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Christoph Böhm, Martin Scheiber, Stephan Weiss
University of Klagenfurt, Austria

Email: {firstname.lastname}@ieee.org

Abstract—Accurate system modeling and identification gain
importance as tasks executed by autonomously acting unmanned
aerial vehicles (UAVs) get more complex and demanding.

This paper presents a Bayesian filter approach to online
and continuously identify the system parameters, sensor suite
calibration states, and vehicle navigation states in a holistic
framework. Previous work only tackles subsets of the overall state
vector during dedicated phases (e.g., motionless, online during
flight, post-processing). These works often introduce the artificial
so-called body frame forcing assumptions on system states, such
as the inertia matrix’s principal axes orientation. Our approach
estimates the entire state vector in the (usually not precisely
known) center of mass, eliminating several assumptions caused
by the artificially introduced body frame in other work. Since
our approach also estimates geometric states such as the rotor
and sensor placements, no hand-made measures to the unknown
center of mass are required – the system is fully self-calibrating.
A detailed discussion on the system’s observability reveals ad-
ditionally required (different) measurements for a theoretical
and a real N -arm multicopter. We show that easy and precise
hand-measurable quantities in real applications can provide
the required information. Statistically relevant simulations in
Gazebo/RotorS providing ground truth for all states yet having
realistic physics validate all our findings.

I. INTRODUCTION

Adaptation to unknown robot configuration changes is sig-
nificant for easy-to-use, plug-and-play-ready systems usable
by anyone. As such, the UAV must be self-aware of all
its geometric, inertial, and aerodynamic parameters needed
for safe navigation in uncontrolled environments. Knowing
these states can yield improved performance in tracking and
controlling the UAV using a model-based adaptive scheme.

With this work, we propose and analyze a generalized UAV
estimation framework for online system identification, self-
calibration, and localization and show its applicability using
a common quadrotor. We can determine nearly all physical
states needed for successful flight tracking by using the center
of mass as the physical frame of reference instead of the
commonly used arbitrary body frame. Relaxing assumptions
and constraints compared to the state-of-the-art allows for a
more versatile estimation. Easily measurable a priori knowl-
edge of the UAV setup, such as the mass and rotor-to-rotor
distances, makes the system fully observable with only a
position (or pose) sensor and inertial measurement unit (IMU)
measurements available. We support our claims through a
series of realistic simulation experiments in Gazebo/RotorS
that validate the theoretical result of the nonlinear observability
analysis.
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Fig. 1. Estimated rotor displacement MrMRi
and inclination ψMRi

with
known θMRi

based on Lissajous trajectories (e.g., bottom right figure). The
solid lines are the mean, the shaded areas the standard deviation, and the
dashed lines the ground truth of the respective estimates over 30 test runs.
Axis x (blue), y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange).

This paper presents the following contributions:
• Online estimation of geometric, inertial, and aerodynamic

parameters and sensor states for a multicopter UAV
including: arm geometry as full 5D rotor placement with
3D translation and 2D thrust/spin direction for each rotor,
vehicle mass and moments of inertia, thrust force, and
drag moment coefficient for each rotor, IMU biases as
well as all sensor extrinsics, and vehicle control states.

• Representation of all states with respect to the vehicle’s
center of mass and principal axes such that moments
of inertia suffice to represent its mass inertia matrix.
All transformations with respect to this frame are es-
timated online to avoid difficult and inaccurate hand-
measurements of the potentially changing center of mass.

• Detailed system observability analysis and in-depth dis-
cussion on the unobservable dimensions in theory, on dif-
ferences in practical realizations, and on a generalization
to N -arm multicopters.

• Validation of the observability analysis and the state
estimation with realistic experiments in Gazebo/RotorS.
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II. RELATED WORK

Self-calibration with application to an UAV gained attention
with the works of Trawny and Roumeliotis [16], Kelly and
Sukhatme [9], Weiss [19], and Weiss and Siegwart [20].

