Robotics: Science and Systems 2021
Held Virtually, July 12-16, 2021

Distributed Covariance Steering with Consensus
ADMM for Stochastic Multi-Agent Systems

Augustinos D. Saravanos!, Alexandros G. Tsolovikos?, Efstathios Bakolas? and Evangelos A. Theodorou!
!Georgia Institute of Technology, GA, USA
2The University of Texas at Austin, TX, USA
Email: asaravanos3 @ gatech.edu

Abstract—In this paper, we address the problem of steering a
team of agents under stochastic linear dynamics to prescribed
final state means and covariances. The agents operate in a
common environment where inter-agent constraints may also
be present. In order for our method to be scalable to large-
scale systems and computationally efficient, we approach the
problem in a distributed control framework using the Alter-
nating Direction Method of Multipliers (ADMM). Each agent
solves its own covariance steering problem in parallel, while
additional copy variables for its closest neighbors are introduced
to ensure that the inter-agent constraints will be satisfied. The
inclusion of these additional variables creates a requirement for
consensus between original and copy variables that involve the
same agent. For this reason, we employ a variation of ADMM
for consensus optimization. Simulation results on multi-vehicle
systems under uncertainty with collision avoidance constraints
illustrate the effectiveness of our algorithm. The substantially
improved scalability of our distributed approach with respect to
the number of agents is also demonstrated, in comparison with
an equivalent centralized scheme.

I. INTRODUCTION

Multi-agent control is a discipline with applications in
several fields of robotics, such as the formation of swarms of
drones [28]], convoys of autonomous vehicles [30]], coverage
control [20] and multi-robot coordination [22]], to name but
a few. In such problems, the members of the multi-agent
system have to work in unison to complete specific tasks while
operating safely in a common environment. These are chal-
lenging problems, especially when the agents operate under
uncertainty. Having probabilistic guarantees on the stochastic
state trajectories of such agents is imperative to ensure their
safe operation and optimal performance. Toward that goal,
we leverage recent results in covariance steering to address
the problem of guiding a team of agents to prescribed goal
state distributions while satisfying probabilistic inter-agent
constraints.

In contrast with standard LQG control where the final state
covariance is indirectly controlled, covariance steering [17]]
aims at driving the final state mean and covariance to specific
prescribed targets. While the first contributions [15} [17) [33]
in the area focused on the steady-state (infinite-horizon) co-
variance control problem, recently, covariance steering has
also been formulated in a finite-horizon control setting, under
continuous [2, 110, 11, 12} [16] and discrete-time [3, |4, [7, 8]
linear dynamics, as well as for systems with partial state
information [5l [18, 27] and nonlinear dynamics [26} [31} [34].
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Fig. 1: The problem of steering a team of agents under
stochastic dynamics from their initial Gaussian distributions
to prescribed final ones.

Several successful applications of covariance control can be
found in robotics [21]], aerospace engineering [25]], etc.

Covariance steering essentially provides an upper bound
on the uncertainty of the final state. This attribute makes it
very appealing for problems where safety guarantees have to
be established. For instance, consider the scenario of driving
multiple agents from an initial formation to a desired one.
In this case, it is critical that the final positions of the
agents will be within a maximum specific distance from their
target positions with a prescribed probability while avoiding
collisions.

Solving the covariance steering problem for discrete-time
linear systems scales significantly with the number of states,
control inputs, and time steps [4]. Therefore, attempting to
deal with the multi-agent covariance steering problem in a cen-
tralized fashion can prove to be computationally demanding,
especially as the number of agents increases. Consequently,
it is of paramount importance to come up with an approach
that will be computationally efficient and that will scale well
with the increase of agents. For this reason, we address
the problem in a distributed control framework using the
Alternating Direction Method of Multipliers (ADMM).



ADMM is a powerful optimization method [9]] suitable for
distributed optimization and control. There exist some works
that have employed ADMM in multi-agent control problems
[130 119, 23, 12411291 |32]]. One of the main advantages of several
ADMM variations is that they allow for large-scale multi-
agent optimization problems to be handled in a decentralized
fashion, yielding significantly faster solutions compared to a
centralized approach. Therefore, we believe that ADMM is
very suitable for multi-agent stochastic optimal control where
the computational effort must be distributed properly between
the available processing units so that we achieve scalability to
large-scale systems.

