
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Vector Semantic Representations
as Descriptors for Visual Place Recognition

Peer Neubert, Stefan Schubert, Kenny Schlegel and Peter Protzel
Chemnitz University of Technology, Germany

{peer.neubert, stefan.schubert, kenny.schlegel, peter.protzel}@etit.tu-chemnitz.de

Abstract—Place recognition is the task of recognizing the
current scene from a database of known places. The currently
dominant algorithmic paradigm is to use (deep learning based)
holistic feature vectors to describe each place and use fast vector
query methods to find matchings. We propose a novel type of
image descriptor, Vector Semantic Representations (VSR), that
encodes the spatial semantic layout from a semantic segmentation
together with appearance properties in a, for example, 4,096
dimensional vector for place recognition. We leverage operations
from the established class of Vector Symbolic Architectures to
combine symbolic (e.g. class label) and numeric (e.g. feature
map response) information in a common vector representation.
We evaluate the proposed semantic descriptor on 13 standard
mobile robotic place recognition datasets and compare to six
descriptors from the literature. VSR is on par with the best
compared descriptor (NetVLAD) in terms of mean average
precision and superior in terms of recall and worst-case average
precision. This makes the approach particularly interesting for
candidate selection. For a more detailed investigation, we discuss
and evaluate recall integrity as additional criterion. Further,
we demonstrate that the semantic descriptor is particularly
well suited for combination with existing appearance descriptors
indicating that semantics provide complementary information for
image matching.

I. INTRODUCTION

Visual place recognition is the task of matching a given
query image to a potentially large database of known places.
It is an important means for loop closure detection in SLAM
and for candidate selection for 6-D pose estimation [56]. This
task becomes particularly challenging when the environmental
condition changes due to changing illumination, weather, or
season, and/or when the size of the datasbase becomes very
large. Intuitively, information about the semantic content of
the image can help in both directions. On one hand, semantic
is largely invariant of appearance chances. A snow covered
tree is still a tree. Here, recent and future developments from
(deep) learned models to capture semantics can be leveraged.
On the other hand, to address a large-scale database, one can
use the semantic gist of a scene for a coarse categorization,
e.g. into urban or rural scenes (think of the seminal GIST
[48] paper). After such coarse categorizations, e.g. into an
urban scene, one can conduct more fine grained semantic
categorization using salient semantic landmarks (e.g the Eiffel
tower) or other semantic features like the architectonic style
of the buildings (think of the “What makes Paris look like
Paris?” paper [13]). However, an largely open question is,
how can we further exploit semantics together with fine-
grained appearance properties for fast image matching, e.g.

Fig. 1. A Vector Semantic Representation (VSR) is a single high-dimensional
vector that combines information of semantic entities, their spatial layout, and
appearance. We describe how a semantic segmentation can be used to create
the entities and how operations from Vector Symbolic Architecture (VSA)
can be used to encode this mixed symbolic-numeric information in a single
vector that can serve as descriptor for place recognition.

how to distinguish individual urban street scenes with a high
proportion of similarly looking Victorian style buildings?

In this paper we propose a novel approach to encode the
spatial semantic layout of images for place recognition. An
example is shown in Fig 1. The key idea is to describe the
shown street scene by the semantic information that there is
a sidewalk right to the street and grass terrain to the left,
which in turn is followed by another sidewalk and a fence.
We use a deep learning based semantic segmentation model
to extract a list of semantic entities. This list includes objects
with well defined shape and boundary (“things” [5], e.g. a
sign), as well as amorphous background regions (“stuff” [5],
e.g. terrain). Each entity is described by its semantic class, a
coarse representation of its shape and location, and a list of
its spatial semantic relations, e.g. “left-of <sidewalk>”. This
is complemented by an appearance descriptor based on salient
feature map responses.

Given this list of entities, each with combined symbolic (e.g.
class) and numeric (e.g. feature map response) information, the
major challenge becomes to generate a descriptor that allows
fast matching of these image representations. We propose

 ���



to leverage operations from the well established class of
Vector Symbolic Architectures (VSA) [51, 19, 57] to generate
a novel type of image descriptor named Vector Semantic
Representation (VSR). Vector Symbolic Architectures allow
the systematic processing and representation of symbolic and
numeric information based on well defined operations on
high-dimensional vectors (e.g. with 4,096 dimensions). We
will describe how each piece of information from the above
entity list is encoded in an individual high-dimensional vector
and how we leverage the VSA principles to combine these
vectors in a single 4,096 dimensional vector that captures all
information from the spatial semantic description and that can
serve as an image descriptor in the same fashion as, e.g., a
NetVLAD [2] descriptor.

We will evaluate this novel holistic image descriptor on 13
sequence comparison from standard mobile robot place recog-
nition datasets and compare against six descriptor approaches
from the literature. The experiments show improved recall@k
and average precision performance compared to the best com-
pared approach (on par mean average precision, considerably
improved worst-case performance). This makes the approach
particularly promising for candidate selection, which is further
investigated using a introduced recall integrity criterion. Based
on the assumption that the encoded semantic information in the
VSR descriptor is complementary to typically used appearance
descriptors (e.g. NetVLAD [2]), we also evaluate combinations
of different descriptors. The combination with VSR turns out
to considerably improve all evaluated descriptors by a large
margin and to be better suited than combinations of existing
descriptors. Code is available.1

II. RELATED WORK

A. Descriptors for place recognition

Visual place recognition [39] is an important task in mobile
robotics and used for loop closure detection in SLAM or
candidate selection for visual localization [56]. [60] discusses
various aspects of the visual place recognition problem. Dif-
ferent to 6-DOF pose estimation that often uses local features
(e.g. keypoints [38, 12, 47, 14]), place recognition typically
builds upon holistic image descriptors that compute a single
descriptor vector for a whole image [2, 72, 66, 42, 46]. Im-
portant reasons are the memory consumption and the required
time for exhaustively comparing local features.

We will use operations from Vector Symbolic Architetc-
tures to aggregate information of local entities in a holistic
descriptor. There are several approaches available to create
holistic descriptors from ordered or unordered sets of local
features, including BoW [64, 10], Fisher vectors [50], and
VLAD [23, 1]. Aggregated selective match kernels [71] aim
at unifying aggregation-based techniques with matching-based
approaches like Hamming Embedding [24]. VLAD in combi-
nation with soft-assignment is fully differentiable and seam-
lessly integrates in deep learning approaches, e.g. NetVLAD
[2]. Other deep learning variants of local feature aggregation

1https://www.tu-chemnitz.de/etit/proaut/VSR

for image matching include sum-pooling [70], max-pooling
[22], and mean-pooling [7]. The latter also outputs global and
local descriptors.

The (relative) spatial location of local features can provide
important information, e.g. for geometric verification [55].
Regarding holistic descriptors, BoW can integrate spatial in-
formation via voting [62]. Pyramid match kernels [21] can
evaluate matchings at multiple resolutions. Based on this,
spatial pyramid matching [36] can approximate global geo-
metric correspondence between sets of local features. Multi-
VLAD [1] extends this idea to VLAD, Pyramid-Enhanced
NetVLAD [74] extends it to deep learning. The typical usage
of flattened AlexNet-conv3 [35] descriptors (or similar) as in
[66][61] is an implicit encoding of local features (i.e. feature
map vectors) together with their image location (encoded
by the position in the concatenated output vector). Similar
encodings can be applied to other local features. In [44],
we used hyperdimensional computing to encode DELF [47]
descriptors together with their spatial location in a single
holistic descriptor based on a MAP [18] architecture.

