Algorithm 2
9: Update policy π using B with PPO.

10: end for
11: end while
12: return π(a, |s,µ,e)

B. Training an Error-aware Policy

Training Procedure. The training process of an error-aware
policy is summarized in Algorithm 1. Assume that we
have an oracle error function E(s,a,µ) that outputs the
expected state error in a novel environment, which will
be explained in the following section. First, the policy is
pre-trained to achieve the desired behavior only in the
reference environment (µ0,ν0) assuming there is no state
error, π(a|s,µ0,e = 0). Once the policy is trained in the
reference environment, we sample dynamics parameters µi

and νi (i > 0) uniformly from the data set D and evaluate
the EAP in this new environment. The policy parameters
are updated using a model-free reinforcement learning
algorithm, Proximal Policy Optimization [30]. Sampling new
testing environments and updating policy parameters are
repeated until the convergence.

Algorithm 2: Generate Rollouts

1: Input: Observable dynamics parameters µ, Transition
function P , Current policy π and error function E ,
Replay buffer B

2: Sample state s from initial state distribution ρ0

3: while not done do
4: a ∼π(a|s,µ,e = 0) // original action
5: e = E(s,a,µ) // predicted error
6: â ∼π(a|s,µ,e) // error-aware action
7: s′ ∼ P (s′|s, â,µ)
8: r = R(s, â)
9: B = B ∪ {(s, â,r,s′,µ)}

10: s = s′
11: end while
12: return B

Rollout Generation. A roll-out generation procedure is de-
scribed in Algorithm 2. Given a state s in this environment
(µ,ν), we query an action from policy π as if the policy

is being deployed in the reference environment with e = 0.
This action a is fed into the error function E which predicts
the expected state error in this environment, then the state
error is passed into the error-aware policy to query a cor-
rected action â which will be applied to the actual system.
The task reward R(s,a) guides the policy optimization to
find the best “corrected” action that maximizes the reward.

Algorithm 3: Train an Error Prediction Function.

1: Input: Reference environment with µ0

2: Input: Target environment with µ

3: Input: Replay Buffer B
4: Input: Dataset Z
5: Input: Error Horizon T
6: while not done do
7: Sample the initial state s0

0 from B
8: s0 = s0

0
9: for t = 0 : T −1 do

10: // Simulation in Reference Env
11: at

0 ∼π(a|st
0,µ0,e = 0)

12: st+1
0 ∼ P (st

0,at
0,µ0)

13: // Simulation in Validation Env
14: at ∼π(a|st ,µ,e = 0)
15: st+1 ∼ P (st ,at ,µ)
16: end for
17: Z = Z∪ {(s0,a0,sT ,sT

0 ,µ)}
18: end while
19: minimize the L(φ) in Eq. 1 using Z.
20: return φ

C. Training an Error Function

In reality, we do not have an oracle error function that
can predict the next state due to the lack of unobservable
parameters ν. To this end, we will learn this function
simultaneously with EAP, by splitting the dataset D into the
training and validation sets. Similar to training methodology
followed in meta-learning algorithms, we repeatedly apply
the trained policy into sampled environments from the val-
idation set. Because our nominal behavior is pre-trained in
the reference environment (µ0,ν0), we compute the errors
by measuring the differences in the reference environment
(µ0,ν0) and the validation environment (µ,ν): e = (s̄′−s′) ∈
Rn , generated by two dynamic models P (s′|s,a,µ0) and
P̄ (s′|s,a,µ).
Horizon of Error Prediction. In practice, we found that the
error accumulated during one step is often not sufficient
to provide useful information to the EAP. To overcome
this challenge, we take the state in the collected trajectory
and further simulate it for T steps in both the reference
environment P (s′|s,a,µ0) and the validation environment
P̄ (s′|s,a,µ). We provide analysis on the effect of horizon
length from T = 1 to T = 8 in the Section IV.
Loss Function. Since the differences between the two
dynamical environments reflects the reality gap caused by
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Figure 2: Left : A full state error representation input into the
policy vs Right : Projected error representation as an input to the
policy

unobservable parameters, the error prediction function E
enables us to learn the effect of the unobserved parame-
ters captured through the state error. We train our error
prediction function E to learn this “emulated” sim-to-real
gap by minimizing the following loss:

L(φ) = ∑
(s0,a0,sT ,sT

0 ,µ)∈Z

||E(s0,a0,µ)− (sT
0 −sT )||2, (1)

where Z is the collected dataset and φ is the parameters or
the neural net representing E . Algorithm 3 summarizes the
training procedure.
Reduced Representations. We experiment with two dif-
ferent representations of the error input to the policy.
First, we input the full state error e = sT

0 − sT (with the
same dimension as the state) approximated by a MLP
neural network, into the policy. Second, we use a network
architecture with an information bottle neck, as illustrated
in Figure 2, and input the latent representation ep into the
policy. The same loss function L is used to train both the
functions.

