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Abstract—Robotic cutting of soft materials is critical for
applications such as food processing, household automation, and
surgical manipulation. As in other areas of robotics, simula-
tors can facilitate controller verification, policy learning, and
dataset generation. Moreover, differentiable simulators can enable
gradient-based optimization, which is invaluable for calibrating
simulation parameters and optimizing controllers. In this work,
we present DiSECt: the first differentiable simulator for cutting
soft materials. The simulator augments the finite element method
(FEM) with a continuous contact model based on signed distance
fields (SDF), as well as a continuous damage model that inserts
springs on opposite sides of the cutting plane and allows them to
weaken until zero stiffness, enabling crack formation. Through
various experiments, we evaluate the performance of the simula-
tor. We first show that the simulator can be calibrated to match
resultant forces and deformation fields from a state-of-the-art
commercial solver and real-world cutting datasets, with general-
ity across cutting velocities and object instances. We then show
that Bayesian inference can be performed efficiently by leveraging
the differentiability of the simulator, estimating posteriors over
hundreds of parameters in a fraction of the time of derivative-
free methods. Finally, we illustrate that control parameters in
the simulation can be optimized to minimize cutting forces via
lateral slicing motions. We publish videos and additional results
on our project website at https://diff-cutting-sim.github.io.

I. INTRODUCTION

Robotic cutting of soft materials is critical for various
real-world applications, including food processing, household
automation, surgical manipulation, and manufacturing of de-
formable objects. As in other areas of robotics, simulators can
allow researchers to verify controllers, train control policies,
and generate synthetic datasets for cutting, as well as avoid
expensive or time-consuming real-world trials. In addition,
cutting is inherently destructive and irreversible; thus, accu-
rate and efficient simulators are indispensable for automating
safety-critical tasks like robotic surgery.

However, simulating the cutting of soft materials is chal-
lenging. Cutting involves diverse physical phenomena, in-
cluding contact, friction, elastic deformation, damage, plastic
deformation, crack initiation, and/or fracture. A variety of
simulation methods have been introduced, including mesh-
based approaches (e.g., extensions of the finite element method
(FEM)), particle-based approaches (e.g., smoothed particle
hydrodynamics (SPH)), and hybrid techniques. For accuracy,

Fig. 1: A rendering from our differentiable cutting simulator. DiSECt
provides accurate gradients of the cutting process, allowing us to
efficiently fit model parameters to real-world measurements, and
optimize cutting motions.

these methods often require computationally-expensive re-
meshing, or simulation of millions of particle interactions.

Moreover, a physically-accurate forward simulator is neces-
sary but not sufficient for accurate and useful predictions. The
material properties of real-world soft materials (e.g., ripening
fruits, diseased tissue) are often unknown and highly heteroge-
neous, mandating calibration of material models. In addition,
ideal trajectories for cutting may not be known beforehand,
requiring efficient optimization of control actions. In other
fields, the need to infer material and control parameters has
motivated the development of differentiable simulators, which
can harness efficient, gradient-based optimization methods.

We present DiSECt, the first differentiable simulator for the
cutting of soft materials (Figure 1). The simulator has several
key features. First, contact between the cutting instrument (i.e.,
knife) and the object is resolved using a continuous signed
distance field (SDF) representation of the knife. Second, a
mesh-based representation of the object is used; given a
predefined cutting plane, virtual nodes are inserted along the
surface in a preprocessing step that occurs only once. Third,
cracks are introduced using a continuous damage model, where
springs are inserted on either side of the cutting plane. Under
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application of force over time, the springs can progressively
weaken until zero stiffness, producing a crack. The continuous
contact and damage models enable differentiability, and the
springs and particles provide hundreds of degrees of freedom
that can be used to calibrate the simulator against ground-
truth data. Gradients of any simulation parameter are computed
using automatic differentiation via source-code transformation.

This work offers the following contributions:
1) The first differentiable simulator for cutting soft materi-

als.
2) A comparison of gradient-based and derivative-free

methods for calibrating the simulator against ground-
truth data from commercial solvers and real-world
datasets. The comparison demonstrates that the dif-
ferentiability of the simulator enables highly efficient
estimation of posteriors over hundreds of simulation
parameters.

3) A performance evaluation of the calibrated simulator
for unseen cutting velocities and object instances. It
demonstrates that the simulator can accurately predict
resultant forces and nodal displacement fields, with
simulation speeds that are orders of magnitude faster
than a comparable commercial solver.

4) An application of the simulator to robotic control, op-
timizing knife motion trajectories to minimize cutting
forces under time constraints.

II. RELATED WORK

A. Modeling and Simulation of Cutting
Analytical modeling: Cutting is a branch of elastoplastic

fracture mechanics [2], where theoretical analysis has primar-
ily focused on metal cutting [56] and brittle materials [23]. A
comprehensive treatment of the mechanics involved in cutting
of metals, biomaterials and non-metals is given in Atkins and
Atkins [2]. Analytical models of the forces acting on a knife
as it cuts through soft materials have been derived in [15, 63].

Mesh-based simulation: Among the numerical methods
that implement such analytical models, the Finite Element
Method (FEM) [5, 32] is a commonly used technique to
simulate deformable bodies. FEM solves partial differential
equations over a given domain (defined by a mesh) by dis-
cretizing it into simpler elements, such as tetrahedra (which
we use in this work). Without modifying the mesh topology,
the Extended FEM (X-FEM) [58] augments mesh elements
by enrichment functions to model fracture mechanics pro-
cesses [35, 36, 40].

In classical FEM, topological changes that result from
cutting and other fracture processes mandate an adaption of
the mesh resolution so that the propagation of the crack can be
accurately simulated. Approaches in mechanical engineering
[1] and computer graphics [7, 9, 39, 69, 90] have been in-
troduced that re-mesh the simulation domain to accommodate
cuts and other forms of cracks.

Virtual node algorithms (VNA) [59, 75, 83] duplicate mesh
elements that intersect with the cutting surface, resulting in
elements with portions of real material and empty regions. At

the cutting interface, virtual nodes are introduced that allow
for a two-way coupling of contact and elastic forces with the
underlying mesh of the separated parts. We leverage VNA to
augment our FEM simulation with extra degrees of freedom
to allow the fine-grained simulation of contact between the
material and the knife. Furthermore, by augmenting the mesh
only once at the beginning of the cut, we avoid discontinuous
re-meshing operations and are able to compute gradients from
our simulator.

Mesh-free and hybrid approaches: So-called mesh-free
Lagrangian methods, such as smoothed-particle hydrodynam-
ics (SPH) [21, 60], element-free Galerkin (EFG) [4], and
smoothed-particle Galerkin (SPG) [89], simulate continuous
media by many particles that cover the simulation domain
and the dynamics is determined by a kernel that defines
the interaction between spatially close particles. Hybrid ap-
proaches have been proposed, such as the Material Point
Method (MPM) [29, 82, 86, 87], that combine Eulerian (grid-
based) and Lagrangian (particle-based) techniques. Position-
based Dynamics (PBD) [64] has been explored to simulate
cutting in interactive surgery simulators [6, 67].