In this paper, we propose a distributed algorithm for multi-
agent covariance steering based on a variation of ADMM for
consensus optimization. Our main contribution can be seen
from two perspectives. First, to the best of our knowledge,
the multi-agent covariance steering problem has not been
addressed yet. For the reasons we have stated, we believe
that covariance steering fits well with problems where we
wish to establish probabilistic guarantees for safety and,
therefore, it is suitable for the control of multiple agents
in a common environment. Second, we address the issue of
increased computational complexity incurred by centralized
multi-agent covariance steering. To do so, we use a distributed
optimization architecture based on ADMM that is shown to
be both effective and scalable to a large number of agents.
Although this work specifically addresses covariance steering,
it also indicates the compatibility of the distributed nature of
ADMM with multi-agent stochastic optimal control in general
and can potentially lead to more powerful algorithms for this
class of problems.

The paper is structured as follows. Section II provides an
overview of single-agent covariance steering and ADMM. In
Section III, we formulate the multi-agent covariance control
problem. Our proposed distributed ADMM-based covariance
steering algorithm is presented in Section IV. In Section V,
we demonstrate simulation results that verify the effectiveness
and scalability of our approach. The conclusions of our work
and a discussion for future directions are provided in Section
VI

II. PRELIMINARIES

In this section, we introduce some prerequisites on covari-
ance steering and ADMM. First, we define the notation that we
follow throughout the paper. Next, we present the single-agent
covariance steering problem for discrete-time stochastic linear
systems and demonstrate how it can be reduced to a convex
semi-definite program (SDP). Finally, we overview ADMM
and one of its variations for addressing consensus optimization
problems in a distributed fashion.

A. Notation

The mean and covariance of a random vector x are denoted
by E[z] and Cov[z], respectively, where Cov|z] := E[(x —
E[z])(z — E[z])T]. Let S, be the space of real symmetric
n X n matrices, whereas S7 and S}t denote the convex

cone of n X n positive semi-definite and positive definite
matrices, respectively. Given a matrix A € R"*", its trace
is denoted as tr(A). With diag(ay, ..., a) € R“*¢ we denote
the diagonal matrix made up by the scalars a;, i = 1,...,7,
while bdiag(Ay, ..., Ag) is the block diagonal matrix made
up by the matrices A;, ¢ = 1,...,¢. Given a sequence of
vectors 2~ = {z(t) : t = 1,...,m}, we denote the vertical
concatenation of its vectors as vertcat(.2"). We also denote
the cardinality of 2" as |27|, where |2°| = m. Finally, we
define the />-norm of a vector x € R" as ||z||3 = Y| @i (t)%

B. Single-Agent Covariance Steering

The goal of covariance steering is to find a feedback control
policy that will steer the uncertain state from a given initial
mean and covariance to prescribed terminal ones. Here, we
show how to formulate the latter problem for linear dynamics
subject to white Gaussian process noise as a convex semi-
definite program.

1) Problem Formulation: Consider the following discrete-
time stochastic linear system:

z(t+1) = A(t)z(t) + B(t)u(t) + w(t),
z(0) = xo, x0 ~ N (po, %0),

(1)
(1b)

fort =0,...,7 — 1, where w(t) ~ N(0,W;) is the process
noise, po € R™ and X € S} are given and W, € S;'. This
system yields a random state process 2o = {z(7) € R :
7=0,...,t}, for t =0,...,T, that depends on the control
input process %p.t—1 = {u(r) : 7 =0,...,t — 1}, the noise
process #g.t1—1 = {w(r) : 7 =0,...,t — 1}, and the initial
(random) state xg.

In addition, consider admissible control policies w :=
{m(t,") : t =0,...,T — 1} that are affine functions of the
elements of the uncertain state process:

t
w(t, Zoa) = v(t) + > K(t,7)x(7), )
7=0
where v(t) € R™ and K (t,7) € R™*" forall 7 =0,...,T—
1. The admissible control policies are completely defined by
the sequence of vectors ¥ = {v(t) : t =0,...,T—1} and the
collection of matrix gains % = {K(t,7):t,7=0,...,T —
1, t> 7).
Among all admissible control policies w = w (¥, %), we
seek the sequences ¥ and ¢ that minimize the following
performance index:

T-1

T )= E[u(t)Tu(t)] 3)

t=0

subject to the dynamic constraints (Ia) and the boundary
conditions

E[z(0)] = po,
E[z(T)] = uy,

Cov[z(0)] = X,
(25 — Cov[z(T)]) € S;.