IV. EVALUATION

We design experiments to validate the performance of
error-aware policies. We aim to answer the following re-
search questions.

1) Does an EAP show better zero-shot transfer on unseen
environments compared to the baseline algorithms?

2) How does the choice of hyperparameters affect the
performance of an EAP?

A. Baseline Algorithms

We compare our method with two baselines commonly
used for sim-to-real policy transfer, Domain Randomization
(DR)[22, 23] and Universal Policy (UP) [38]. DR aims to learn
a more robust policy for zero-shot transfer, by training with
randomly sampled dynamics parameters (in our case, both
µ and ν). UP extends DR by taking dynamics parameters as
additional input. UP often transfer to target environments
better than DR, but it explicitly requires to know dynamics
parameters, where ν is assumed to be unobservable in our
scenario. We did not compare EAPs against meta-learning
algorithms [2, 9, 5], which require additional samples from
the validation environment.

Figure 3: Five different test subjects for the assistive walking
experiment with varying height, mass, leg length and foot
length from the biomechanical gait dataset [10].

B. Tasks

We evaluate the performance of error-aware policies on
five different tasks. The first task is about push-recovery of
an assistive walking device for simulated humans, inspired
by the work of Kumar et al [18]. The second task is
locomotion of a quadrupedal robot, Aliengo Explorer[1].
The rest three tasks are CartPole, Hopper, and Walker2D,
which are from the OpenAI benchmark suite [3].

1) Assistive walking device for push recovery: In this task,
the goal is to learn a policy for an assistive wearable device
(i.e. exoskeleton) to help a human recover balance after
an external push is applied. (inset figure). We use a hip
exoskeleton that applies torques in 2-degrees of freedom at
each hip joint. Our algorithm begins by training 15 human
agents using public biomechanical gait data [10] to walk in
a steady-state gait cycle, similar to the approach presented
in [24]. The 15 agents vary in mass, height, leg length,
and foot length according to the biomechanical data used
to train their corresponding policies, which formulate the
four-dimensional observable parameters µ (Figure 3). We
also vary each human agent’s joint damping, maximum
joint torques, PD gains, and sensory delay as the four
dimensional unobservable parameters ν. We split the 15
human agents into 10 for the training set and 5 as the
testing set.

Human Behavior Modeling. First, we capture the human
behavior by training a human-only walking policy πh that
mimics the reference motion which frames are denoted
as q̄. Each human model has 23 actuated joints along
with a floating base. The state space has 53 dimensions,
sh = [q, q̇,vcom ,ωcom ,ψ], which represent joint positions,
joint velocities, linear and angular velocities of the center
of mass, and a phase variable ψ that indicates the target
frame in the reference biomechanical gait cycle. The action
a is defined as the offset to the reference biomechanical
joint trajectory q̄(ψ), which results in the target angles:
qt ar g et = q̄+a. The reward function encourages mimicking
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Task Observable Params. µ Unobservable Params. ν Net. Arch. Err. Dim. |ep |
Assitive Walking mass, height, leg length, and foot length joint damping, max torques, PD gains and delay (64, 32) 6
Aliengo PD gains, link masses sensor delay, joint damping, ground friction (64, 32) 6
Cartpole pole length, pole mass, cart mass joint damping, joint friction (32, 16) 2
Hopper thight mass, foot mass, shin length joint damping, ground friction (32, 16) 4
Walker 2D link masses, shin length sensing delay, joint damping, ground friction (64, 32) 5

Table I: Tasks and Network Architectures

Observable Params. µ
Parameter Training range Testing range
Mass [45,76] kg [55,95] kg
Height [143,182] cm [155,197] cm
Leg-length [70,88] cm [80,95] cm
foot length [21,24] cm [24,26] cm

Table II: Ranges of variation for observable parameters
during training and testing in the assistive walking task.

Unobservable Params. ν
Parameter Training range Testing range
Joint damping [0.3,0.6] [0.5,0.8]
Max torques [120,180] [155,200]
PD gains (P,D) [(500,25),(750,50)] [(650,30),(800,50)]
Delay [30,60] ms [45,70] ms

Table III: Ranges of variation for unobservable parameters
during training and testing in the assistive walking task.

the reference motions from public biomechanical data:

Rhuman(sh ,ah) = wq (q− q̄)+wv (q̇− ¯̇q)

+wc (c− c̄)+wp (p− p̄)−wτ||τ||2, (2)

where the terms include the reference joint positions q̄,
joint velocities ¯̇q, end-effector locations p̄, contact flags c,
and the joint torques τ. During training, we exert random
forces to the agent during policy training. Each random
force has a magnitude uniformly sampled from [0,800] N
and a direction uniformly sampled from [-π/2,π/2], applied
for 50 milliseconds on the agent’s pelvis in parallel to
the ground. The maximum force magnitude induces a
velocity change of roughly 0.6−0.8 m/sec. This magnitude
of change in velocity is comparable to experiments found
in biomechanics literature such as [34],[19] and [12]. We
also randomize the time when the force is applied within
a gait cycle. The forces are applied once at a randomly
chosen time in each trajectory rollout. Similar to [18],
we enforce joint torque constraints and introduce sensing
delays during training to prevent the human agent to adapt
to external disturbance really well.