All these approaches use either an extended Kalman filter
(EKF) variant or an unscented Kalman filter (UKF). IMU
measurements as system input replace the underlying sys-
tem dynamics to simplify the propagation of the estimation.
Exteroceptive sensors, e.g., position or pose sensors (visual
or other), allow the update of the predicted state estimates.
The addition of calibration states such as the transformation
between exteroceptive sensors and IMU, IMU biases, or their
position on the UAV allows sensor self-calibration during run-
time. Although this method makes online state estimation
and sensor self-calibration on low-powered hardware possible,
it does not use all available information, e.g., the motor
speeds available on the flight control unit (FCU). Hence, these
approaches lack the capability of online system identification
of the underlying physical model.

Using a proper physical model of the UAV leads to im-
proved performance in navigation and control tasks. This state-
ment gets supported by the increase of model-based control
schemes used for UAV control: Mellinger et al. [11], Kamel
et al. [8], Furrer et al. [5], and Tzoumanikas et al. [17] show
such an improvement assuming known system parameters to
improve the control performance.

Burri et al. [2], [3], Six et al. [13], and Dhaybi and Daher [4]
apply the idea of self-calibration to geometrical, inertial, and
aerodynamic properties of the UAV based on offline nonlinear
least-squares algorithms. They show that a proper system and
sensor model allows the estimation of physical parameters of
the UAV’s rigid body model. Such algorithms produce better
estimation results for the control states but can not be used
online on small and computationally limited UAVs due to the
problem complexity and data stream length. On the other hand,
the proposed filter-based approach allows online on-board
estimation in a fixed time through implicit marginalization.

Wuest et al. [21] and Svacha et al. [15] provide physical
self-calibration with filter-based approaches, either EKF or
UKF. In Wuest et al. [21], the center of mass, the moments
of inertia, and the mass of the UAV are part of an EKF
and UKF as self-calibration states. Their approach uses rigid
body dynamics to model the system behavior in combination
with rotor speeds as input. The filter applies corrections with
measurements from an IMU and visual inertial odometry
(VIO)-based pose sensor. As a result, a change of payload that
renders offline calibration values invalid does not influence the
task performance. The assumptions on the rotational alignment
between reference frames (e.g., the principal axis of inertia
matrix/sensor frames and body frame) or the neglecting of
translational elements (z-translation between IMU and body
frame) reduces the versatility of their self-calibration approach.

However, the work in this paper presents a more generalized
approach by reducing those assumptions and adding sensor
rotations as well as rotor-related geometric and aerodynamic

parameters to the estimation.
The recent work of Svacha et al. [15] shows that an

UKF can estimate inertial and aerodynamic properties with
IMU and motor speed measurements. It uses the commanded
rotor speeds as the system input. The estimation includes
the UAV’s mass, moments of inertia, horizontal and vertical
drag coefficients, and the rotor-motor setup’s time-constant
and moment of inertia. The authors highlight the need for
proper modeling of drag effects at the rotor hub, the rotor’s
blade flapping moment, and a first-order system model of the
rotor-motor setup to improve moments of inertia estimation.
The fully observable system presents a reduced state vector
containing only a subset of control-related states compared to
this work. It also assumes that the rotor thrust and moment
coefficients are known and do not change.

We propose to include those states together with rotor
displacement and orientation into the run-time estimation
process for an increased degree of versatility. We chose an
EKF variant over the UKF as it holds reliable fixed time steps
even with increasing complexity.

III. NOTATION

A leading subscript in front of the variable indicates its
reference frame. This work uses W for the fixed world frame,
M to denote the center of mass, P as the frame of the
exteroceptive sensor (e.g., position or pose), I to label the
IMU’s frame, and Ri for each rotor’s frame. The illustration in
Fig. 2 shows all these reference frames in context. The variable
W rWM is a position vector pointing from frame W to frame M
expressed in the coordinate frame W . Therefore, we define a
position (and velocity) vector as [Frame] r [From] [To]. Quater-
nions represent the rotation between reference frames. The
orientation of W with respect to M is defined as Hamiltonian
quaternion qWM , and its rotation matrix RWM applies to a
vector the following way W rWM = RWMMrWM . Accordingly,
a quaternion is defined as q [To] [From]. Furthermore, the con-
jugate of a quaternion is written as q∗

WM and corresponds to
RT

WM . In this work, we omit the indication of time dependency
and write x = x(t) to ease the notation and readability.