(4a)
(4b)



The performance index (3) ensures that the goal will be
reached without excessive actuation, while the positive semi-
definite terminal constraint (4b) is a relaxation of the non-
convex equality constraint Cov[z(T")] = X that sets an upper
bound on the uncertainty with which the terminal mean, p,
will be reached [4! |6]].

2) Reduction to a Convex Semi-Definite Program: The
above covariance steering problem can be reduced to and
solved as a convex SDP (for details, see [4, |6]). First, the
discrete-time dynamics are compactly written as:

T = G0$0 +Guu + wa7 (5

where = = vertcat(Zo.r) € RIFDR 4 =
vertcat(%o.r—1) € RT™, and w = vertcat(#p.r_1) € RT™.
In addition, Gy, G,, and G, are defined as follows:

Go:=[I ®(1,0)7 o(T,0)7] ",
0 0 0
B(0) 0 o0
G.—|®2DBO)  BL) - 0 |
<I>(T,1:)B(O) cI)(T,Q:)B(l) B(]i—l)
0 0 0
I 0 0
0

@(f,p <I>(7:“,2) 1

where ®(k,m) = A(k —1)--- A(m) and ®(k, k) = I, for
k > m. In view of @]) an admissible control sequence can be
written as:

u=v+Kzx

where v := vertcat(¥’) and

K(0,0) 0 0 0
K(1,0) K(1,1) ... 0 0

K(T=1,0) K(T—1,1) K(T—1,T-1) 0

In order to formulate a convex program, we need to define

the decision variables L and v:

L=K(UI-GK)", v:i=>I+LG,)v (6)

where L is a block lower-triangular matrix and (I — G,K) is
well defined, as explained in [4].

The performance index (3) can now be written with respect
to the new decision variables as:

J (v, L) := tr(LGo (20 + popg )Go LT
+2LGopor " +vv' + LG,WG,L") (7

where W := bdiag(Wy,...,Wr_1). The mean and covari-
ance of the random vector x are given by:

E[:E] = f(”ﬂ L)? COV[(B] = g(V, L) ®)

where
f(l/, L) L= TO,uO + Gu’/; (93)
g(v, L) : = To(S0 + poptg )Ty + Topor ' G,
+ Guvpg Ty +Guov' G
+T,WT,, (9b)

with Ty := (I + G,L)Gy, and T, := (I + G,L)G,,.

In addition, x(t) can be extracted from x with z(t) =
P, 1x where P, ; € R™(T+D" s a block matrix whose
blocks are all equal to the zero matrix except from the (¢4 1)-
th one which is equal to the n x n identity matrix.

As a result, the terminal mean and covariance constraints
can be expressed as:

(10a)
(10b)

F(v,L) :=Prf(v,L) —ps =0
G(v,L) :=%; + pspj — Pro(v,L)Py €S}

Now, the covariance steering problem can be formulated
as follows: find a pair (v, L) that minimizes the performance
index (7) subject to the equality constraint and the semi-
definite constraint (I0b). The above is a convex semi-definite
program and can be solved efficiently using any available conic
solver. Note that the semi-definite constraint can be
converted to a linear matrix inequality (LMI) convex constraint
using the Schur complement.

The variables of interest, namely v and K, can be computed
from the optimal solution (v*,L*) by inverting the transfor-
mation (6):

K:=(I+LG,) 'L, v:=(I+LG,)'v (1)

where (I + LG,,) is also well defined, i.e. invertible.