To reduce memory consumption and runtime for com-
parisons, descriptors are often combined with dimensional-
ity reduction approaches like PCA [47] or Gaussian ran-
dom projections [66], or compression techniques like product
quantization [25]. Approximate nearest neighbor and inverted
indexes play an important role for large-scale image matching
[43, 37, 64]. Please refer to [60] for discussion of further
aspects of descriptor-based visual place recognition.

B. Exploiting semantic for localization

There is an intuitive benefit from using semantic for local-
ization resulting in an accordingly rich variety or approaches
in the literature. A particular hope is that despite severe
appearance changes due to changing illumination, weather, or
seasons, the semantics of observed scenes can be robustly
matched [56, 67]. We will provide a short list of related
approaches that exploit semantic, however, a full survey is
beyond the capabilities of this paper.

Semantic information can be exploited at different parts of a
localization pipeline. Assigned semantic meaning can be used
to amplify [33] or inhibit [32] image features of particular
classes, or during training of descriptor models [58]. [33]
captures semantic scene context of local features in descriptors
and use semantics to improve the matching procedure. [54]
proposes a full SLAM system on the level of objects. For
specific localization problems, specific semantic features of
the environment can be used, e.g. pose estimation on roads
with lane markings [59]. [65] uses semantic segmentations
for long-term localization against semantic 3-D maps. [3]
uses object detection and random finite set representations to
localize against a map of semantic objects.

Semantic segmentations are for example used in [69] to
evaluate the consistency of feature matches for localization,
in [63] for geo-location including discovery of commonly
occurring scene layouts, and in [75] to obtain semantic edges
that can be used for localization. [17] extract semantic graphs

 ���

https://www.tu-chemnitz.de/etit/proaut/VSR


from semantic segmentation and use them to compute random
walk descriptors for fast matching against a database graph.

We will evaluate our proposed approach in combination
with other holistic descriptors. This type of complementary
usage of semantic is related to semantic feature reweighting
[33, 32, 27] or semantic verification [67]. A strongly related
approach is the Local Semantic Tensor (LoST) [16] that
aggregates feature descriptors over semantic classes into a
holistic descriptor. This approach was also extended with
a local feature matching pipeline particularly designed for
matching opposite views of a scene.

C. Vector Symbolic Architectures

Vector Symbolic Architectures (VSA) (also known as Hy-
perdimensional Computing or computing with large random
vectors) is an established class of approaches to solve sym-
bolic computational problems using mathematical operations
on large numerical vectors with thousands of dimensions
[26, 51, 19, 57]. Using embeddings in high-dimensional vector
spaces to deal with ambiguities is well established in natural
language processing [6]. VSAs make use of additional oper-
ations on high-dimensional vectors. So far, VSAs have been
applied in various fields including robotics [45], addressing
catastrophic forgetting in deep neural networks [9], medical
diagnosis [73], fault detection [29], analogy mapping [52],
reinforcement learning [30], long-short term memory [11],
text classification [31], and synthesis of finite state automata
[49]. They have been used in combination with deep-learned
descriptors before, e.g. for sequence encoding [45] and local
feature aggregation [44]. A particularly related VSA are spatial
semantic pointers [34], a variant of the Semantic Pointer
Architecture [15], that processes vector encodings of symbols
with positions in images using a complex vector space and
fractional binding [34]. The following Sec. III includes a short
introduction to VSA principles.

III. ALGORITHMIC APPROACH

As illustrated in Fig. 1, the input to our approach is an
image, the output is a single numeric vector that encodes
the spatial layout and appearance of semantic entities in this
image. We build on available, readily trained neural networks
to generate a semantic segmentation and to obtain feature map
activations for appearance description. The semantic segmen-
tation is parsed into a set of discrete entities, each with a set of
properties (semantic class, spatial relations to other classes, ...).
To be able to efficiently match this type of structure, we encode
each piece of information in an individual high-dimensional
vector and use operations from Vector Symbolic Architectures
(VSA) to combine all the vectors from all entities of an image
into a single vector (e.g. with 4,096 dimensions) that can then
serve as a holistic descriptor for place recognition.

A. Preleminaries on Vector Symbolic Architectures

The operations from Vector Symbolic Architectures (VSA)
[51, 26, 19] allow the structured combination of multiple
vectors from the same high-dimensional vector space into a

single vector from the same space. “Structured” means that
we control the similarity of vectors. For example, we can
encode the assignment of a value to a variable (aka. role-filler
pairs) by encoding the “variable” and the “value” each in a d-
dimensional vector, and then use the VSA’s binding operation
(explained below) to combine both in a single d-dimensional
vector. The output vector will be dissimilar to each input vector
but allows to later recover a vector that is very similar to the
value-vector if we query with the variable-vector. This type of
VSA operation build on the sometimes surprising geometric
properties of high-dimensional vector spaces, e.g., that high-
dimensional iid. random vectors are almost sure pairwise
very dissimilar (quasi-orthogonal). VSAs and the following
algorithmic description heavily rely on such random vectors to
represent unrelated symbols (e.g. different semantic classes).
Although this type of computation is very common in the
VSAs literature, it is significantly different to conventional
algorithmic descriptions. Please refer to [26, 45, 51] for
general introductions to Vector Symbolic Architectures.

B. Vector space and operations

We adopt the frequency-domain Holographic Reduced Rep-
resentation (FHRR) framework of [51] (which is one particular
VSA). Each element is a d-dimensional complex valued vector,
we will use d = 4, 096 and C4,096.2 This choice is based on the
experimental comparison from [57] and the compatibility of
FHRR vectors with fractional binding [34] for systematically
encoding scalar values to vectors.

Each piece of information will be stored in a high-
dimensional distributed vector representation, in the sense
that information is encoded over all dimensions of the vec-
tor instead of one single number. This allows to encode
both symbolic information (e.g. class labels) and numeric
information (e.g. a vector of feature map activations) in a
unified representational substrate. Relations between vectors
are evaluated using their cosine similarity. Since in high-
dimensional spaces, random vectors are very likely almost
orthogonal (quasi-orthogonal) [26], we can use random vectors
to encode unrelated symbols (e.g. different variable names or
classes) with only a very small chance of ever confusing them
based on their vector similarity. We will use the algebraic
operations bundling ⊕ and binding ⊗ to combine vector
information.
• Bundling ⊕ is used to store multiple input vectors in a

set-like representation, where the result is a vector that is
similar to each input vector. The implementation of the
bundling ⊕ operator is an element-wise addition of the
complex vector-values.

• Binding ⊗ is used to store variable-value pairs. The
result of binding is dissimilar to each input vector,
but each of the input vectors can be (approximately)
restored. Binding is similarity preserving, that means that
∀A,B,C,D ∈ Cd : A⊗ B is similar to C ⊗D iff A is

2The output VSR will only contain the angles of the complex number and
thus will be from R4,096.

 ���



similar to C and B is similar to D (or A to D and B to C).
In case of the complex FHRR, the binding ⊗ operation
is implemented as an element-wise multiplication of the
complex values.

An important property of these operations is that the output is
a vector from the same vector space as the input vectors. This
allows to combine these simple operations to encode complex
structured information.