Robotic cutting: In [47] a robotic meat-cutting system is
introduced that scans objects online to simulate deformable ob-
jects and uses impedance control to steer the knife. In [41, 78],
a simplified mass-spring model is used for learning to cut
planar surfaces. Such trained policies are then transferred to
a physical robotic surgery system. By studying the mechanics
of cutting, [63] derive control strategies involving pressing,
pushing, and slicing motions. Similarly, [15, 16] analyze
cutting “by pressing and slicing,” while taking into account
the blade sharpness of the knife. Constrained optimization is
used in [85] to optimize cutting trajectories while accounting
for contact forces, whereas in our control experiment we
furthermore account for the coupling of elastic and contact
force between the knife and the deformable object being cut.
In Jamdagni and Jia [34], FEM simulation for robotic cutting
is devised where crack propagation is simulated at the cross
sections on a high-resolution 2D mesh, which is coupled with
a coarser 3D mesh simulation. Meshes are obtained from
laser scans of biomaterials, and force profiles recorded from a
force sensor attached to a robot end-effector as it vertically
cuts through various foodstuffs. In this work, we leverage
this dataset of real-world cutting trajectories. Fully data-driven
models have been learned to facilitate model-predictive control
in robotic cutting [42, 57].

B. Differentiable Simulation

Differentiable simulation has gained increasing attention, as
it allows for the use of efficient gradient-based optimization
algorithms to tune simulation parameters or control policies
[10, 14, 19, 20, 25, 26, 31, 38, 65, 72]. Although finite
differencing may be used to approximate the derivative of a
simulation output, this approach suffers from accuracy prob-
lems and does not scale to large numbers of parameters [51].
In this work we employ reverse-mode automatic differentiation
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Fig. 2: Visualization of an apple slice. We use a tetrahedral
FEM-based model of the apple generated from scanned real-world
data [34].

to obtain gradient information via source-code transforma-
tion [22, 33]. Recent work has shown the potential for source-
code transformation to generate efficient parallel kernels for
reverse-mode differentiation using graphics-processing units
(GPUs) [30, 31].

C. Parameter Inference for Simulators

Simulation-based inference is a methodology that has
emerged across various fields of science [12]. In parameter
identification, optimization-based approaches are often utilized
to obtain point estimates of the simulation parameters (e.g., for
constitutive equations [24, 50]) that minimize the model error
as measured from the dynamics of the real system. More often,
when analytical gradients are unavailable or too expensive to
obtain, optimization with finite differencing or gradient-free
methods have been applied [55, 66], particularly for dynamical
systems through system identification [46].

Probabilistic inference techniques, on the other hand, seek
to infer a distribution of simulation parameters that allows
downstream applications to evaluate the uncertainty of the
estimates. Such methods have been applied to learn conditional
densities of simulation parameters given trajectories from the
simulator and the real system [27, 52, 53, 68, 73, 80].

Parameter inference may also be integrated in a closed-loop
system [11, 54, 62, 73], where the currently estimated poste-
rior over simulation parameters guides domain randomization
and policy learning. Such approaches iteratively reduce the
sim2real gap.

III. DISECT: DIFFERENTIABLE SIMULATOR FOR CUTTING

The design of our simulator for cutting biomaterials is
motivated by three aspects:

1) The model has to be physically plausible such that the
effects of changing physical quantities from continuum
and fracture mechanics can be observed realistically.

2) While the cutting process is an inherently discontinuous
operation, wherever possible, gradients of the simulation
parameters must be efficiently obtainable.

3) The simulator must allow for sufficient degrees of free-
dom so that fine differences in material properties can
be identified at localized places where the knife cuts
through a heterogeneous material.

Fig. 3: To smoothly model damage, we insert springs (shown in blue)
between cut elements. We incrementally reduce the spring stiffness
based on damage over time, proportional to the contact force applied
from the knife. From left at t = 0s, t = 0.8s, t = 1.2s. Here, we have
removed the knife from visualization to show the inserted springs
clearly.

A. Continuum Mechanics

We implement the Finite Element Method (FEM) to sim-
ulate the dynamics of the soft materials used throughout this
work. Based on a tetrahedral discretization of the cutting
target object, elastic forces are computed that take into account
material properties, such as Young’s modulus, Poisson’s ratio,
and density.

We employ a Neo-Hookean constitutive model following the
strain-energy density function from Smith et al. [77], which
has been designed to model biological tissue and preserve
volume when the mesh undergoes large deformations:

Ψ =
µ

2
(IC−3)+

λ

2
(J−α)2− µ

2
log(IC +1). (1)

Here λ ,µ are the Lamé parameters1 and α is a constant. J =
det(F) is the relative volume change, IC = tr(FT F) is the first
invariant of the Cauchy-Green deformation tensor, and F is
the deformation gradient. We give the material properties for
our experimental objects in Table A1. Integrating over each
tetrahedral element and summing the energy from (1) over
all elements gives the total elastic potential energy. Forces
felastic are derived from the energy gradient analytically and
integrated using a semi-implicit Euler scheme. In addition to
elastic forces, we include a strain-rate dissipation potential to
model internal damping [48].

B. Mesh Pre-Processing

Before the simulation begins, the cutting surface for the
entire cut is given as a triangle mesh. We implement the Virtual
Node Algorithm from Sifakis et al. [75], which, as shown in
Figure 4, duplicates the mesh elements (tets) that intersect with
the cut (subfigure 2), so that the tet above the cutting surface
has a portion of material above the cut, and one empty portion
below the cut (and vice versa for the reciprocal element).
Next, we insert virtual nodes at the intersection points on the
edges. These nodes are only represented by their barycentric
coordinate u ∈ [0,1].

Similar to the two-way coupled “soft particles” described
in Sifakis et al. [76], each virtual node’s 3D position x̃ and
velocity ṽ is entirely defined by the coordinates of its two
parent vertices, indexed i and j:

x̃ = (1−u)xi +ux j ṽ = (1−u)vi +uv j.

1Lamé parameters are a reformulation of Young’s modulus and Poisson’s
ratio; hence we use these terms interchangeably.
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Fig. 4: Pre-processing of a tetrahedral mesh (visualized by a single
tet) prior to being cut along a given cutting surface (red plane). Given
the original mesh, (1) intersecting elements are identified, and (2)
duplicated such that the intersection geometry is retained in each
part of the cut elements. Virtual nodes are inserted where the edges
are intersecting the cutting surface. (3) The original and duplicated
elements are connected by springs (green) between the virtual nodes.

The edge sections along the non-empty portions of the du-
plicated mesh elements participate in contact dynamics and
propagate the resulting contact forces back to their parent
nodes, as described in III-C. Edge sections from the empty
portions of the mesh create no collisions and are solely updated
from the FEM dynamics of the parent vertices.

In the final step of this mesh preprocessing phase (subfigure
3), springs are inserted that connect the virtual nodes on both
sides of the cutting surface which originally belonged to the
same edge of the mesh. These springs allow us to simulate
damage occurring during the cutting process in an entirely
continuous (and thereby differentiable) manner, by weakening
their stiffness values as knife contact forces are applied over
time.

While our approach in its current form assumes that the
entire cutting surface is given before the cutting simulation be-
gins, interactive cutting applications could be accommodated
by interweaving this mesh augmentation step with the actual
cutting simulation. Nonetheless, the practicality of using such
an interactive approach for parameter inference remains to be
validated.

C. Contact Dynamics

Following Macklin et al. [49], we implement a contact
model that represents the knife shape by a signed distance
function (SDF) (Figure 5) that interacts with the tetrahedral
mesh of the object being cut. To find the closest point between
an edge from the mesh and the SDF, we run 20 iterations of
the Frank-Wolfe algorithm (Algorithm 2 in appendix), that
uses the gradient information from the SDF to find a locally
optimal solution for the barycentric coordinate u ∈ [0,1] with
the smallest distance. Using this coordinate, we can compute
the penetration depth and contact normal by querying the SDF
and its gradient. Penalizing collisions, the contact normal force
is computed as the squared penetration depth in the direction
of the normal (zero if no collision). In combination with the

d

u

p1

p2

Distance Along Edge (p1, p2)

d

Signed Distance Field

p1 p2

y

x

d=5

d=0

Fig. 5: 2D slice of the signed distance field (SDF) for the knife
shape (not true to scale), where the color indicates distance d. The
knife’s boundary at d = 0 is indicated by a solid black contour line.
Left: at distances greater than zero the SDF becomes more rounded.
Right: distance d along the edge (p1, p2) with barycentric edge
coordinate u varying between 0 (p1) and 1 (p2). The closest point
found by Algorithm 2 is shown in red. Distances are exemplary and
do not represent the actual dimensions used in the simulator (see
Appendix A2).

relative velocity between the knife and the mesh vertices,
friction forces are computed following the continuous friction
model from Brown [8, Equation 4.5].