C. Alternating Direction Method of Multipliers (ADMM)

1) Classical ADMM: In the standard ADMM formulation
[9, we have a separable objective function with respect to
two variables * € R™ and z € R™ and a linear coupling
constraint between them. The optimization problem has the
following form:

min f(xz)+g(z) st Az+Bz=c (12)
T,z

where f: R" - R, g: R™ - R, A € RP*"™, B € RP*™ and
¢ € R?. The augmented Lagrangian (AL) for problem is:

Ly(2,2.y) = f(z)+9(2) +y (Az+ Bz — ¢)
+ LAz + Bz —cl

where y € RP is the dual variable and p > 0 is the penalty
parameter. The classical ADMM algorithm consists of the
following sequential updates for the primal and dual variables:

k+1

T = argminﬁp(m,zk,yk)
x

k+1 k+1

z

= argmin L, (x .z, y")
z

Y=gk 4 p(AZP £ B2 — ).



The problem formulation (I2)) can be extended to a multi-

block variation with N optimization variables xi,...,zxy,
obtaining the following form:
N
ml{lll’I;N Zfl x;) st ZAﬂ'i =b (13)
i=1

with ; € R™, f;, : R™ — R, A; € R™*™ and b € R™.
The resulting multi-block ADMM algorithm consists of the
following sequential updates:

k+1 . . k k k

xy " =argmin L,(x1, x5, .., 2, Y")
x1

k+1 . . k)Jrl k+1

xy = argmin L,(x] Lt e, y")
zN

k k+1

y =yt 4 L E Ajz T —

2) Consensus ADMM: Next, we present an ADMM vari-
ation for general form consensus optimization problems [9].
Let us consider a set of local optimization variables x; €
R™, ¢ = 1,...,N and the following problem where the
objective function is separable with respect to x;:

min E filx;)
L1,

HETN

(14)

where f; : R™ — R U{+oo}. Constraints can be incorporated
in each term by assigning the value f;(x;) = +oo when a
constraint is violated. Let us also define the global variable
z € R" with n > n;,Vi = 1,..., N. Each local variable x;
corresponds to a specific selection of components of the global
variable z. In other words, each local variable component
(x;) ; corresponds to a component z, of z. By expressing this
linking with the mapping g = G (4, j), the occurring consensus
constraints can be written as:

(®i); =zc(j, j=1...,n5 i=1,...,N.

Let us now also define z; € R™, with (z])j = 2G(i,j)-
Essentially, z; expresses the global variable’s idea of what
the local variable x; should be. The optimization problem can
now be expressed in the following general consensus form:

L min Zfz @) (152)
st.ox; — 2 i:O,z:l,...,N. (15b)

By formulating the AL for (I3), the following ADMM
algorithm can be derived:

. T ~
wf“ := arg min (fz(:cz) + yf x; + Ble — zf||§) (16a)

23

1

A= n 2 (@S (16b)
gg G(i,5)

yi =y (e - (16¢)

where kg is the number of local variable entries that corre-
spond to the global variable entry z,. Note that the primal
(T6a) and dual updates can be carried out in parallel by
each processing element 3.

III. MULTI-AGENT COVARIANCE STEERING PROBLEM
FORMULATION

In this section, we present our formulation for the multi-
agent covariance control problem. Our goal is to steer a
team of agents under stochastic linear dynamics to prescribed
final state means and covariances while minimizing their
control effort and taking into account additional inter-agent
constraints.

A. Problem Setup

We consider a team of N agents. Each agent ¢ =1,..., N
has a set of neighbors NV;. We denote the number of neighbors
of each agent with m;, i.e. |IV;| = m;. We can allow for each
agent to have a different number of neighbors. Therefore, our
approach is flexible in terms of how one defines each agent’s
vicinity. Moreover, if agent ¢ considers agent j as a neighbor, it
is not necessary that agent j should consider ¢ as its neighbor
as well. In other words, we do not require that j € N; &
1 € N;. Here, we assume that the sets N;, ¢ = 1,..., N are
fixed throughout the time horizon ¢ = 0,...,T. Further, we
define the set of agents that contain agent ¢ as a neighbor with
P, = {j: i€ N;}. In terms of communication requirements,
we only assume that each agent should be able to communicate
with the agents belonging in N; U P;.