To also include information from structured numbers (e.g.
the x-coordinate of an object in an image), we use the
fractional binding mechanism proposed by Komer et al. [34]
to systematically encode scalar values in vectors. “Systemat-
ically” means that similar scalar values (small euclidean dis-
tance) are encoded to similar vectors (small angular distance).
Fractional binding encodes a real scalar value x in a complex
vector from Cd by

fracBindB(x) := Bλ·x (1)

where B ∈ Cd is a fixed random vector and λ is a scaling
factor that controls how fast the vector similarity changes
with changes of the encoded scalar x (illustrated in Fig. 2).
For encoding scalars with different meaning (e.g. x and y
coordinates), different random base vectors Bx and By can
be used. Independent of the similarities between the scalars x
and y, fracBindBx

(x) and fracBindBy
(y) will have a low

similarity.
As proposed in [51], we will restrict each complex number

to magnitude 1. This simplifies some of the required computa-
tions and allows to store each vector element by a single scalar,
which is the phase angle of the complex number (instead of
storing phase and magnitude or real and imaginary parts of
a general complex number). In particular, the output vector
will only contain the angles and can thus be stored as a real-
valued vector (with the same memory footprint as, e.g., a 4,096
dimensional NetVLAD descriptor). When storing this angle-
representation the following (mathematical equivalent) simpli-
fications arise: Random vectors are created by iid. sampling
each dimension uniformly from [−π, π]. Vector similarity is
evaluated as average cosine of the angle differences. Binding
⊗ simplifies to element-wise addition and fractional binding to
element-wise multiplication. However, for bundling, the angles
have to be converted into complex numbers before addition.
For consecutive bundle operations, we can stay in the full
complex representation. After bundling, we convert back to
the angle representation for further processing or storing.

C. Vector semantic representation of images

We will use the above vector operations to generate a
d = 4, 096 dimensional image descriptor coined Vector Se-
mantic Representation (VSR) for each input image. A VSR
is a vector from Rd, however, please keep in mind that the
elements actually represent angles of complex numbers.

A note on notation: We will use small letters to refer to
scalar numbers and capital letters to refer to vectors. We
will use the summation symbol

∑
iXi to refer to bundling

elements Xi, even if Xi is an angle-representation and thus

-100 -50 0 50 100

scalar value x

-0.2

0

0.2

0.4

0.6

0.8

1

s
im

ila
ri
ty

 o
f 

fr
a

c
B

in
d

(x
) 

to
 f

ra
c
B

in
d

(0
)

Similarity of fracBind encodings

 = 1/10

 = 1/25

 = 1/50

Fig. 2. Encoding similar scalar values with fractional binding results in
high-dimensional vectors with high similarity. A scaling parameter λ can be
used to influence the decay of the vector similarities. This resembles the
sinc() function, the visible oscillation is a result of the periodic behavior of
exponentiation in the complex domain, see [34] for more details.

the summation involves conversion to a full complex number
(i.e.,

∑
iXi := X1 ⊕X2 ⊕X3...).

The VSR of an image is the combination of all of its
semantic entities i = 1...k:

V SR =
∑
i

ωi · Ei (2)

ωi is a weighting factor computed from the size of the i-th
entity (it is the square root of the entity’s area in pixels).

1) Finding semantic entities: We use the term “semantic
entity” to refer to “things” and “stuff” [5]. Object detection
algorithms can (primarily) find image objects with well-
defined shape (“things”) (e.g. traffic lights, signs, or poles).
However, for tasks like place recognition we want to addi-
tionally use semantic information of amorphous background
regions like “vegetation” or “terrain”. Therefore, we use the
connected components of a standard semantic segmentation
approach as semantic entities. A possible future extension
of this simple approach could use recent developments from
panoptic segmentations [28] that combine both approaches.

We use Hierarchical Multi-Scale Attention [68] to as-
sign a semantic class label from all non-dynamic Cityscapes
classes to each pixel. For connected components, we use 8-
neighborhood and create an entity boundary wherever the
class label changes. The result is a list of entities ei : i =
{1, 2, ..., k}

Each entity consists of its spatial semantic information SSIi
including the relation to other entities and information about
its appearance encoded in the vector Ai:

Ei = SSIi ⊕Ai (3)

2) Spatial Semantic Information SSIi: The SSIi is a
single d-dimensional vector that comprises information about
the semantic class of the i-th entity, its location in the image,
and the classes of neighbored entities. It is computed by

SSIi = Ci ⊗Ni ⊗ Si (4)

Fig. 3 illustrates how each of these three vectors is created.
Ci encodes the class ci of entity ei. We create a fixed random

 ���



vector Cclass for each of the 11 non-dynamic Cityscapes
classes C = {Cclass : class ∈ {road, sidewalk, building, wall,
fence, pole, traffic light, traffic sign, vegetation, terrain, sky}}.
The vector Ci is simply the corresponding vector from C for
the entity’s class ci:

Ci = Cci ∈ C (5)

It is essential to keep these random vectors fixed for each
class across all entities and across all images. Based on the
quasi-orthogonality property of high-dimensional spaces, these
random vectors are pairwise non-similar. The fact that the
angle between the vectors Cbuilding and Csidewalk is roughly
90 degree is the vector-geometric way to express that these
are two semantically different classes.3

To encode the semantic neighborhood relations of an entity,
we accumulate the boundary length to entities of other classes
for each direction.4 Again, we use a random (but fixed) vector
for each of the 8 canonical directions (top-of, top-left-of,
left-of, ...). We can refer to a class-direction combination by
binding the two corresponding vectors. The resulting vector
will be non-similar to any other class-direction combination.
The neighborhood vector is then bundled over all appearing
direction-class combinations, each weighted by the length of
the boundary βC,D:

Ni =
∑
D∈D

∑
C∈C

βC,D · (C ⊗D) (6)

The (rough) shape and location are encoded using a nx×ny
grid over the image as illustrated in the bottom-right part of
Fig. 3. We count for each grid cell the proportion px,y of the
grid cell area that is covered by entity ei. To encode this in a
vector, we use a fixed random vector Gx,y for each grid cell
and compute the weighted bundle over all covered grid cells:

Si =

nx∑
x=1

ny∑
y=1

px,y ·Gx,y (7)

The similarity of the resulting vector Si will be the more
similar to each vector Gx,y , the higher the proportion px,y
is. Moreover, the S vectors of two entities will be the more
similar, the higher the amount of shared grid proportions.

In particular for this shape/location encoding, there is a
variety of alternative approaches to encode this information
in a distributed vector. We do not claim, that these encodings
are the best possible (which is very likely not the case),
however, they are sufficiently good to create a useful descriptor
using VSA principles that can compete with the state of the
art. A straight-forward alternative approach would be to use
fractional binding to systematically encode the locations. So
far, we did not yet evaluate this or other approaches. However,
below, we will use fractional binding for a second procedure

3If there were related classes (e.g. different types of trees), one could use
more similar vectors for these related classes, e.g. based on PSI [73].

4Since we do this for all entities, we represent a neighborhood relation of
two entities in both directions, once in each entity.

Fig. 3. Illustration of the spatial semantic information part of an image
entity ei consisting of class vector Ci, neighborhood encoding Ni, and
shape/location encoding Si. Together with the appearance encoding Ai, these
vectors are the basis for the proposed vector semantic representation (VSR).

where we encode location: the systematic position encoding
in the appearance vector.