Analogous to the knife-mesh contact dynamics, we simulate
contact forces between the object mesh and the ground that it
rests on via the same penalty-based contact model. Here, the
forces are computed between mesh vertices, represented by
spheres as collision geometry, and the ground represented by
a half space. To prevent the object from sliding off the table
during the cut, as in [34], we apply boundary conditions that
fix mesh vertices in place when they fulfill both the following
conditions: (1) touching the ground and (2) being located 1 cm
away from the cutting plane.

D. Damage Mechanics

Physically, damage refers to a macroscopic reduction in
stiffness or strength of a material caused by the formation and
growth of microscopic defects (e.g., voids and microcracks).
For fruits and vegetables, which often have limited plastic de-
formation regimes before failure, damage can be approximated
by a reduction in the elastic modulus of the material, or in
a discrete mesh-based formulation, in the components of the
stiffness matrix.

As follows, our model for damage mechanics leverages
the springs that have been introduced in the final step in
subsection III-B. As the knife applies force to the cutting
interface, the stiffnesses of the springs that are in contact with
the knife, and hence receive knife contact forces, are linearly
decreased (see a visualization of this progressive weakening
as the knife slides down the cutting interface in Figure 3):

k′e = ke− γ ‖fknife‖, (2)

where fknife is the force the knife applies on the spring (i.e., the
contact force that is computed between the knife and the edge),
and γ ∈ [0,1] is a coefficient that controls the “weakness” of
the spring (i.e., how easily the material weakens and separates
as the knife applies force to it).
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Fig. 6: Parameter posterior inferred by BayesSim (left), Stochastic Gradient Langevin Dynamics (SGLD) after 90 burn-in iterations (center),
and Hamiltonian Monte Carlo (HMC) after 50 burn-in iterations (right) for the two-dimensional parameter inference experiment from
subsection V-A, in which cutting spring stiffness sdf_ke and knife contact force stiffness sdf_ke need to be estimated. The diagonals of
each figure show the marginal densities for the two estimated parameters. The bottom-left sections show a heatmap of the joint distribution.
The top-right scatter plot of the BayesSim figure shows the sampled parameters from the training dataset (blue) and the ground-truth (red).
The top-right plot sections for SGLD and HMC visualize the loss landscape as a heatmap (where blue means smaller error than red), with the
Markov Chain depicted by a colored line. Red lines and stars indicate ground-truth parameter values. SGLD and HMC leverage the gradients
of our differentiable simulator and show a much sharper posterior distribution than BayesSim, which uses a dataset of 500 simulated force
profiles.

Algorithm 1: Simulation Loop in DiSECt

for i = 1 . . . timesteps do
1 Compute gravity and external contact forces fext

between mesh and cutting board (half space).
2 Compute elastic forces felastic following the

constitutive model in subsection III-A.
3 Compute knife contact forces fknife as described in

subsection III-C.
4 Update cutting spring stiffness k′e = ke− γ ‖fknife‖.
5 Compute cutting spring forces fspring.
6 Semi-implicit Euler integration of mesh vertices:

vt+1← vt +∆tM−1(fknife + fspring + felastic + fext)
xt+1← xt +∆tvt+1

7 Euler integration of knife velocity (prescribed
velocity trajectory).

end

We use a simulation time step of ∆t = 10−5s across all
our experiments to accommodate the simulation of and stiff
materials (such as apples or potatoes) and centimeter-scale
meshes obtained by laser scans of real biomaterials. Our full
simulation loop is described in Algorithm 1.

IV. SIMULATION PARAMETER INFERENCE

DiSECt supports two modes of parameterizing the simula-
tor: the cutting spring parameters shown in Appendix Table A2
can be shared across all springs, or tuned individually per
spring. The shared parameterization is low-dimensional since
only one scalar per parameter type needs to be inferred. In
contrast, when the cutting springs are individually parameter-
ized, hundreds of variables need to be tuned.

While it is often possible to hand-tune parameters of low-
dimensional, phenomenological models, the task of identifying
the simulation parameters that can enable close prediction of
real-world measurements is daunting, particularly for complex
models such as ours with individually tuned spring parameters.
To tackle the simulation calibration problem, we leverage
automatic differentiation and GPU acceleration to efficiently
compute gradients for all the parameters of our simulator. This
allows us to use optimization techniques, such as stochastic
gradient descent, to directly compute point estimates for the
parameters. Moreover, we can leverage modern Bayesian infer-
ence methods and estimate posterior distributions for the high-
dimensional parameter set given physical observations, such
as the force profile of the knife while cutting real foodstuffs.
The result is a simulator with the capacity to identify its own
uncertainty about the physical world, leading to more robust
simulations. We follow a conventional Bayesian approach and
define p(θ) as the prior distribution over simulation param-
eters (see Appendix Table A2) which, in our experiments, is
a uniform distribution, and p(φ r|θ) as the likelihood function
given by p(φ r|θ) = exp{−‖φ s

θ
−φ r‖L}, where φ r corresponds

to real trajectory observations such as knife forces, positions
and velocities. φ s

θ
is the equivalent simulated trajectory, and

‖ ·‖L is the L-norm. In our experiments we use the L1, which
we determined the most effective (see Appendix A-B). With
both prior and likelihood functions, we can compute the pos-
terior as p(θ |φ r) = 1

Z p(φ r|θ)p(θ), where Z is a normalizing
constant, also known as the marginal likelihood.

In the next sections, we describe three techniques for
simulator parameter inference. We start with a gradient-based
approach that produces point estimates, followed by stochastic
gradient Langevin dynamics (SGLD), a popular gradient-
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Fig. 7: Kernel density estimation from 20 knife force trajectories rolled out by sampling from the posterior found by BayesSim (left) and
SGLD applied in our differentiable simulator with shared (center) and individual parameterization (right). Shown in red is the ground-truth
trajectory from a commercial simulation of cutting an apple with a hemispherical shape. Areas of higher density are shaded in dark blue.

based Markov chain Monte Carlo technique that approxi-
mates the posterior as a set of particles. Finally, we describe
the likelihood-free inference technique known as BayesSim,
which does not make use of gradients and is used as a baseline,
demonstrating the value of differentiable simulation.

A. Gradient-Based Optimization

As a baseline for probabilistic parameter inference, we
present a solution based on stochastic gradient descent us-
ing the popular Adaptive Moment Estimation (Adam) opti-
mizer [37] (see Appendix A-A), a first-order method that
scales the parameter gradients with respect to their running
averages and variances. Unlike the Monte Carlo posterior
approximation obtained by SGLD, Adam will find a locally
optimal point estimate to the parameters that minimizes the
expected loss. We define the loss as l(θ) = log p(φ r|θ) and
compute gradients with respect to the simulation parameters
θ that minimize the loss between a real trajectory φ r and
simulated trajectories φ s.