B. Agent Dynamics, Cost and Constraints

Each agent ¢ is subject to the following discrete-time linear
stochastic dynamics:

z;(0) = 50,

i(t) + Bi(t)us(t) + wi(t),
zi0 ~ N(pio, Lio)-

(17a)
(17b)

Our goal is to propagate the team of agents from a set of
initial state Gaussian distributions x; o ~ N (i 0, 3i0), @ =
1,...,N to a set of prescribed final ones
N (pi5,2i,f), @ = 1,..., N while minimizing the expected
value of the control effort of each agent. Therefore, similar to
(3). the objective function of each agent is formulated as:

Tif ™~

T-1

T ) = 3B fu(t) (b)),

t=0

(18)

The terminal constraints on the final state mean and covariance
of each agent are also expressed similar to (D) as:

Elzi(T)] = pip, (i — Covla(T)]) €Sy

In a multi-agent control setting, it is critical to also account
for inter-agent constraints. We can incorporate a variety of
constraints that can include the mean and the covariance of
the state of each agent. In general, we formulate the inter-
agent constraints between a pair of agents (4, 7) as:

Dy (Elz:(t)], Blz; ()], Covla:i(t)], Covla;(#)]) < 0.

(19)

(20)



One example could be collision avoidance constraints between
the mean positions of the agents. Alternatively, one could place
a lower bound on the expected value of the distance (which
depends on both the means and the covariances) between the
agents. Another inter-agent constraint could be to enforce a
team of agents to remain in a circle of a given radius with
a virtual agent center, in order to maintain communication
connectivity.

C. Centralized Multi-Agent Covariance Steering Problem

We will now formulate the multi-agent covariance steer-
ing problem in its centralized version. The problem can be
expressed as follows: compute the control policy variables
(¥;, ;) for all agents i = 1,..., N that solve:

N N T-1
min Y Ji(%, #) = ZZ[ Tw)] e
i=1 i=1 t=0
st. Elx;(T)] =piy, i=1,...,N (21b)
(Zi,5 — Cov[z;(T)]) €S}, i=1,....N  (2lc)
D (Elz;(t )] [ﬂﬂg(t)],COV[m( )],COV[ (1)) <0
jEN;, i=1,...,N. (21d)

Note that the inter-agent constraints only involve the neighbors
of each agent 1.

IV. DISTRIBUTED COVARIANCE STEERING WITH
CONSENSUS ADMM
In this section, we propose our new distributed covariance
steering method based on ADMM for consensus optimization.
A. Transformation to General Consensus Problem

In order for each agent to be capable of handling inter-agent
constraints, it will need to also contain information about its
neighbors j € N;. Therefore, for each agent ¢, we define the
augmented state and control vectors Z;(t) and @;(t) as:

Z;(t) = vertcat (z;(t), {xy) t)}jen:)
(1) = verteat (u; (), {u!” (6)}jen,)

(22a)
(22b)

where xg»l) (t) and uy) (t) are copy variables computed by agent
¢ for agent j. In the distributed control setting, the actual
variables x;(t), u;(t) of agent j will be different from the
copy variables of agent ¢ concerning agent j, since the control
executed by agent j is based on its own neighbors, measure-
ments and control computations. The inter-agent constraints
can now be written from each agent’s perspective as:

Di; (E[z;(t)], [\ (¢)], Covlz;(t)], Cov[z{" (£)]) < 0
jeN;, i=1,...,N

or more compactly with respect to the local variables Z;(t) as:

Di(E[#(t)], Cov[z;(B)]) <0, i=1,...,N.  (23)

The inclusion of the copy variables makes it necessary to
enforce a consensus between the copy variables that each
agent uses for its neighbors and the original variables of its

neighbors. If we do not enforce this consensus, then two
neighboring agents may compute control policies that are not
in agreement with each other, causing significant difficulties.
For instance, imagine a multi-vehicle scenario where agent %
has decided for itself to move and for agent j to stop, while
agent j has decided for itself to move and for its neighbor
i to stop. In the absence of consensus, this would result
to an undesirable collision. Such issues can be resolved by
incorporating consensus constraints.