3) Appearance vector Ai: Feature map responses from
convolutional network layers are an established way to create
descriptors [35, 16, 2]. To describe the appearance of an entity,
we use the DELF [47] approach to detect a set of salient
regions in this entity and use their feature map responses fj
and positions xj , yj . Ai is computed by:

Ai =
∑
j

fft(f̂j)⊗ fracBindx(xj)⊗ fracBindy(yj) (8)

We fist convert the feature map response vector fj to a
distributed d-dimensional vector f̂j using a Gaussian random
projection followed by mean normalization of all features of
one image. A Fast Fourier Transform fft() is used to create a
complex representation. Fractional binding fracBind() is used
to encode the position, we use different random basis vectors
for x and y directions. The resulting vector Ai is a single
complex valued vector that describes the appearance of entity
ei. As said before, the vectors Ai and SSIi of all entities are
combined to the VSR descriptor using eq. 2.

IV. EXPERIMENTS

A. Experimental setup

We will evaluate the VSR approach on standard place
recognition datasets from mobile robotics. We use 13 sequence
comparisons from three urban driving datasets with different
characteristics regarding urban or suburban environment, ap-
pearance changes, single or multiple visits of places, possible
stops, or viewpoint changes: OxfordRobotCar [40], CMU
Visual Localization [4], and StLucia Various Times of the

 ���



TABLE I
AVERAGE PRECISION OF THE PROPOSED VSR APPROACH, OTHER DESCRIPTORS, AND THE COMBINATIONS OF DESCRIPTORS ON ALL DATASETS. THE

FIRST TABLE COMPARES DESCRIPTORS AND SHOWS IMPROVEMENT BY COMBINATION WITH VSR. THE SECOND TABLE COMPARES DIFFERENT
ALTERNATIVE COMBINATIONS WITH THE BEST PERFORMING DESCRIPTOR NV. IN EACH TABLE, THE BEST RESULT PER DATASET IS HIGHLIGHTED

(EXCLUDING NV+DV+VSR). FOR COMBINED APPROACHES, THE COLORED ARROWS INDICATE LARGE (≥25% BETTER/WORSE) OR MODERATE (≥5%)
DEVIATION COMPARED TO THE DESCRIPTOR THAT IS NAMED FIRST (EXCEPT FOR NV+DV+VSR WHICH COMPARES AGAINST NV+DV).

Database Query VSR NV NV+VSR DV DV+VSR AN AN+VSR HN HN+VSR DELG DELG+VSR
ours [2] [2]+ours [72] [72]+ours [35] [35]+ours [8] [8]+ours [7] [7] + ours

OxfordRobotCar 2014-12-09-13-21-02 2015-05-19-14-06-38 0.84 0.78 0.89 ↗ 0.61 0.83 ↑ 0.24 0.68 ↑ 0.25 0.61 ↑ 0.86 0.93 ↗
2014-12-09-13-21-02 2015-08-28-09-50-22 0.59 0.60 0.70 ↗ 0.43 0.63 ↑ 0.11 0.36 ↑ 0.09 0.30 ↑ 0.17 0.44 ↑
2014-12-09-13-21-02 2014-11-25-09-18-32 0.78 0.87 0.89 → 0.87 0.90 → 0.42 0.70 ↑ 0.41 0.69 ↑ 0.69 0.83 ↗
2014-12-09-13-21-02 2014-12-16-18-44-24 0.17 0.55 0.67 ↗ 0.11 0.33 ↑ 0.07 0.25 ↑ 0.08 0.31 ↑ 0.10 0.44 ↑
2015-05-19-14-06-38 2015-02-03-08-45-10 0.88 0.92 0.95 → 0.25 0.53 ↑ 0.36 0.84 ↑ 0.42 0.83 ↑ 0.78 0.91 ↗
2015-08-28-09-50-22 2014-11-25-09-18-32 0.61 0.61 0.70 ↗ 0.38 0.54 ↑ 0.09 0.39 ↑ 0.11 0.44 ↑ 0.35 0.59 ↑

CMU 20110421 20100901 0.61 0.73 0.75 → 0.66 0.74 ↗ 0.44 0.61 ↑ 0.55 0.63 ↗ 0.81 0.78 →
20110421 20100915 0.71 0.77 0.78 → 0.75 0.77 → 0.59 0.71 ↗ 0.67 0.72 ↗ 0.79 0.78 →
20110421 20101221 0.56 0.56 0.61 ↗ 0.49 0.59 ↗ 0.34 0.56 ↑ 0.40 0.57 ↑ 0.61 0.63 →
20110421 20110202 0.47 0.61 0.66 ↗ 0.49 0.55 ↗ 0.33 0.48 ↑ 0.37 0.48 ↑ 0.54 0.60 ↗

StLucia 100909 0845 180809 1545 0.35 0.02 0.19 ↑ 0.22 0.33 ↑ 0.36 0.38 → 0.43 0.42 → 0.03 0.29 ↑
100909 1000 190809 1410 0.46 0.07 0.36 ↑ 0.44 0.56 ↑ 0.47 0.50 ↗ 0.52 0.52 → 0.13 0.48 ↑
100909 1210 210809 1210 0.53 0.51 0.64 ↑ 0.78 0.76 → 0.54 0.56 → 0.59 0.59 → 0.59 0.63 ↗

Worst case 0.17 0.02 0.19 ↑ 0.11 0.33 ↑ 0.07 0.25 ↑ 0.08 0.30 ↑ 0.03 0.29 ↑
Best case 0.88 0.92 0.95 → 0.87 0.90 → 0.59 0.84 ↑ 0.67 0.83 ↗ 0.86 0.93 ↗
Average case (mAP) 0.58 0.58 0.68 ↗ 0.50 0.62 ↗ 0.34 0.54 ↑ 0.38 0.55 ↑ 0.50 0.64 ↑

Database Query NV NV + VSR NV + LoST NV + DV NV + DELG NV + AN NV + HN NV + DV + VSR
[2] [2] + ours [2] + [16] [2] + [72] [2] + [7] [2] + [35] [2] + [8] [2] + [72] + ours

OxfordRobotCar 2014-12-09-13-21-02 2015-05-19-14-06-38 0.78 0.89 ↗ 0.85 ↗ 0.78 → 0.86 ↗ 0.77 → 0.74 ↘ 0.86 ↗
2014-12-09-13-21-02 2015-08-28-09-50-22 0.60 0.70 ↗ 0.64 ↗ 0.62 → 0.45 ↘ 0.50 ↘ 0.47 ↘ 0.69 ↗
2014-12-09-13-21-02 2014-11-25-09-18-32 0.87 0.89 → 0.89 → 0.90 → 0.85 → 0.85 → 0.84 → 0.91 →
2014-12-09-13-21-02 2014-12-16-18-44-24 0.55 0.67 ↗ 0.55 → 0.48 ↘ 0.44 ↘ 0.59 ↗ 0.61 ↗ 0.61 ↑
2015-05-19-14-06-38 2015-02-03-08-45-10 0.92 0.95 → 0.92 → 0.72 ↘ 0.93 → 0.93 → 0.92 → 0.84 ↗
2015-08-28-09-50-22 2014-11-25-09-18-32 0.61 0.70 ↗ 0.64 ↗ 0.58 → 0.58 → 0.56 ↘ 0.58 ↘ 0.65 ↗