MDP Formulation. Once the human agents are trained,
we begin learning the push-recovery EAP for the assistive
device. The objective is to stabilize the human gait from
external perturbations. The 17 dimensional state of robot is
defined as se = [ω,α, ẍ,qhi p , q̇hi p ], which comprises angular
velocity, orientation, linear acceleration, hip joint positions,
and hip joint velocity. The four dimensional action ae

consists of torques at two hip joints. The reward function
maximizes the quality of the gait while minimizing the

impact of an external push.

Rexo(sh ,se ,ae ) = Rhuman(sh)

−w1‖vcom‖−w2‖ωcom‖−w3‖ae‖, (3)

where Rhuman is defined in equation 2 , and vcom and
ωcom are the global linear and angular velocities of the
pelvis. The last term penalizes the torque usage. We use
the same weight w1 = 2.0, w2 = 1.2 and w3 = 0.001 for all
our experiments.

2) Quadrupedal Locomotion: In our second task, we
learn a control policy that generates a walking motion
for a quadrupedal robot, Aliengo Explorer [1]. For this
task, the 17 observable parameters (µ) are PD gains of
the joints, link and root masses and the 10 unobservable
parameters ν include sensing delay, joint damping of thigh
and knee joints and ground friction. The 39-dimensional
state space consists of torso position and orientation and
corresponding velocities, joint position and velocities, foot
contact variable that indicates when each foot should be in
contact with the ground, while the 12-dimensional action
space consists of joint velocity targets which is fed into a
PD controller that outputs torques to each joint.

The reward function is designed to track the target
motion that walks at 0.8 m/s:

r (s,a) = w1e−k1∗(q−q̄) +w2e−k2∗(q̇− ¯̇q)

+w3 min(ẋ,0.8)+
4∑

i=1
||ci − c̄i ||2. (4)

In this equation, the first term encourages to track the
desired joint positions, the second term is to track the
desired joint velocities, the third term is for matching the
forward velocity ẋ to a target velocity of 0.8 m/s. and
the four term tracks the predefined contact flags. We use
the same weight k1 = 35,w1 = 0.75, k2 = 2,w2 = 0.20, and
w3 = 1.0 for all experiments.

3) OpenAI Environments: We test our method on three
OpenAI environments: CartPole, Hopper and Walker2D.
While using the same state spaces, action spaces, and
the reward functions described in the benchmark [3], we
additionally define observable and unobservable dynamics
parameters as follows:

1) Cartpole. Observable parameters µ ∈ R3 includes the
length of the pole, the mass of the pole, and the mass
of cart. Unobservable parameters ν ∈ R3 include the
damping at the rotational joint, the friction at the
rotational joint, and the friction at the translational
joint.
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(a) Hopper (b) Walker 2D

(c) Quadrupedal Locomotion (d) Assistive Walking
Figure 4: Learning curves for four tasks. The number of samples
for EAP include the ones generated for training an error function.

2) Hopper. Observable parameters µ ∈ R3 include the
mass of the thigh and foot and the length of the shin
bodynode. Unobservable parameters ν ∈ R3 include
joint damping of shin and foot joints and ground
friction.

3) Walker 2D. Observable parameters µ ∈ R6 include the
masses of thigh and foot for both legs, the mass of
pelvis, and the length of shin. Unobservable param-
eters ν ∈ R4 include joint damping of foot joints, the
delay in observation, and ground friction.

C. Zero-shot Transfer with EAPs

In this section, we compare the zero-shot transfer of
error-aware policies against two other baseline algorithms,
Domain Randomization (DR) and Universal Policies (UP).
Learning Curves. First, we compare the learning curves of
the EAP, DR, and UP approaches on four selected tasks
in Figure 4. We set the same ranges of the observable and
unobservable parameters for all three algorithms. In our ex-
perience, EAPs learn faster than DR and UP for three tasks,
the Hopper, Walker2D, and assistive walking tasks, while
showing comparable performance for the quadrupedal lo-
comotion task. Note that, to make the comparison fair to
baselines, we also include the samples for training error
functions (Algorithm 3) when we evaluate the performance
of EAPs. We do not include the experiment on the Cart-
Pole environment for brevity but the EAP outperforms the
baselines as well
Zero-shot Transfer. Then we evaluate the learned policies
on unseen validation environments, where their dynamics
parameters µ and ν are sampled from the outside of
the training range. We conduct the experiments for the
CartPole, Hopper, Walker2D and quadrupedal locomotion
tasks and compare the normalized average returns (the
average return divided by the maximum return). The results

Figure 5: Comparison of EAP and baselines DR and UP. The error
bars represent the variation in the average return of the policy in
the target environment when trained with 4 different seeds.