B. Stochastic Gradient Langevin Dynamics

A popular alternative to Adam for probabilistic infer-
ence is the stochastic gradient Langevin dynamics (SGLD)
method [84] (Algorithm 4). SGLD combines the benefits of
having access to parameter gradients with well-established
sampling-based methods for probabilistic inference to signifi-
cantly scale the parameter set to high dimensions at a tractable
computational cost. The method can be seen as an iterative
stochastic gradient optimization approach with the addition
of Gaussian noise which is scaled by a preconditioner factor
at every iteration. Given a sequence of trajectories generated
by our simulator and a sequence of observed trajectories,
Φ = {φ s

i ,φ
r
i }N

i=1, we can write the posterior distribution as

p(θ |Φ) ∝ p(θ)
N

∏
i=1

p(φ r
i |θ). (3)

SGLD takes the energy function of the posterior denoted by
U(θ) =−∑

N
i=1

1
N log p(Φ|θ)− log p(θ) and samples from the

posterior using the following rule:

θt+1 = θt −
α

2
A(θt)∇U(θt)+ηt , (4)

where ηt ∼ N (0,A(θt)α), α is the learning rate, and A is a
preconditioner. After an initial burn-in phase necessary for the
Markov chain to converge, m samples can be stored to recover
an approximate posterior given by p(θ |Φ) ≈ 1

m ∑
m
i=1 δθi(θ),

where δθi(x) is the Dirac delta function which is non-zero
whenever x = θi.

Critical to SGLD’s performance is the choice of an appro-
priate preconditioner. In this work we follow the extension
proposed in [43] that computes the preconditioner as an
approximation of the Fisher information matrix of the posterior
distribution given by A. This approximation can then be
sequentially updated using the gradient of the energy function.
This is a similar process as the popular RMSProp [79].
Specifically, the preconditioner A ∈ Rm×m and momentum
V ∈ Rm are updated as

V (θt) = βV (θt−1)+(1−β )∇U(θt)�∇U(θt), (5)

A(θt) = diag
(

1�
(

ε +
√

V (θt)
))

, (6)

where ε > 0 is a small diagonal bias (we choose ε = 10−8)
added to the preconditioner to prevent it from degenerating,
and β (which we set to 0.95) is the exponential decay rate of
the preconditioner. � and � are element-wise multiplication
and division operators.

C. Likelihood-free Inference via BayesSim

BayesSim is a likelihood-free technique to estimate the
parameters of a derivative-free simulator that implements a
forward dynamics model which is used to generate trajectories
for the given simulation parameters. The technique consists
of learning a conditional density q(θ |φ) (which BayesSim
represents as a Gaussian mixture model), where θ are the sim-
ulation parameters, and φ are trajectories or summary statistics
of trajectories. For details about our particular BayesSim
implementation, please see Appendix A-C.

V. EXPERIMENTS

To evaluate DiSECt, we first use synthetic data from our
own simulator to evaluate probabilistic inference algorithms.
Next, we identify the simulation parameters (Appendix Ta-
ble A2) to closely match an industry-standard, high-fidelity
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simulation where we have access to the nodal forces and
precise motion of the vertices resulting from the knife contact.
Finally, we leverage real-world experimental data of measured
knife force profiles to evaluate our sim2real transfer.

A. Parameter Inference from Synthetic Data

In our first experiment, we investigate how accurate the es-
timated posterior is, given synthetic force profiles from known
simulation parameters. We create a dataset of 500 knife force
trajectories by varying two of the parameters using the shared
parameterization (section IV) from our proposed simulator as
training domain. We choose such low dimensionality to ensure
that we can obtain enough training data to sample from the
uniform prior distribution which is crucial to the performance
of likelihood-free methods, such as BayesSim.

The two parameters to be estimated are sdf_ke (ranging
from 500 to 8000), the stiffness of the contact model at the
mesh surface, and cut_spring_ke (ranging from 100 to
1500), the stiffness of the cutting springs (cf. subsection III-D)
at the beginning of the simulation.

As shown in Figure 6, BayesSim captures the posterior
(see heatmap in the lower-left corner of the left subfigure)
around the ground-truth parameters of sdf_ke = 5100 and
cut_spring_ke = 200. SGLD (center), however, yields a
significantly sharper density estimate around the true values
within 90 burn-in iterations, while Hamiltonian Monte-Carlo
(HMC), another gradient-based Bayesian estimation algo-
rithm, finds a slightly wider posterior within approximately
50 iterations.

B. Parameter Inference from High-fidelity Simulator

In our first set of experiments where the training data
does not stem from our own model, we simulate cutting
trajectories using a commercial, explicit dynamics simulator
as a ground-truth source. Details on the simulation setup
are in Appendix B-B. For each simulation, knife force and
nodal motion trajectories were extracted. Each simulation was
executed across 4 CPUs and took an average of 1941 min
(>32 h) to complete. For comparison, our simulator produces a
cutting trajectory of 1 s duration (with a 1×10−5 s simulation
time step) within 30 s on an NVIDIA RTX 2080 GPU, and
the gradient of the cost function (likelihood) within 90 s.

We estimate the following parameters θ in this experiment:
(1) sdf_ke, (2) sdf_kd, (3) sdf_kf, (4) sdf_mu, (5)
cut_spring_ke, (6) cut_spring_softness, and (7)
initial_y (for an explanation see Table A2 in the ap-
pendix).

First, we train BayesSim in an iterative procedure where the
currently estimated posterior over the simulation parameters is
sampled to roll out a new set of trajectories that are added to
the training dataset. Starting from 500 trajectories, we repeat-
edly sample 20 new parameters and refit BayesSim’s mixture
density network (MDN) to the updated training dataset. After
100 such iterations (i.e., 2000 additional roll-outs), we obtain
the posterior shown in appendix Figure A7.

Fig. 8: Results from simulation parameter optimization given the
positions of the vertices (top row) and the knife force (bottom
row) with a commercial simulation as ground-truth. Left: before
optimization, the vertices (top) at the last time step (0.9 s) of the
trajectory are visibly distinct between our simulation (blue) and
the ground-truth (black), as shown by the red lines indicating the
vertex difference. Right: after 300 steps with the Adam optimizer,
the vertices (top), as well as the knife force profile (bottom), are
closer after the parameter inference.

For comparison, we train SGLD in DiSECt for 300 itera-
tions with the same parameterization as used for BayesSim,
i.e., the parameters are represented by scalars that are shared
across all cutting springs. As shown in Figure 7, trajectories
sampled from the estimated posterior of SGLD result in
a significantly closer fit (center) to the ground-truth knife
force profile compared to BayesSim (left). The average mean
absolute error (MAE) of the roll-outs with 4.714 N signif-
icantly outperforms BayesSim’s average MAE of 26.860 N.
The gradient-based estimation method achieves such an out-
come with less training data, as it only took 300 trajectory
simulations, compared to the 2500 trajectories in total that
served as the training dataset for BayesSim. If we allow the
parameters to be optimized individually for each cutting spring
(resulting in 1737 parameters in total), the resulting simulation
becomes even closer (right), with an average MAE of 3.075 N.

Based on the commercial ground-truth simulation, we col-
lect additional object nodal displacement field trajectories in
addition to the knife force profiles, which allows us to leverage
another reference signal to calibrate DiSECt. At 18 reference
time steps within the trajectory roll-out, we compute the L2
error between the positions of the vertices in the ground-
truth and our simulator, and add it to the overall cost (which
previously only consisted of the L1 norm over knife force
difference) with a tuned weighting factor. By optimizing the
aforementioned parameters individually with the new cost
function through Adam, after 300 iterations, we arrive at a
simulation that not only closely matches the knife force profile
from the ground-truth simulation, but also has a significantly
reduced gap in the nodal motions between the two simulators
(see Figure 8). Before the optimization, the mean Euclidean
distance between the simulated nodes and the ground-truth
nodal positions is 1.554 mm at the last time step (t = 0.9s).
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Apple Potato

Fig. 9: Results from optimizing simulation parameters in DiSECt
given real-world knife force profiles from vertical cutting of an apple
(left) and a potato (right).