CMU 20110421 20100901 0.73 0.75 → 0.76 → 0.77 ↗ 0.79 ↗ 0.73 → 0.74 → 0.78 →
20110421 20100915 0.77 0.78 → 0.78 → 0.80 → 0.80 → 0.77 → 0.78 → 0.80 →
20110421 20101221 0.56 0.61 ↗ 0.60 ↗ 0.58 → 0.62 ↗ 0.60 ↗ 0.60 ↗ 0.63 ↗
20110421 20110202 0.61 0.66 ↗ 0.62 → 0.61 → 0.66 ↗ 0.62 → 0.63 → 0.64 →

StLucia 100909 0845 180809 1545 0.02 0.19 ↑ 0.03 ↑ 0.20 ↑ 0.04 ↑ 0.16 ↑ 0.19 ↑ 0.30 ↑
100909 1000 190809 1410 0.07 0.36 ↑ 0.10 ↑ 0.44 ↑ 0.14 ↑ 0.34 ↑ 0.35 ↑ 0.54 ↗
100909 1210 210809 1210 0.51 0.64 ↑ 0.59 ↗ 0.79 ↑ 0.62 ↗ 0.65 ↑ 0.65 ↑ 0.78 →

Worst case 0.02 0.19 ↑ 0.03 ↑ 0.20 ↑ 0.04 ↑ 0.16 ↑ 0.19 ↑ 0.30 ↑
Best case 0.92 0.95 → 0.92 → 0.90 → 0.93 → 0.93 → 0.92 → 0.91 →
Average case (mAP) 0.58 0.68 ↗ 0.61 ↗ 0.64 ↗ 0.60 → 0.62 ↗ 0.62 ↗ 0.69 ↗

Day [20]. For OxfordRobotCar, we sampled sequences at 1Hz
with the recently published accurate ground truth data [41].

We compare to the following descriptors: NetVLAD NV
[2]: We use the authors’ VGG-16 version5 with whitening
trained on the Pitts30k dataset (4,096-D). DenseVLAD DV
[72]: We use the authors’ version6 with 128-dimensional SIFT
descriptors and 128 words trained on 24/7 Tokyo dataset, as
well as PCA projection to 4,096-D. AlexNet AN [35]: We
use the conv3 output of Matlab’s ImageNet model and the
full 65k dimensional descriptor. HybridNet HN [8]: We use
the authors’ version7 and the full 43k dimensional descriptor.
DELG [7]: We use the implementation from TensorFlow
models with ResNet101 trained on a subset of the Google
Landmarks Dataset v2 (GLDv2-clean) which was amongst
best in [7]. LoST [16]: We use the authors’ LoST8 version (not
LoSTX, which includes additional keypoint matching and was
designed for matching opposing views, not for aligned views).

To generate semantic segmentations, we use the Cityscapes
model from the authors’ version9 of Hierarchical Multi-Scale
Attention [68]. To extract local features on entities, we use the

5https://github.com/Relja/netvlad
6http://www.ok.ctrl.titech.ac.jp/∼torii/project/247/
7https://github.com/scutzetao/DLfeature PlaceRecog icra2017
8https://github.com/oravus/lostX
9https://github.com/NVIDIA/semantic-segmentation

TensorFlow Hub implementation10 of DELF [47] and extract a
maximum of 200 features per image. We use all entities with
a minimum size of 10 pixels and default scales λx = 4/w
and λy = 6/h for fractional binding in x and y direction for
images of size w × h. The number of dimensions in VSR is
4,096.

For evaluation, we compute pairwise similarity matrices
between database and query image sets and compare them to
ground-truth knowledge about place matchings using a series
of thresholds. We report average precision (AP) computed
as area under the resulting precision-recall curve, as well as
achieved recall using the best k matchings. To combine an
existing descriptor with VSR (e.g. NV+VSR, or two existing
descriptors), we simply perform an elementwise multiplication
of their pairwise image similarity matrices. We do not apply
pre- or postprocessing steps like dataset standardization [61]
or sequence evaluation (e.g. [42]). Of course, all evaluated
approaches can be combined with such additional techniques.

B. Place recognition performance

The upper part of table I shows the place recognition
performance of the proposed VSR approach and the other
descriptors. The average case performance of VSR is on par
with the best performing other descriptor (NetVLAD, NV).
The worst case performance indicates that for each descriptor,

10https://tfhub.dev/google/delf/1

 ���

https://github.com/Relja/netvlad
http://www.ok.ctrl.titech.ac.jp/~torii/project/247/
https://github.com/scutzetao/DLfeature_PlaceRecog_icra2017
https://github.com/oravus/lostX
https://github.com/NVIDIA/semantic-segmentation
https://tfhub.dev/google/delf/1


5 10 15 20

k

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

re
c
a
ll
@

k

VSR

NV

DV

HN

AN

DELG

5 10 15 20

k

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

re
c
a
ll
@

k

NV + VSR

NV + LoST

NV + DV

NV + HN

NV + AN

NV + DELG

Fig. 4. Achieved recall when using the best k matching candidates per query
image, averaged over all datasets. (left) Single descriptors (the curve of LoST
would be below the shown part). (right) Combinations with NetVLAD.

there are one or multiple datasets where the performance
significantly drops. Although VSR provides the best worst
case performance, the achieved average recall on the fourth
OxfordRobotCar dataset is only 0.17. This is largely due to the
problems of the semantic segmentation algorithm with the low-
illumination conditions in the query sequence. However, these
conditions are very challenging for all descriptors. Appropriate
pre- or postprocessing steps like dataset standardization [61]
or sequence evaluation (e.g. [42]) can presumably improve the
performance of all descriptors.

A significant improvement of the worst-case performance
(of at least 25%) for all descriptors is achieved by combina-
tion with VSR (as said before, the combination is a simple
element-wise multiplication of the pairwise similarity matrix,
computational effort is discussed below). For all evaluated
descriptors, also the average case performance is improved by
combination with VSR. This demonstrates that the semantic
information from VSR can complement existing descriptors.
The combination with NetVLAD (NV+VSR) provides the best
average case results.

This type of combination tends to improve results also
for other combinations of existing descriptors. The lower
part of table I shows results of different combinations of
existing descriptors (we selected NV as base since it is
the best performing descriptor from the upper table). Most
prominent, the worst case performance improves significantly
for all combinations. However, only the two approaches that
include semantic information (VSR and LoST) are able to
never decrease the place recognition performance compared
to the stand-alone NetVLAD. The additional performance
gain by LoST is particularly interesting since its stand-alone
performance (mAP=0.44, not shown in table I) is considerably
worse than e.g. of DenseVLAD or DELG. The best combina-
tion that does not include semantic information is NetVLAD
with DenseVLAD (NV+DV). The last column shows that
additionally including semantic information using VSR to this
combination can further improve the results (mAP moderately
increases from 0.64 to 0.69).

C. Recall@k and semantic similarity as a necessary criterion

Global image descriptors (e.g. each of the above evaluated)
are often used to select a small set of matching candidates

0 20 40 60 80 100
% removed database images

10 -2

10 -1

10 0

10 1

10 2

%
 lo

st
 tr

ue
-m

at
ch

in
gs

Oxford 1
Oxford 2
Oxford 3
Oxford 4
Oxford 5
Oxford 6

VSR

LoST

Fig. 5. Evaluation of recall integrity on the six OxfordRobotCar comparisons
(the numbers correspond to appearance in table I). Lower is better.

from a large dataset for further validation [56]. Fig. 4 shows
the achieved recall when selecting the k most similar database
images per query (recall@k). The changed ranking of descrip-
tors compared to the average precision measure from table I
indicates that different qualities of the descriptor are evaluated.
Most noticeably, the proposed VSR provides best results of all
stand-alone descriptors (left plot) and of all combinations with
NetVLAD (right plot).