Figure 6: Average stability region in five test subjects. The
results indicate the better zero-shot transfer of EAP over DR
and UP.

are plotted in Figure 5, which indicate that EAP outperforms
DR by 60% to 116% and UP by 12% to 77%. Note that UP
may perform well for the real-world transfer due to the lack
of the unobservable parameters. We also observe that UP is
consistently better than DR by being aware of the dynamics
parameters, µ and ν, which meets our expectation.

For evaluating the zero-shot transfer for the assistive
walking task, we define an additional metric “stability re-
gion”, which depicts the ranges of maximum perturbations
in all directions that can be handled by the human with
the EAP-controlled exoskeleton. We train policies for 10
training human subjects and test the learned policies for
5 new human subjects. Figure 6 compares the average
performance of EAP with DR and UP. The larger area of
stability region indicates that EAP significantly outperforms
two baselines. The ranges of variation for observable and
unobservable parameters during training and testing phases
are included in tables II and III.

D. Ablation study

We further analyze the performance of EAPs by conduct-
ing a set of ablation studies. We studied four categories
of parameters: choices of observable parameters, reference
dynamics, error prediction horizons, and error representa-
tions.
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Figure 7: Ablation study with choosing different observable pa-
rameters as µ. The result indicates that our approach (EAP) shows
more reliable zero-shot transfers for all different scenarios.

Figure 8: Ablation study with different reference dynamics. The
results indicate that our algorithm is robust against the choice of
different references.

Choice of Observable and Unobservable Parameters. We
check the robustness of EAPs by testing with different
choices of observable and unobservable parameters. We
randomly split the parameters into µ and ν and test three
different splits. Figure 7 shows the stability regions for all
three algorithms for three different scenarios. In all cases,
EAPs are more robust than the baseline algorithms.
Choice of Reference Dynamics. In this study, we analyze
the effect of choosing three different reference dynamics
P (s′|a,s,µ0,ν0) on the performance of EAP. We randomly
choose three different human agents as the reference dy-
namics and follow the learning procedure of EAPs to train
three different policies. These policies are then deployed
on the same test subjects along with UP and DR policies.
Figure 8 shows that all the EAPs outperforming the base-
lines by having larger stability regions, although EAPs have
slightly larger variances.
Horizon of Error Prediction. As we motivated in Sec-
tion III-C, one step error might be too subtle to inform
the learning of EAPs and we may need T step expansion to
enlarge them. We studied the effect of the error prediction
horizon T in Algorithm 3 by varying its value from T = 1
to T = 8 for the assistive walking task. Figure 9 shows the
normalized average return over T gradually changes over
the different values of T and peaks at T = 5. Therefore, we

Figure 9: Ablation study with different parameter setting for EAP
training.

set T = 5 for all the experiments.
The error representation. We also compare the effect of
the error representation. Figure 9 also plots the normalized
average returns of the unprojected errors (blue) and pro-
jected errors (orange), where projected errors show slightly
better performance for all the different T values.

V. CONCLUSIONS

We presented a novel approach to train an error-aware
policy (EAP) that transfers effectively to unseen target envi-
ronments in a zero-shot manner. Our method learns an EAP
for an assistive wearable device to help a human recover
balance after an external push is applied. We show that a
single trained EAP is able to assist different human agents
with unseen biomechanical characteristics. We also validate
our approach by comparing EAP to common baselines
like Universal Policy and Domain randomization to show
our hypothesis that a policy which explicitly takes future
state error as input can enable better decision making. Our
approach outperforms the baselines in all the tasks. We
also evaluated the performance of our algorithm through
a series of ablation studies that sheds some light on the
importance of parameters such as error horizon length,
error representation, choice of observable parameters and
choice of reference dynamics. We find that EAP is not
sensitive to either the choice of observable parameters or
the reference dynamics, and outperforms the baselines with
variations in these quantities as well.

Our work has a few limitations. At the core, our algorithm
relies on the error function to make predictions of the
expected state errors. The accuracy of this prediction can
be improved by better function approximators such as
recurrent neural networks (RNN) that takes a history of
states as input, we leave this for future work. We also aim
to test our approach on real-world robot.
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