The low initial error over the nodal motion is explained by
the fact that the material properties have been set to already
match a potato (Table A1), leaving the cutting-related spring
parameters as the only remaining variables to be estimated.
After 300 iterations, this error reduced to 1.289 mm, while the
knife force profile MAE decreased from 28.366 N to 0.549 N.

C. Parameter Inference from Real World Measurements

In this experiment, we calibrate DiSECt to real-world cut-
ting trajectories. The real-world dataset provided by Jamdagni
and Jia [34] contains 3D meshes created from laser scans of
the actual objects being cut, as well as knife force profiles
measured from a force sensor mounted between a robot
end-effector and a knife. The knife dimensions are given
in Table A2 and explained in Figure A3. The triangular
surface meshes of the foodstuffs are discretized to tetrahedral
meshes via the TetWild [28] meshing library. After optimizing
the simulation parameters with Adam for 300 iterations, the
simulator closely matches the force profile of a knife cutting
an apple (Figure 9 left) with an MAE of 0.253 N, and for a
potato cutting action (right) achieves an MAE of 0.379 N. We
note that the optimization is stable without requiring restarts
from different parameter configurations, and we found even
relatively poor parameter initialization (such as the one shown
in Figure 9) results in highly accurate prediction after the
calibration.

D. Generalization

While our simulator is able to calibrate itself very closely
to a variety of sources of ground-truth signals – whether
these are knife force profiles obtained by a real robot cutting
foodstuffs, or motion recordings from the mesh vertices in
a commercial simulator that is entirely different from ours
(see Appendix B-B) – the question of overfitting arises. In the
following, we investigate how well the identified simulation
parameters transfer to test regimes that differ from the training
conditions under which these parameters were optimized.

1) Generalization to longer simulations: As shown in Ta-
ble A2, DiSECt allows various dynamics parameters to be
defined individually for each spring, resulting in hundreds
of degrees of freedom. The larger parameterization provides
more opportunity to find closely matching solutions, but may
be prone to overfitting to the reference trajectory in certain

Fig. 10: Velocity generalization results for a sphere shape with apple
material properties given ground-truth simulations with different
vertical knife velocities from a commercial simulator. Two versions
of DiSECt were calibrated: by sharing the parameters across all
cutting springs (blue) and by optimizing each value individually
(orange), given a ground-truth trajectory with the knife sliding down
at 50 mms−1 speed (highlighted in green). The normalized mean
absolute error (MAE) is evaluated against the ground-truth by rolling
out the estimated parameters for the given knife velocity.

settings. One of the pathological cases occurs when the
goal is to predict the knife force trajectory for a duration
longer than the time window seen during training from the
reference force profile. In the experiment shown in Figure A4,
we optimize the simulation parameters using Adam on the
first 0.4 s section from the reference trajectory. Within that
segment, the individual parameterization clearly outperforms
the shared parameterization with a MAE of 0.306 N versus
0.384 N. However, when we test the estimated parameters on a
simulation with a duration of 0.9 s, the shared parameterization
achieves a closer fit with a 4.802 N MAE, compared to the
individual tuning with a 5.921 N MAE. Intuitively, as the knife
slices downward with constant velocity (at 50 mms−1), fewer
cutting springs are affected by the contact dynamics during a
shorter roll-out since the knife does not progress far enough
to reach the cutting springs closer to the ground. Hence, their
parameters’ gradients were zero during the estimation. Tuning
the same kind of parameters uniformly allows all cutting
springs to have an improved fit over the initialization, even
when their interaction with the knife only becomes apparent
at a later time.

2) Generalization to different knife velocities: We investi-
gate how accurately DiSECt predicts knife force profiles given
the parameters that were inferred from a cutting trajectory with
a knife downward velocity of 50 mms−1. At test time, we
change the downward velocity to 35, 45, 55, and 65 mms−1.
As shown in Figure 10 (and Figure A5 in the appendix),
the individual parameterization significantly outperforms the
shared parameterization in normalized mean absolute error
(NMAE), i.e., the MAE between the ground-truth and esti-
mated trajectory divided by the mean force of the ground-truth
trajectory, achieving a four-fold more accurate result compared
to the shared parameterization in many cases (see example
knife force profile in Figure 11).

3) Generalization to different geometries: Cutting the same
type of biomaterial can lead to drastically different knife force
profiles, even when all the variables that influence the motion
of the knife remain the same [34]. This can be caused by
different geometries even within the same object class, as
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Fig. 11: Knife force profiles for cutting a cylindrical mesh with
cucumber material properties by simulating the parameters with
45mms−1 knife velocity downwards. The simulation parameters
in the shared and individual parameterization have been inferred
from a ground-truth trajectory with 50mms−1 knife velocity from
a commercial solver (see subsubsection V-D2).

no two fruits or vegetables of the same type are identical.
Since the mesh topologies can differ significantly between the
different geometric shapes that a foodstuff may have, a direct
mapping between the virtual nodes (respective cutting springs)
is not possible, which would allow the transfer of the individ-
ual parameters. Instead, we propose a weighted mapping of
a combination of cutting spring parameters from the source
mesh that are in proximity to the cutting springs of the target
mesh. We developed an optimal transport [70] method that re-
ceives as inputs the cutting spring coordinates in 2D (obtained
by the mesh preprocessing step from subsection III-B) at the
cutting interface (shown in Figure 12) from a source domain,
and a different set of 2D coordinates for the target domain. By
minimizing the Earth Mover’s Distance (EMD) [74] between
the cutting spring vertices of the two meshes2, we find a weight
matrix that allows us to compute spring parameters for the
target domain as a weighted combination of the parameters
from the source mesh. For more details, see subsection A-D.
Similar to the velocity generalization experiments, we observe
a significantly improved NMAE performance (Table I) in
most cases when the cutting spring parameters are tuned
individually (“NMAE OT”) in contrast to duplicating average
of each spring parameter (“NMAE Avg”) from the source
domain across all locations in the target domain.

Overall, our generalization experiments have shown that,
although we optimize hundreds of parameters involved in
the cutting dynamics at highly localized places, such rep-
resentation still generalizes between various conditions. The
successful transport of these parameters between two topolog-
ically different meshes based on their spatial correspondences
indicates that our simulation parameters implicitly encode
material properties that generalize across mesh topologies.

2Our implementation uses the Python Optimal Transport library [18]

Material Source Mesh Target Mesh NMAE OT NMAE Avg

Potato Real Potato 1 Real Potato 2 0.948 5.635
Potato Real Potato 2 Real Potato 1 1.360 6.981
Apple Real Apple 2 Real Apple 3 6.844 1.330
Apple Real Apple 3 Real Apple 2 3.857 19.749

Potato Cylinder Prism 3.470 12.001
Potato Prism Cylinder 0.933 1.983
Potato Prism Sphere 7.867 15.841
Potato Sphere Prism 35.347 16.812

Apple Cylinder Sphere 4.261 14.457
Apple Sphere Cylinder 1.839 1.602
Apple Prism Sphere 0.920 4.531
Apple Sphere Prism 13.883 45.983

Cucumber Cylinder Sphere 66.672 71.102
Cucumber Sphere Cylinder 4.239 0.484
Cucumber Cylinder Prism 58.138 64.407
Cucumber Prism Cylinder 1.046 1.855

Table I: Mesh generalization results when the parameters from the
source domain are transferred to the target domain via Optimal
Transport (OT), and by averaging the parameters across all cutting
springs. The numbers show the normalized mean absolute error
(NMAE), i.e., the MAE divided by the mean of the respective ground-
truth knife force profile, to make the results comparable across
different material properties and geometries.