The good performance of flattened feature map descriptors
like AlexNet (AN) and HybridNet (HN) compared to the two
VLAD descriptors NetVLAD (NV) and DenseVLAD (DV)
are due to the moderate (but realistic for driving scenarios)
viewpoint changes in these datasets. In particular LoST was
designed to handle large viewpoint changes (including op-
posing views). For a more suitable comparison of VSR and
LoST, we also evaluate a slightly different criterion: Instead
of selecting a small number of candidates for a query, we
remove an increasing fraction of low-similarity images from
the database and measure the percentage of lost true matchings
(we call this recall integrity). The goal is to treat semantic
similarity as a necessary criterion for image matchings, but
not require it to be a sufficient criterion. Recall@k returns the
k most similar database images. As long as k is much smaller
than the database size, then high descriptor similarity has
properties of a necessary and sufficient criterion for candidate
selection, since each of the k candidates has to be more similar
than the waste majority of all database images.

To accommodate for the large spatial invariance of LoST,
Fig. 5 evaluates this recall integrity for VSR and LoST on all
sequence comparisons from OxfordRobotCar. It can be seen
that based on the LoST descriptor, it is possible to remove
about 60% of all database images from the list of potential
matchings at a cost of 1-8 % of the true matchings (i.e., 1-
8 % of the true matchings for this query image were also
removed). With VSR, it is in turn possible to remove the same
amount of potential matchings at a cost of 0.03 - 0.55 % of
all true-matchings, or remove 92 % of the potential matchings
at the same cost of 9 % loss. Again, this worst case scenario
(from the evaluated datasets) is the particularly challenging
forth Oxford sequence comparison (the purple curves). For
all other comparisons, the loss is significantly smaller (please

 ���



0 0.2 0.4 0.6 0.8 1
recall

0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
recall

0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n
VSR

0 0.2 0.4 0.6 0.8 1
recall

0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
recall

0

0.2

0.4

0.6

0.8

1
pr

ec
is

io
n

Oxford 1
Oxford 2
Oxford 3
Oxford 4
Oxford 5
Oxford 6

VSR without SSIi

VSR
VSR without Ai

NV + VSR
NV + VSR without SSIi

NV + VSR
NV + VSR without Ai

Fig. 6. Evaluation of the importance of SSIi and Ai on the six
OxfordRobotCar comparison. (left column:) Stand-alone VSR. (right column:)
VSR in combination with NetVLAD. (top row:) VSR with and w/o SSIi
(using only Ai). (bottom row:) VSR with and w/o Ai (using only SSIi).

note the logarithmic scale).

D. Ablation study

VSR combines all entities of an image, each entity is the
bundle of a spatial semantic vector SSIi (see eq. 4) and an
appearance vector Ai (eq. 8). Fig. 6 evaluates the importance
of each of the two parts. Solid lines show results of the full
VSR as defined in eq. 2, the dashed lines of the same color
indicate performance variation when removing either SSIi or
Ai. In particular the challenging fourth Oxford comparison
(purple curves) shows a large degradation when only using
the spatial semantic information (bottom-left plot). In this
particular case, adding SSIi even degrades performance in the
high-precision regime (top-left plot). However, adding SSIi
can still increase the achieved recall at low precision values.
In general, the large margin between the curves of the full
VSR and the reduced versions demonstrate the importance of
both components.

E. Computational effort

The runtime of the deep learning models heavily depends
on the actual hardware and model choice. Using an Intel Core
i7-7700K CPU and a NVIDIA GTX 1080Ti GPU, we can run
our setup in less than a second per image. Our (completely)
unoptimized Matlab implementation requires about 350ms to
create a VSR descriptor of an image (90ms to find entities,
260ms for encoding). Although the encoding requires several
operations on high dimensional vectors, they can be easily
parallelized. Moreover, VSAs in general have very promising
properties to run on very power-efficient hardware [53] which
can be crucial for mobile application.

For place recognition, the runtime for image description
is typically much less important than the time for matching
against a large database. Since the VSR descriptor is a single
vector of the same size as, e.g. a NetVLAD descriptor,
matching is accordingly fast. In particular, we see no reason
why VSR should not be compatible with existing approximate
nearest neighbor matching techniques like product quantiza-
tion [25], however, we did not yet test this.

For combining descriptors, comparison runtime becomes
particularly important if the simple technique of element-
wise multiplication of pairwise similarity matrices is applied,
since this requires computation of multiple different descriptor
distances for each image comparison. However, the good
recall@k performance (Fig. 4) and the high recall integrity
(Fig. 5) suggest that VSR has also potential to considerably
reduce the number of matching candidates before computation
of NetVLAD (or other additional) descriptor distances (pro-
vided a reasonable semantic segmentation is available).

V. CONCLUSION

We proposed Vector Semantic Representation (VSR) as
descriptor for place recognition. It implements the high-level
concept of encoding an image by the spatial layout of its
semantic entities. We create semantic entities using semantic
segmentations and encode for each entity the spatial semantic
information and its appearance. The evaluation showed, that
both components contribute to the place recognition perfor-
mance, which is on par or better than the compared existing
approaches.

Of course, the VSR relies on the quality of the semantic
segmentation. If the segmentation is bad, the VSR perfor-
mance will also degrade. This also limits the application to
environments for which a semantic segmentation model is
available. We restricted our evaluation to urban street scenes
since we used a segmentation model for the Cityscapes classes.
Although the viewpoint changes in the evaluated datasets
are realistic for driving scenarios, their overall amount is
limited. The application to hand-held camera images would
very likely require a different encoding of entity locations
than the grid approach, e.g. using fractional binding as well.
Also, currently we rely on a direct neighborhood (a common
boundary) between entities to establish a spatial relation. The
VSA operations can very likely be used accordingly to encode
other (more distant) relations. However, such extensions are
left for future work.

In general, we consider Vector Symbolic Architectures
(VSA) as a promising tool to encode diverse information
(symbolic and numeric) in descriptors. The presented approach
is just one (rather simple) way of creating semantic entities and
then using the power of VSAs to create a descriptor for fast
matching. This general concept is expected to be applicable
to other tasks and to also benefit from future developments on
extracting semantic (and other) information from images.

 ���



REFERENCES

[1] R. Arandjelovic and A. Zisserman. All about vlad. In
Conf. on Computer Vision and Pattern Recognition, 2013.
doi: 10.1109/CVPR.2013.207.

[2] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and
J. Sivic. NetVLAD: CNN architecture for weakly su-
pervised place recognition. Trans. on Pattern Analysis
and Machine Intelligence, 40(6), 2018. ISSN 0162-8828.
doi: 10.1109/TPAMI.2017.2711011.

[3] Nikolay Atanasov, Menglong Zhu, Kostas Daniilidis, and
George J. Pappas. Localization from semantic observa-
tions via the matrix permanent. IJRR, 35(1-3):73–99,
2016.

[4] H. Badino, D. Huber, and T. Kanade. Visual topometric
localization. In Intelligent Vehicles Symposium (IV),
2011. doi: 10.1109/IVS.211.5940504.