Our proposed strategy is to enforce this consensus through
the control policy decision variables (6) of each agent. We also
define the augmented decision variables:

(24a)
(24b)

U; = vertcat (Vi, {V](-i)}jeNi),

L, = vertcat (Li> {Lgi)}jel\h)

where (v;, L;) correspond to the actual policy that agent ¢ will
apply for itself, while (v; (@) L(Z)) are copy decision variables
calculated by agent for its ne1ghb0rs so that the inter-agent
constraints will be satisfied. Note that through the expressions
(8). the inter-agent constraints (23) can now be written as:
D;(;,L;) <0, i=1,...,N. (25)

Let us now define the global variables z and W which
contain the decision variables v; and L;, respectively, of all
N agents:

z= vertcat(ul, ey I/N), W = vertcat(Ll7 . 7LN).
Each local variable ©; and I:Z will consist of a selection of
the components of the global variables z and W, respectively.
Let ¢ = G(i,j) be the mapping from local variable indices
i = 1,...,N, j € {i UN;} to a global variable index
g=1,..., N, ie. the local variable component V](-Z) (or L;’))
corresponds to the global variable component z, (or W).
Therefore, the consensus constraints can be expressed as:

]“ je{iuN;}, i=1,...,N

je{iuUN;}, i=1,...,N.

(262)
(26b)

= 2G(i,5)»

G _
L;” = Wq(i ),

By using the notation (24)), the consensus constraints (26) can
be written in a more compact form as:

Ui —2%=0, i=1,....,N (272)
L,—W,;=0, i=1,....N (27b)
where 2; and W, are defined with (2i); = zg(,; and

(W,); = Wy j) respectively. The connection between the
local and global variable components is illustrated in Fig. 2]
for a particular 4-agent example.

Therefore, we can now reformulate the multi-agent covari-
ance steering problem (21) to a general consensus optimization
problem where we wish to compute the optimal local agent
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Fig. 2: The connections (consensus constraints) between the
local variable of each agent and the global variable compo-
nents. In this figure, we demonstrate a 4-agent example with
Ny ={2}. N» = {1,3}, N3 = {2,4}, Ny = {3}.

variables v; and IZZ- such that:

N
{0, Li}iz1,.. . n = arg min Z Ji(vi, L)

(28a)
=1
S.t. fz (Vi; Lz) = O, (28b)
gi(y’iv L’L) € S,j;, (28C)
D;(9;,L;) <0, (28d)
U —2 =0, L —W, =0, (28e)
i=1,...,N

where for (28a), (28b) and (28c), we are using the notation
introduced through and (10). By defining the indicator
functions Zr, (v;, L;), Zg, (vi, L;) and Zp, (D;, L;) which take
a zero value if the constraints (28Db), and (28d) respec-

tively are satisfied and an infinite value if they are violated,
and by formulating the new objective function:

Ji(01,Li) = Ti(vi, Li) + T, (vi, Li) + g, (vi, Ly)
+ Ip, (73, L)
the problem (28) can finally be written as:

N

{Zi, Li}iz1, n = argmin y_ Ji(4, L) (29a)
=1

st. ;—2,=0, L; — W,; =0, (29b)

1=1 N.

geeey

Consequently, we have now transformed the multi-agent co-
variance steering problem to a general consensus optimization
problem form (T3).

B. Distributed Covariance Steering with ADMM

After transforming the initial problem to a consensus opti-
mization one, we can proceed with deriving an ADMM dis-
tributed algorithm for solving it. The AL for (29) is formulated

as follows:
N ~ ~ ~ ~
L,=Y" [jl-(ﬁi, L)+ X (7 — ) + tr(M] (L; — W)
i=1

T T
+§||Vi—zi|\§+§“Li—WiH§

where A\; and M; are the dual variables that correspond to
the consensus constraints and (27b)), respectively, and
p and p are the penalty parameters. Given the AL, we can
now derive the following ADMM algorithm consisting of the
updates:

{5;, L} = argmin (ji(ﬂi, L) + )\iTDZ— + tr(l\/IéT L;)

Ui, L;

+ Lz — 2113 + SI1L - W) (302)
1 . 1
A= — 3 (@ - (30b)
7 9=G(i.j) p
1 ~ 1
Wit = 0 (@ o) (300)
7 9=C(i.4)
X = Ao - 2 (30d)
M =ML+ (B - Wit (30e)

where [ indicates the iteration number. Clearly, the primal
(30a) and dual updates can be executed in parallel
and independently by each agent ¢. In addition, based on the
assumption that each agent can communicate with the agents
belonging in N; U P;, then it can also perform the global vari-
able component updates that correspond to itself, i.e.
z; and W;, independently. To achieve this, after the primal
updates, each agent that belongs in P; must send its local
(primal and dual) variables to agent . After the global updates,
the neighbors of agent i, i.e. the ones that belong in N;, must
send the global variable components that they just computed
to agent ¢ so that it can construct the variables 2z; and WZ
This parallelizability of the updates characterizes the
distributed nature of our method. Furthermore, to warmstart
the algorithm, we initialize the global variable components by
solving the single-agent covariance steering problems of every
agent - without copy variables and inter-agent constraints -
once before initiating the ADMM updates. The dual variables
can be initialized with zero values. The primal update of each
agent ¢ can also be written as:

{D, I:l} = arg min (ji(ui, L)+ )\ﬁT U + MﬁT L;

+ 25— 213 + SIL - W) Gl

S.t. ]:Z‘(Vi, Lz) = 0, (3lb)
gz(yleY) € Sj;a (31C)
D; (o, L) <0. (31d)

This local optimization problem that each agent has to solve
can be seen as the single-agent covariance steering problem
that was initially introduced in Section II but with three funda-
mental modifications. First, each agent now also optimizes for
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Fig. 3: Case 1. A two-agent scenario that demonstrates the
effectiveness of the inter-agent collision avoidance constraints.
a) After 1st ADMM iteration. b) After 31st ADMM iteration.
¢) Sum of consensus constraints residual norms.

the copy variables it contains regarding its neighbors. Second,
through these copy variables, the agent can account for the
satisfaction of inter-agent constraints. Finally, the performance
index now also contains some additional terms for reaching
consensus with the other agents. Moreover, if the constraint
(3Td) is convex, then the problem (3I)) remains a convex SDP.

After the first ADMM iteration, the global updates (30b)
and can be further simplified [9] to the following form:

1
+1 _ ~]+1
5= Z (@, (32a)
9=G(i,5)
1 -
Wt — 1? > (LY, (32b)
9 9=G(i.j)

Intuitively, one can interpret the global updates as an averaging
between the local variable components that correspond to
zg and W . The algorithm terminates when the sum of the
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Fig. 4: Case 2. A team of 10 agents reaches a particular
circle formation specified by the prescribed terminal state
distributions. a) The trajectories of the distribution of each
agent. b-d) Snapshots of the distributions of the agents at
time instants t = 4,6, 8, respectively. ) Sum of consensus
constraints residual norms.

consensus constraints residual norms divided by the number
of all local variable components - so that we get a normalized
criterion irrespective of the number of agents and neighbors -
gets below a prespecified threshold e:

J > 5112 T X2
5> (193 = 23 + | L — Wi3)
§="=1 - <e  (33)
> (m;+1)
i=1

The satisfaction of this criterion indicates that the agents have
reached a sufficient consensus.



V. SIMULATION RESULTS

We apply our distributed covariance steering method on a
multi-vehicle scenario, where the goal is to propagate each ve-
hicle from an initial state Gaussian distribution to a prescribed
one. The vehicles operate under double integrator dynamics on
a plane with z;(t) = [x;(t) yi(t) Xi(t) yi(t)]T, where
x;(t),y:(t) are the coordinates of the i-th agent at time step t.
Inter-agent collision avoidance constraints between the mean
positions of the vehicles are also imposed. Note that this type
of constraints will be non-convex, but we can overcome this
issue by taking a first-order Taylor approximation around the
previous mean state trajectories at each ADMM iteration as
in [24]). In particular, for the local problem of each agent, the
linearization is performed about the mean state trajectories
that occur from its actual and copy control policy variables
regarding its neighbors.

We examine two cases. In the first one, we present a scenario
with two agents reaching a goal distribution while the anti-
collision constraints are guaranteed to be satisfied after a
sufficient number of ADMM iterations. In the second one, we
show a formation example with 10 agents. In all examples,
the time horizon is T' = 10 and the process noise covariance
is W = diag(0.02,0.02,0.2,0.2)%. The minimum allowed
distance between the mean positions of the agents is d = 1.5.
The AL penalty parameters are tuned to p, = 10 and the
stopping criterion tolerance is assigned to be € = 0.05.