E. Controlling Knife Velocity

In real-world applications, automated cutting of foodstuffs
may need to meet multiple competing objectives. In particular,
force may be minimized to prevent peripheral damage to the
object, or ensure human safety, while the velocity may be
maximized to reduce the required time. For cutting of food and
biomaterials, humans have intuitively developed the strategy
of minimizing cutting force by pressing the knife vertically
and simultaneously slicing horizontally (i.e., a sawing motion)
[3, 15, 16]. Such a cutting action can be intuitively understood
as follows: by definition, the work applied by the knife
to the object is equal to the cutting force integrated over
displacement, and by conservation of energy, also equal to the
fracture energy required to introduce a cut in the vertical plane.
By simultaneously slicing horizontally, the distance traveled
by the knife will be greater, reducing the cutting force for the
required fracture energy.

Using gradient-based trajectory optimization, we observe
that such an intuitive cutting strategy emerges. We define the
cost function in Equation A4 to penalize the mean knife force
and inverse velocity, and we parameterize the knife trajectory
via keyframes in time that define the downward velocity
and sinusoidal time-varying horizontal velocity (a complete
description is given in section D of the appendix).

When optimizing Equation A4 through Adam without con-
straints on the sideways knife position, the resulting motion
after 50 iterations (orange line in right subplot of Figure 13)
consists of an initial pressing phase up to the point of contact
with the cucumber, after which the knife continuously moves
sideways without sawing. To limit the sideways motion to
remain within the bounds of the blade length, we add an
inequality constraint in Equation A5. By performing con-
strained optimization with the modified differential method of
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Fig. 12: Transfer of cutting parameters between two different potato
meshes from a real-world cutting dataset. For the model in the
left column, the cutting spring parameters have been optimized
individually for each cutting spring given a single trajectory of the
knife force (only two of the parameter types are shown in both
rows). These parameters have been transferred to the mesh on the
right column via Optimal Transport with the Earth Mover’s Distance
(EMD) objective (more details for this mesh transfer example are
shown in Figure A2).
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Fig. 13: Results from the trajectory optimization experiment (subsec-
tion V-E) on the cylinder mesh with cucumber material properties
where the mean knife force is penalized and the overall downward
velocity maximized. Left: knife force profiles before the trajectory
optimization (blue), after unconstrained (orange) and constrained
(green) optimization. Right: resulting knife motions (starting from
y = 8cm moving downwards), with constraints on the lateral motion
shaded in red.

multipliers (MDMM) (see section D), we see that the knife
moves within the bounds of the 15 cm blade length (green
line on the right in Figure 13), while incurring only slightly
more mean knife force (76.726 N) compared to the solution
from the earlier unconstrained optimization (76.498 N). For
comparison, the mean knife force was 89.698 N before the
trajectory optimization.

VI. CONCLUSIONS

In this paper, we presented the first differentiable simulator
for the robotic cutting of soft materials. Differentiability
was achieved through a continuous contact formulation, the
insertion of virtual nodes along a cutting plane, and a con-
tinuous damage model based on the progressive weakening
of springs. The advantages of differentiability were shown
through a systematic comparison of multiple gradient-based
and derivative-free methods for optimizing the simulation

parameters; leveraging gradients from the simulator enabled
highly efficient estimation of posteriors over hundreds of
parameters. The calibrated simulator was able to reproduce
ground-truth data from a state-of-the-art commercial simulator
in a fraction of the time, as well as closely match data from
a real-world cutting dataset. Simulator predictions generalized
across cutting velocities, object instances, and object geome-
tries. Finally, a control experiment was performed in which
human pressing-and-slicing behavior emerged from sample-
efficient constrained optimization applied to the differentiable
simulator, reducing the mean knife force by 15% relative to a
vertical cut.

In future work, we plan to make multiple extensions. First,
we will extend the material model for the soft material to
explicitly capture nonlinearity and isotropy, as commonly
observed in biomaterials; explicitly specifying such behaviors
will facilitate optimization of simulator parameters. In addi-
tion, we will extend our modeling approach to accommodate
more complex cutting actions, such as carving, in which
the knife may arbitrarily rotate and follow more diverse
trajectories than sawing motions; this approach will be used in
additional control experiments, with the resulting trajectories
compared again to human actions. Finally, we will evaluate
calibrated simulator results against our own experimental
dataset collected with an instrument robotic manipulator. Ulti-
mately, we envision the use of differentiable cutting simulators
in applications as challenging as robotic surgery, where tissue
parameters can accurately and efficiently be estimated on
initial contact with the cutting instrument, and the calibrated
simulator can be used for faster-than-real-time roll-outs in a
model-predictive framework for online surgical planning.
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APPENDIX A
ADDITIONAL ALGORITHMIC DETAILS

A. Adam Optimizer

At its core, Adam updates the parameters θ interactively as
θi← θi−1−α · m̂i/(

√
v̂i +ε), where α is the learning rate, m̂i

and v̂i represent the first and second order decaying averages
(or momentum) after correcting for biases, and ε is a small
value to prevent numerical issues. The full algorithm is shown
in Algorithm 3. In Algorithm 4, we describe Stochastic Gradi-
ent Langevin Dynamics (SGLD) with the Adam update rule.
A detailed description of SGLD is given in subsection IV-B.

B. Loss Functions

We investigated various loss functions for evaluating the
closeness between knife force profiles effectively. Given the
two-dimensional parameter inference experiment from sub-
section V-A, we test the following cost functions which we
minimize via the Adam optimizer:
• L1 loss

Algorithm 2: Frank-Wolfe method
Result: Barycentric coordinate u of point on edge

(p1, p2) with lowest signed distance w.r.t. SDF
d : R3→ R

u← 1/2

for i = 0 . . .max iterations do

δ ← ∂

∂u
d ((1−u)p1 +up2)

if δ < 0 then
s← 1

else
s← 0

end

γ ← 2
2+ i

u← u+ γ(s−u)
end

Algorithm 3: Stochastic gradient descent with Adam
Given: learning rate α , initial parameters θ0,

likelihood function l(·)
m0← 0
v0← 0
for i = 1 . . .max iterations do

gi← ∇θ l(θi−1)
mi← β1 ·mi−1 +(1−β1) ·gi
vi← β2 · vi−1 +(1−β2) ·g2

i
m̂i← mi/(1−β i

1)
v̂i← vi/(1−β i

2)
θi← θi−1−α · m̂i/(

√
v̂i + ε)

end
return θi

Algorithm 4: SGLD with Adam update rule
Given: learning rate α , initial parameters θ0,

likelihood function l(·)
m0← 0
v0← 0
for i = 1 . . .max iterations do

gi← ∇θU(θi−1)
mi← β1 ·mi−1 +(1−β1) ·gi
vi← β2 · vi−1 +(1−β2) ·g2

i
m̂i← mi/(1−β i

1)
v̂i← vi/(1−β i

2)
Ai← diag

(
1� (
√

v̂i + ε)
)

ηi ∼N (0,αAi)
θi← θi−1−α · m̂i ·Ai +ηi

end
return θi

• L2 loss
• Inverse Cosine Similarity
• LogSumExp
We visualize the trace of the optimized parameters in

Figure A1. The L1 loss function compares favorably to the
other formulations as it allows for a relatively fast convergence
to the true parameters, while also yielding a “bouncing”
behavior when the iterates are close to the (local) optimum.
Since we use the L1 loss function in the likelihood term for
our probabilistic parameter inference experiments V-A, the
likelihood distribution corresponds to a Laplace distribution
which is known to have sharp peaks and heavy tales.