[5] Holger Caesar, Jasper R. R. Uijlings, and Vittorio Ferrari.
Coco-stuff: Thing and stuff classes in context. In CVPR,
pages 1209–1218. IEEE Computer Society, 2018.

[6] José Camacho-Collados and Mohammad Taher Pilehvar.
From word to sense embeddings: A survey on vector
representations of meaning. J. Artif. Intell. Res., 63:743–
788, 2018.

[7] Bingyi Cao, André Araujo, and Jack Sim. Unifying deep
local and global features for image search. In European
Conference on Computer Vision (ECCV), 2020. ISBN
978-3-030-58565-5.

[8] Zetao Chen, Adam Jacobson, Niko Sünderhauf, Ben
Upcroft, Lingqiao Liu, Chunhua Shen, Ian D. Reid, and
Michael Milford. Deep learning features at scale for
visual place recognition. In ICRA, pages 3223–3230.
IEEE, 2017. ISBN 978-1-5090-4633-1.

[9] Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit
Agrawal, and Bruno A. Olshausen. Superposition of
many models into one. In NeurIPS, 2019.

[10] Mark Cummins and Paul M. Newman. Appearance-only
slam at large scale with fab-map 2.0. Int. J. Robotics
Res., 30(9):1100–1123, 2011.

[11] Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalch-
brenner, and Alex Graves. Associative Long Short-Term
Memory. In Int. Conf. on Machine Learning, 2016.

[12] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detec-
tion and description. In CVPR Workshops, 2018.

[13] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef
Sivic, and Alexei A. Efros. What makes paris look like
paris? ACM Trans. Graph., 31(4):101:1–101:9, 2012.

[14] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic,
A. Torii, and T. Sattler. D2-net: A trainable cnn for joint
description and detection of local features. In Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.
doi: 10.1109/CVPR.2019.00828.

[15] Chris Eliasmith. How to build a brain: from function to
implementation. Synthese, 159(3):373–388, 2007.

[16] Sourav Garg, Niko Sünderhauf, and Michael Milford.

Lost? appearance-invariant place recognition for opposite
viewpoints using visual semantics. In Robotics: Science
and Systems, 2018.

[17] Abel Gawel, Carlo Del Don, Roland Siegwart, Juan
Nieto, and Cesar Cadena. X-view: Graph-based semantic
multi-view localization. In IEEE Robotics and Automa-
tion Letters (RA-L), 2018.

[18] Ross W. Gayler. Multiplicative binding, representation
operators, and analogy. In Advances in analogy research:
Integr. of theory and data from the cogn., comp., and
neural sciences, Bulgaria, 1998.

[19] Ross W. Gayler. Vector Symbolic Architectures answer
Jackendoff’s challenges for cognitive neuroscience. In
Int. Conf. on Cognitive Science, 2003.

[20] A. J. Glover, W. P. Maddern, M. J. Milford, and G. F.
Wyeth. Fab-map + ratslam: Appearance-based slam for
multiple times of day. In Int. Conf. on Robotics and
Automation (ICRA), 2010. doi: 10.1109/ROBOT.2010.
5509547.

[21] Kristen Grauman and Trevor Darrell. The pyramid match
kernel: Efficient learning with sets of features. Journal
of Machine Learning Research, 8(26):725–760, 2007.

[22] Syed Sameed Husain and Miroslaw Bober. Remap:
Multi-layer entropy-guided pooling of dense cnn features
for image retrieval. IEEE Trans. Image Process., 28(10):
5201–5213, 2019.

[23] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggre-
gating local descriptors into a compact image represen-
tation. In Conference on Computer Vision and Pattern
Recognition, 2010.

[24] Hervé Jégou, Matthijs Douze, and Cordelia Schmid.
Improving bag-of-features for large scale image search.
Int. J. Comput. Vis., 87(3):316–336, 2010.

[25] Hervé Jégou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. IEEE
Trans. Pattern Anal. Mach. Intell., 33(1):117–128, 2011.

[26] Pentti Kanerva. Hyperdimensional Computing: An In-
troduction to Computing in Distributed Representation
with High-Dimensional Random Vectors. Cognitive
Computation, 1(2):139–159, 2009.

[27] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm.
Learned contextual feature reweighting for image geo-
localization. In CVPR, 2017.

[28] Alexander Kirillov, Kaiming He, Ross B. Girshick,
Carsten Rother, and Piotr Dollár. Panoptic segmentation.
In CVPR, pages 9404–9413, 2019.

[29] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin,
and A. Mousavi. Fault detection in the hyperspace:
Towards intelligent automation systems. In International
Conference on Industrial Informatics (INDIN), 2015. doi:
10.1109/INDIN.2015.7281909.

[30] Denis Kleyko, Evgeny Osipov, Ross W. Gayler, Asad I.
Khan, and Adrian G. Dyer. Imitation of honey bees’
concept learning processes using Vector Symbolic Archi-
tectures. Biologically Inspired Cognitive Architectures,
14:57 – 72, 2015. ISSN 2212-683X. doi: https://doi.org/

 ���



10.1016/j.bica.2015.09.002.
[31] Denis Kleyko, Abbas Rahimi, Dmitri A. Rachkovskij,

Evgeny Osipov, and Jan M. Rabaey. Classification
and Recall With Binary Hyperdimensional Computing:
Tradeoffs in Choice of Density and Mapping Char-
acteristics. IEEE Transactions on Neural Networks
and Learning Systems, 29(12):5880–5898, 2018. doi:
10.1109/TNNLS.2018.2814400.

[32] Jan Knopp, Josef Sivic, and Tomás Pajdla. Avoiding
confusing features in place recognition. In ECCV (1),
volume 6311 of Lecture Notes in Computer Science,
pages 748–761. Springer, 2010. ISBN 978-3-642-15548-
2.

[33] Nikolay Kobyshev, Hayko Riemenschneider, and
Luc Van Gool. Matching features correctly through
semantic understanding. In 3DV, pages 472–479. IEEE
Computer Society, 2014. ISBN 978-1-4799-7000-1.

[34] Brent Komer, Terrence C. Stewart, Aaron Voelker, and
Chris Eliasmith. A neural representation of continuous
space using fractional binding. In CogSci, pages 2038–
2043, 2019. ISBN 0-9911967-7-5.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems (NIPS), 2012.

[36] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags
of features: Spatial pyramid matching for recognizing
natural scene categories. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2006.

[37] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang,
and X. Lin. Approximate nearest neighbor search on
high dimensional data — experiments, analyses, and
improvement. IEEE Transactions on Knowledge and
Data Engineering, 32(8):1475–1488, 2020.

[38] David G. Lowe. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–110,
November 2004. ISSN 0920-5691.

[39] S. Lowry, N. Sünderhauf, P. Newman, John J. Leonard,
David Cox, Peter Corke, and Michael J. Milford. Visual
place recognition: A survey. Trans. Rob., 32(1), 2016.
ISSN 1552-3098. doi: 10.1109/TRO.2015.2496823.

[40] Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul
Newman. 1 year, 1000 km: The oxford robotcar dataset.
The Int. Journal of Robotics Research, 36(1):3–15, 2017.

[41] Will Maddern, Geoffrey Pascoe, Matthew Gadd, Dan
Barnes, Brian Yeomans, and Paul Newman. Real-
time Kinematic Ground Truth for the Oxford RobotCar
Dataset. CoRR, abs/2002.10152, 2020.