Case 1: In the first case, the two agents start from initial
state distributions with means p;0 = [O 2 0 —25} T,
p2o = [0 =2 0 25}T and covariances Y19 = Yoo =
diag(0.2,0.2,0.5,0.5)2. These initial mean velocities will
drive the agents into a collision course that our method will
have to handle. The prescribed terminal means and covari-
ances are 15 =[5 1 0 O]T, pos =15 -1 0 O]T
, Y1,y = R(—m/4)diag(0.2,0.05,0.5,0.5)?R(—7r/4)" and
Yo ¢ = R(m/4)diag(0.2,0.05,0.5,0.5)2R(7/4) T where R(0)
is the rotation matrix. Figure [3a shows 100 realizations of the
trajectory of each agent after the first ADMM iteration where
consensus has not been reached, resulting to a high probability
of collision. We also demonstrate the trajectories that would
occur for each agent if the copy control policy variables of
its neighbor were applied on it. After the first iteration, each
agent has computed their actual and copy variables so that
they would satisfy the collision avoidance constraints (from
its perspective), while solving its own covariance steering
problem and not taking into account the one of its neighbor.
It is through the soft consensus constraints that the actual and
copy control policies concerning the same agent will start
converging to the same one during the following ADMM
iterations. In Fig. the agents have reached consensus after
15 ADMM iterations and successfully handle the collision
avoidance constraints. In each figure, the 99.7% confidence
regions of the initial and target distributions are displayed with
a black ellipsoid.

Case 2: Next, we consider a team of 10 agents that start
from the initial position distributions shown in Fig. fa] with

—eo— Centralized
—e— Distributed with ADMM

Computational Time (s)

0 10 20 30 40 50 60
Agents

Fig. 5: Comparison of computational times between our dis-

tributed and a centralized approach.

zero mean initial velocities. More specifically, the initial
state covariances are ¥, 0 = diag(0.2,0.2,0.5,0.5)% Vi =
1,...,N and the final target state covariances are %; y =
R(—¢;)diag(0.2,0.05,0.5,0.5)2R(—¢;),Vi = 1,...,N
where ¢; = (2i — 1)27/N. Each agent has m; = 4 neighbors.
As demonstrated, the agents reach the desired circle formation
defined by the prescribed terminal distributions. Note that as
in Case 1, the terminal distributions are within the prescribed
ones, placing an upper bound on the uncertainty of the final
state. Moreover, as shown in Figs. #b}d, where some snapshots
of the distributions are provided for ¢ = 4,6,8, the agents
achieve the formation while successfully avoiding collisions.

Scalability to large-scale systems: Next, we demonstrate the
applicability of our method on large-scale stochastic multi-
agent systems in terms of computational demands. In par-
ticular, we repeat Case 2 with a varying number of agents
and we compare the computational times of our distributed
method and an equivalent centralized approach. For N < 20,
we suppose that m; = N/2, while for N > 20, we fix the
number of neighbors to m; = 10. The computational times
for both approaches are shown in Fig. [5] The simulations
were performed in Matlab R2020b using CVX [14] as the
modeling software, MOSEK 9.1.9 [1]] as the solver and an Intel
Core 15-8279U CPU @ 2.40GHz. The increased computational
efficiency of our ADMM-based approach is mainly due to the
fact that each agent solves in parallel a local covariance steer-
ing (SDP) problem where the terminal semidefinite covariance
constraint only involves its own covariance. On the other hand,
a centralized scheme would result to an SDP where the size
of the terminal semidefinite constraint increases with the total
number of agents.

VI. CONCLUSIONS

In this work, we proposed multi-agent covariance steering
as a method that can provide probabilistic safety guarantees
and an upper bound on the uncertainty of the terminal states of
the agents. To deal with the excessive computational demands
of centralized multi-agent covariance control, we suggested
an ADMM-based approach that solves the problem in a



distributed fashion. This framework leads to each agent solving
a modified version of the single-agent covariance steering
problem in parallel. Simulation results on teams of vehicles
verify the effectiveness of our approach and, most importantly,
demonstrate its scalability to large-scale stochastic multi-agent
systems.

In future works, we aim to address the multi-agent co-
variance control problem for agents with nonlinear dynamics.
Furthermore, we plan to explore how distributed optimization
architectures, such as ADMM, can be used in other stochas-
tic control problems beyond covariance steering, leading to
scalable multi-agent control algorithms. Finally, we will also
consider problems with multi-agent systems under partial state
information and time-varying topologies.
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