C. BayesSim Implementation

BayesSim approximates the posterior over the simulation
parameters as

p(θ |φ)≈ p(θ)/ p̃(θ) q(θ |φ),

where p(θ) is the prior distribution and p̃(θ) is a proposal
prior used to sample the simulator and collect N samples,
{θi,φ

s
i }N

i=1, to learn q(θ |φ). When a real trajectory φ r is
observed, BayesSim computes p(θ |φ = φ r) that represents the
posterior over simulation parameters given the real data. As
inferring simulator parameters given trajectories is a type of
inverse problem, it can admit a multitude of solutions.

For the BayesSim baseline, we train a mixture density
network (MDN) representing q(θ |φ) with 10 components on a
dataset consisting of 500 knife force trajectories that have been
generated in our simulator by uniformly sampling the simula-
tion parameters within their respective bounds. Depending on
the experiment, we limit ourselves to only a subset of all the
available parameters, due to the exponential increase in sample
complexity. As summary statistics input to BayesSim, we
downsample the 0.9 s knife force profiles consisting of 90,000
time steps by a factor of 1000 to 90-dimensional summary
statistics using polyphase filtering. While training the MDN,
we project the true parameter values to the unit interval using
their possible ranges (see Table A2), as we found the MDN
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L1 Loss |φ s−φ r|

L2 Loss ‖φ s−φ r‖2

Inverse Cosine Similarity 1− φ s ·φ r

max(‖φ s‖2 · ‖φ r‖2,ε)

LogSumExp log [∑t exp(φ s[t]−φ r[t])]

Fig. A1: Evaluation of various loss functions on the actual_2d
scenario from subsection V-A. For 500 randomly sampled parameter
vectors, the trajectories are simulated (shown as dots) and the loss is
computed between the simulated trajectory φ s and the ground-truth
knife force profile φ r. The interpolated loss landscape is shown one
the left, and the training loss evolution using the Adam optimizer is
shown on the right. Overall, the L1 loss performs favorably compared
to the other cost functions and is therefore our choice to evaluate the
closeness between knife force trajectories across this work.

Material E (Nm−2) ν ρ (kgm−3)

Apple 3.0×106 0.17 787
Potato 2.0×106 0.45 630
Cucumber 2.5×106 0.37 950

Table A1: Properties of common biomaterials: Young’s modulus E,
Poisson’s ratio ν , density ρ .

to be sensitive to the scale of the parameters, and to perform
more accurately with homogeneous value ranges.

D. Optimal Transport of Cutting Spring Parameters

The Earth Mover’s Distance can be interpreted as the
minimal cost associated with transforming a constant volume
pile of dirt into another, where the cost is defined as the amount
of dirt moved multiplied by the distance travelled. Formally,
given two sets of vertices P and Q, associated sets of vertex
weights wP and wQ, and a cost matrix given by the Euclidean
distance between two points D = |di, j| = ‖pi− q j‖2, optimal
transport finds the solution of the optimization problem

min
F

1
Z

m

∑
i=1

n

∑
j=1

fi, jdi, j (A1)

where F = fi, j is the movement or flow between pi and q j
which we try to minimize, and Z = ∑

m
i=1 ∑

n
j=1 fi, j is a nor-

malization constant. In our formulation, we assume uniform
weights for both sets of vertices.

This problem can be efficiently solved using the network
simplex algorithm [13] and has typical complexity O(n3), but
sparsity can be exploited to reduce this cost.

APPENDIX B
DETAILS OF EXPERIMENTAL SETUP

A. Simulation Parameters

DiSECt introduces additional degrees of freedom via the
insertion of virtual nodes and cutting springs that connect them
(see subsection III-B). In Table A2, we list each available
parameter with its description and default value. Parameters
that are allowed to be individually tuned for each spring can
be set in two modes:

• Shared parameterization: the parameter is a single scalar
that gets replicated across all cutting springs.

• Individual parameterization: the parameter is a vector
where each entry can be tuned separately for each spring.

To enforce hard parameter limits in our simulator, through-
out our experiments, we impose bounds on the estimated
simulation parameters by projecting them through the sig-
moid function. Thus, given an unconstrained real number
x to be optimized, the resulting projected parameter value
is sigmoid(x) · (pub − plb) + plb, where plb and pub are the
upper and lower bounds of the parameter, and sigmoid(x) =
1/(1+ exp(−x)).
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Name Description Default value

Knife geometry parameters (fixed)
edge_dim Lower diameter of knife (see Figure A3 right) 0.08 mm
spine_dim Upper diameter of knife (spine) 2 mm
spine_height Height of knife spine 40 mm
tip_height Height of knife tip 0.04 mm
depth Length of knife blade (along z axis) 150 mm

Knife motion
velocity_y Vertical knife velocity −0.05 ms−1

initial_y Initial vertical knife position (height) 80 mm

Spring-damper parameters (individual for each spring)
cut_spring_ke Spring stiffness coefficient at the start of the simulation (initial stiffness of the cutting spring) 500
cut_spring_kd Spring damping coefficient 0.1
cut_spring_softness Softness coefficient γ used in the linear spring loosening (Equation 2) 500

Knife contact dynamics parameters (individual for each spring)
sdf_radius Radius around SDF to consider for contact dynamics 0.5 mm
sdf_ke Positional penalty coefficient (contact normal stiffness) 1000
sdf_kd Damping coefficient 1
sdf_kf Contact friction stiffness (tangential stiffness used in Coulomb friction model) 0.01
sdf_mu Friction coefficient (µ) 0.5

Ground contact dynamics parameters (fixed)
ground_ke Positional penalty coefficient (contact normal stiffness) 100
ground_kd Damping coefficient 0.1
ground_kf Contact friction stiffness (Coulomb friction model) 0.2
ground_mu Friction coefficient (µ) 0.6
ground_radius Radius around mesh vertices 1 mm

Material properties
young Young’s modulus E see Table A1
poisson Poisson’s ratio ν see Table A1
density Density ρ see Table A1

Table A2: Overview of the model parameters used by our cutting simulator.

B. Commercial Simulation Setup

In the commercial solver, each simulation consisted of
a rigid knife, 1 of 3 deformable fruits/vegetables (apple,
cucumber, or potato), and a rigid table. The apple, cucumber,
and potato geometries were represented by sphere, cylinder,
and rectangular shape primitives, respectively. Each primitive
had a 10 mm-thick slice, centered along the long axis, that
defined the volumetric region that could be cut. All regions
were assigned an isotropic elastic failure material model,
with density, Lamé parameters (see Table A1), yield stress,
and failure strain obtained from the agricultural mechanics
literature [17, 44, 61] and the FoodData Central database
from the U.S. Department of Agriculture [81]. The non-
slice regions were simulated using FEM with a tetrahedral
mesh-based discretization. The slice region was simulated
using the smoothed particle Galerkin (SPG) method with
a particle-based discretization. SPG is a numerical method
related to smoothed particle hydrodynamics (SPH) [45, 60]
and the element-free Galerkin method (EFG) [4], and has
been validated for simulating large deformation and failure of
elastoplastic solids [88]. Continuity conditions were imposed
between the non-slice mesh and the slice particles. Coulomb
frictional contact was defined between the knife and the
deformable object, as well as between the object and the table,
with a coefficient of friction of 0.6. A constant downward
velocity was applied to the knife until contact with the surface

of the table, and gravity was applied to the deformable object.