[42] M. Milford and G. F. Wyeth. SeqSLAM: Visual route-
based navigation for sunny summer days and stormy
winter nights. In Int. Conf. on Robotics and Automation,
2012. ISBN 978-1-4673-1403-9.

[43] Marius Muja and David G. Lowe. Fast approximate near-
est neighbors with automatic algorithm configuration. In
Int. Conf. on Computer Vision Theory and Applications,
2009.

[44] Peer Neubert and Stefan Schubert. Hyperdimensional
computing as a framework for systematic aggregation
of image descriptors. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[45] Peer Neubert, Stefan Schubert, and Peter Protzel. An
introduction to hyperdimensional computing for robotics.
Künstliche Intell., 33(4):319–330, 2019.

[46] Peer Neubert, Stefan Schubert, and Peter Protzel. A
neurologically inspired sequence processing model for
mobile robot place recognition. IEEE Robotics and
Automation Letters, 4(4):3200–3207, 2019.

[47] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han.
Large-scale image retrieval with attentive deep local
features. In Int. Conf. on Computer Vision (ICCV), 2017.
doi: 10.1109/ICCV.2017.374.

[48] A. Oliva and A. Torralba. Modeling the shape of the
scene: A holistic representation of the spatial envelope.
Int’l Journal of Computer Vision, 42(3):145–175, 2001.

[49] E. Osipov, D. Kleyko, and A. Legalov. Associative
synthesis of finite state automata model of a controlled
object with hyperdimensional computing. In Conference
of the IEEE Industrial Electronics Society (IECON),
2017. doi: 10.1109/IECON.2017.8216554.

[50] F. Perronnin and C. Dance. Fisher kernels on visual
vocabularies for image categorization. In Conference on
Computer Vision and Pattern Recognition, 2007. doi:
10.1109/CVPR.2007.383266.

[51] Tony Alexander Plate. Distributed Representations and
Nested Compositional Structure. PhD thesis, Toronto,
Ont., Canada, Canada, 1994.

[52] Dmitri A. Rachkovskij and Serge V. Slipchenko.
Similarity-based retrieval with structure-sensitive sparse
binary distributed representations. Computational Intel-
ligence, 28(1):106–129, 2012.

[53] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Ol-
shausen, P. Kanerva, and J. M. Rabaey. High-
Dimensional Computing as a Nanoscalable Paradigm.
IEEE Transactions on Circuits and Systems, 64(9):2508–
2521, Sep. 2017.

[54] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke
Strasdat, Paul H. J. Kelly, and Andrew J. Davison.
SLAM++: Simultaneous Localisation and Mapping at the
Level of Objects. In CVPR, 2013.

[55] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improv-
ing image-based localization by active correspondence
search. In European Conf. on Computer Vision (ECCV),
2012.

[56] Torsten Sattler, Will Maddern, Carl Toft, Akihiko
Torii, Lars Hammarstrand, Erik Stenborg, Daniel Safari,
Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, Fredrik
Kahl, and Tomas Pajdla. Benchmarking 6DOF Out-
door Visual Localization in Changing Conditions. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[57] Kenny Schlegel, Peer Neubert, and Peter Protzel. A
comparison of vector symbolic architectures. CoRR,

 ���



abs/2001.11797, 2020.
[58] Johannes Lutz Schönberger, Marc Pollefeys, Andreas

Geiger, and Torsten Sattler. Semantic Visual Localiza-
tion. In CVPR, 2018.

[59] Markus Schreiber, Carsten Knöppel, and Uwe Franke.
LaneLoc: Lane marking based localization using highly
accurate maps. In Proc. IV, 2013.

[60] Stefan Schubert and Peer Neubert. What makes visual
place recognition easy or hard? CoRR, abs/2106.12671,
2021.

[61] Stefan Schubert, Peer Neubert, and Peter Protzel. Un-
supervised learning methods for visual place recognition
in discretely and continuously changing environments.
2020.

[62] X. Shen, Z. Lin, J. Brandt, S. Avidan, and Y. Wu. Ob-
ject retrieval and localization with spatially-constrained
similarity measure and k-nn re-ranking. In Conference
on Computer Vision and Pattern Recognition, 2012. doi:
10.1109/CVPR.2012.6248031.

[63] Gautam Singh and Jana Košecká. Semantically Guided
Geo-location and Modeling in Urban Environments. In
Large-Scale Visual Geo-Localization, 2016.

[64] Josef Sivic and Andrew Zisserman. Video google:
Efficient visual search of videos. In Toward Category-
Level Object Recognition, volume 4170 of Lecture Notes
in Computer Science, pages 127–144. Springer, 2006.
ISBN 3-540-68794-7.

[65] E. Stenborg, C. Toft, and L. Hammarstrand. Long-
term Visual Localization using Semantically Segmented
Images. In ICRA, 2018.

[66] N. Sünderhauf, F. Dayoub, S. Shirazi, B. Upcroft, and
M. Milford. On the Performance of ConvNet Features
for Place Recognition. CoRR, abs/1501.04158, 2015.

[67] Hajime Taira, Ignacio Rocco, Jirı́ Sedlár, Masatoshi
Okutomi, Josef Sivic, Tomás Pajdla, Torsten Sattler, and
Akihiko Torii. Is this the right place? geometric-semantic
pose verification for indoor visual localization. In ICCV,
2019.

[68] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hier-
archical multi-scale attention for semantic segmentation,
2020.

[69] Carl Toft, Erik Stenborg, Lars Hammarstrand, Lucas
Brynte, Marc Pollefeys, Torsten Sattler, and Fredrik
Kahl. Semantic Match Consistency for Long-Term Visual
Localization. In ECCV, 2018.

[70] G. Tolias, T. Jenı́cek, and O. Chum. Learning and ag-
gregating deep local descriptors for instance-level recog-
nition. In European Conf. on Computer Vision, 2020.

[71] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. Image
search with selective match kernels: Aggregation across
single and multiple images. Int. J. Comput. Vis., 116(3):
247–261, 2016.

[72] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and
T. Pajdla. 24/7 place recognition by view synthesis. In
Conf. on Computer Vision and Pattern Recognition, 2015.

[73] Dominic Widdows and Trevor Cohen. Reasoning with

Vectors: A Continuous Model for Fast Robust Inference.
Logic journal of the IGPL / Interest Group in Pure and
Applied Logics, (2):141–173, 2015.

[74] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao. Spatial
pyramid-enhanced netvlad with weighted triplet loss for
place recognition. IEEE Transactions on Neural Net-
works and Learning Systems, 31(2):661–674, 2020.

[75] X. Yu, S. Chaturvedi, C. Feng, Y. Taguchi, T.-Y. Lee,
C. Fernandes, and S. Ramalingam. VLASE: Vehicle
Localization by Aggregating Semantic Edges. In IROS,
2018. ���


	Introduction
	Related Work
	Descriptors for place recognition
	Exploiting semantic for localization
	Vector Symbolic Architectures

	Algorithmic Approach
	Preleminaries on Vector Symbolic Architectures
	Vector space and operations
	Vector semantic representation of images
	Finding semantic entities
	Spatial Semantic Information SSIi
	Appearance vector Ai


	Experiments
	Experimental setup
	Place recognition performance
	Recall@k and semantic similarity as a necessary criterion
	Ablation study
	Computational effort

	Conclusion