APPENDIX C
ADDITIONAL EXPERIMENTS

A. Generalization Results

Figure A4 shows the trajectories for the generalization
experiment (subsubsection V-D1) where the parameters have
been optimized for a shorter simulation time window of 0.4 s,
and tested against the ground-truth trajectory (green, dashed
line) over a duration of 0.9 s.

Analogous to the apple cutting results with ground-truth
from the commercial solver in Figure 10, the bar plot in
Figure A5 visualizes the normalized mean absolute error
(NMAE) for different knife velocities at test time. The simula-
tion parameters have been optimized for a vertical downward
velocity of 50 mm (green shade in the background), given a
knife force profile of cutting a cylindrical mesh with cucumber
material properties from the commercial simulator. At test
time, we use the same optimized simulation parameters to
evaluate the accuracy of the force profile simulation against
the commercial simulator on different downward velocities.
As in the experiments of cutting an apple (Figure 10), the
results in Figure A5 show that the individual cutting spring pa-
rameterization outperforms the shared parameterization across
all tested velocities. While the performance improvement over
the shared parameterization becomes less significant, it can
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Fig. A2: Optimal transport of simulation parameters from one mesh
of a real potato (top left) to another real potato mesh (top right).
The correspondences (center) have been found via optimal transport
using the Earth Mover’s Distance (Equation A1) between cutting
springs in two potato meshes. The weighted mapping between the
2D positions of the springs at the cutting interface from the source
domain (ybj_potato1) to the target domain (ybj_potato2)
is used to transfer the cutting spring parameters between the two
topologically different meshes, resulting in a close fit to the ground-
truth trajectory (bottom).
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Fig. A3: Parameters that describe the knife geometry.
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Fig. A4: Generalization performance on the apple cutting trajectory
by simulating the parameters which have been optimized from a 0.4 s
ground-truth trajectory (highlighted in yellow) from a commercial
simulator. At test time, the force profile is simulated over a duration
of 0.9 s (see subsubsection V-D1). The blue line shows the estimated
trajectory when all parameters were optimized individually for each
cutting spring. Shown in orange is the resulting trajectory from
optimizing parameters shared across all cutting springs.

Fig. A5: Velocity generalization results for a cylinder mesh with
cucumber material properties given ground-truth simulations with
different vertical knife velocities from a commercial solver. Two
versions of DiSECt were calibrated: by sharing the parameters across
all cutting springs (blue) and by optimizing each value individually
(orange), given a ground-truth trajectory with the knife sliding down
at 50 mms−1 speed (highlighted in green). The normalized mean
absolute error (MAE) is evaluated against the ground-truth by rolling
out the estimated parameters for the given knife velocity.

be concluded that the individual parameterization generalizes
better to novel test velocities.

B. Posterior Over Simulation Parameters

The marginal plots in Figure A6 and Figure A7 show the
posteriors from iterative BayesSim and SGLD, respectively.
These densities over a subset of the simulation parameters
(shared across the cutting springs) have been inferred from
knife force profiles of cutting a sphere mesh using apple ma-
terial properties. The ground-truth, from which the posteriors
are inferred, stems from a high-fidelity commercial simulator
(see description in subsection V-B).

APPENDIX D
KNIFE MOTION TRAJECTORY OPTIMIZATION

We represent the knife velocity trajectory by k equidistant
keyframes in time. Three parameters are to be optimized
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Fig. A6: Posterior obtained by SGLD in our differentiable simulator after 300 trajectory roll-outs. Marginals are shown on the diagonal.
The sampled chain is visualized for pairs of parameter dimensions in the upper triangle, along with an approximate rendering of the loss
surface as heatmap in the background. The heatmaps in the lower triangle visualize the kernel densities for all pair-wise combinations of
the parameters.

per keyframe i (refer to Figure A3 for the coordinate frame
orientation w.r.t. the knife):

• ai: the amplitude of the lateral (along z axis) sinusoidal
velocity

• bi: the frequency of the lateral sinusoidal velocity
• ci: the vertical (along y axis) velocity

To allow for a smooth interpolation between the keyframes,
and propagation of gradients from all trajectory parameters at
every time step, we weight the contribution of all keyframe
parameters on the entire trajectory via the radial basis function
(RBF) kernel. The kernel uses the squared norm of the differ-
ence between the current time t difference and the predefined
keyframe times to compute the weight contributions w ∈ Rk

of the keyframe parameters (see Figure A8):

w(t) = exp
(
−‖t−w‖2

2σ2

)
(A2)

In effect, a nonzero contribution on the trajectory is main-
tained from all keyframes at all times, which eases gradient-
based optimization.

The kernel width σ controls how smoothed out the con-
tributions of the keyframe parameters become. We found
σ =

√
0.03 to be an appropriate setting (see illustration in

Figure A8), given that the duration of the cutting action we
optimize for is 0.9 s using k = 5 keyframes.

To compute the knife’s horizontal (sideways) and vertical
velocities żknife(t) and ẏknife(t) at time t = [0..T ], the keyframe
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Fig. A7: Posterior obtained by BayesSim after 100 iterative updates of the training dataset with 20 new trajectories per iteration. Marginals
are shown on the diagonal. Parameter samples are represented by the dots in the scatter plots from the upper triangle. The heatmaps in the
lower triangle visualize the kernel densities for all pair-wise combinations of the parameters.

parameters in vector form a,b,c ∈ Rk are combined with the
time-dependent weighting contribution from Equation A2:

żknife(t) = a ·w(t)cos(b ·w(t)t) ẏknife(t) = c ·w(t) (A3)

We minimize the mean knife force plus the vertical knife
velocity integrated over the entire length of the trajectory.
Thus, we penalize high actuation effort by the robot controlling
the knife while maintaining a fast progression of the cutting
process:

minimize
u=[a,b,c]

L=
1
T

∫
f (t,a,b,c)+ ẏknife(t)dt (A4)

|zknife(t)| ≤
1
2

lknife, (A5)

where k = 5 is the number of keyframes, T = 0.9s is the
time at the end of the trajectory, f is the simulation step
that returns the knife force norm ‖fknife‖ at time step t given

the trajectory parameter vectors a,b,c, and lknife = 15cm is
the blade length of the knife. We impose the hard constraint
in Equation A5 to ensure that the knife does not move too
far along z where the blade of the knife ends (which would
trivially minimize the knife force, although we assume the
knife blade has infinite length in this experiment setup).

Constrained optimization problems are typically solved
by converting them to unconstrained optimization problems
through the introduction of Lagrange multipliers. However,
the critical points to such Lagrangians often tend to be
saddle points, which gradient-descent-style algorithms, such as
Adam, will not converge to [71]. To make the unconstrained
objective amenable to gradient descent, following the modified
differential method of multipliers (MDMM) [71], we introduce
a penalty term for u = [a,b,c]:

Epenalty =
c
2
(g(u))2.
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Fig. A8: Visualization of five keypoints (top) evenly distributed in
time with exemplary amplitude values a[i] per keyframe i (color-
matching dots in lower plot). The resulting continuous trajectory
a(t) resulting from weighting the keyframes via the RBF kernel
(Equation A2) is shown as the dashed line at the bottom.

This term acts as an attractor to the energy function that we
are optimizing for (where c acts as a damping factor), where
g(u) is an equality constraint.

To include the inequality constraint in Equation A5, we
convert it to an equality constraint g(x) by introducing slack
variable γ ∈ R that becomes part of u:

g(u) =
1
2

lknife−|zknife(t)|− γ
2. (A6)

The update rule for the trajectory parameters u is then

u′ = u− ∂L

∂u
−λ

∂g
∂u
− cg(u)

∂g
∂u

(A7)

λ
′ = λ +g(u). (A8)
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