W rWM

q∗
WM

x

y

z

W

MrMRi

ψMRi

θMRi

αMRi

Ri
MrMP

q∗
MP

MrMI

q∗
MI

I

x
y

z

M

x
y

z

P

x
y

z I

Fig. 2. Reference frames of the proposed UAV model and spherical
coordinate definition of the rotor orientation axis αMRi

.
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IV. SYSTEM MODEL OF THE UAV

The system model uses the center of mass (CoM) M as the
reference frame, in contrast to Burri et al. [3] and Svacha et al.
[15], who use a so-called body frame B. Using such a body
frame seems to be tempting for engineering conveniences as
it allows the user to define the location from where one can
easily measure, e.g., motor or sensor displacements. However,
it is this freedom that introduces unobservable dimensions into
the estimation process (e.g., z-translation between B and a
sensor), as shown in Böhm et al. [1].

Choosing the CoM as the reference frame is physically a
more natural representation but introduces engineering diffi-
culties as this reference frame is usually not precisely known.
These difficulties arise when one needs to measure angles and
distances of elements (e.g., motors or sensors) with respect
to M since the CoM might not be easily or/and accurately
calculated for complex UAV configurations. In this work, we
show in Section V that we can estimate all necessary variables
in a fully self-calibrating system. In particular, we show that,
naively, the system would be unobservable, but we can add
quantities that are easily measurable on real systems to achieve
full observability without the need for a body frame.

A. State Vector

The trajectory state vector xT includes W rWM , MvWM ,
qWM , and MωWM which represent the position, linear velocity,
orientation, and angular velocity of M , respectively.

xT =
[
W rTWM ,MvT

WM , q
T
WM ,MωT

WM

]T ∈ R13×1 (1)

Full sensor self-calibration of pose, position, or IMU sensors
is possible by adding their displacement and orientation with
respect to M to the sensor state vector xS; see Weiss and Sieg-
wart [20] for reference. Hence, MrMP is the position, and qMP

the rotation quaternion of the exteroceptive sensor P . Further,
MrMI expresses the position, and qMI the rotation quaternion
of the IMU I . The states Iba and Ibω are the IMU’s linear
acceleration and angular velocity bias, respectively.

xS =
[
MrTMP , q

T
MP ,MrTMI , q

T
MI , Ib

T
a, Ib

T
ω

]T ∈ R20×1 (2)

xI contains all inertial properties, such as the mass m of the
UAV, the moments of inertia, and the Earth’s gravitational
pull Wg on the on the UAV. The principal axes of the UAV’s
mass inertia matrix MI coincide with M . As a result, only
the diagonal elements Mi (moments of inertia) need to be
estimated, MI = diag (Mi). This avoids errors caused by a
misalignment between a body frame B and M as it may be
present in Burri et al. [2] and Wuest et al. [21].

xI =
[
m,MiT,WgT

]T ∈ R7×1 (3)

This work includes the rotor displacements MrMRi
in the

geometrical and aerodynamic state vector xGi
per rotor i. A

full 3D attitude representation of the rotor orientation would
result in an unobservability around the motor’s spin axis (yaw).
Consequently, we chose a minimal attitude representation in

spherical coordinates. The inclination ψMRi
measures from the

z-axis and the azimuth θMRi
from the x-axis of M , Fig. 2.

αMRi
=

sinψMRi
cos θMRi

sinψMRi
sin θMRi

cosψMRi

 (4)

The vector αMRi
is the resulting thrust/spin axis of the rotor.

Thrust force coefficients kfi and drag moment coefficients kmi

of each rotor i are also part of xGi
. These last-mentioned

inclusions to the state vector reduce the amount of a priori
assumptions needed during the estimation, compared to Wuest
et al. [21] and Tzoumanikas et al. [18].

xGi
=

[
MrTMRi

, ψMRi
, θMRi

, kfi , kmi

]T ∈ R7×1 (5)

The complete state vector x contains then 40 + 7N elements
with N being the number of rotors. Assuming a UAV with
N = 4 rotors, the state vector has a size of 68 elements.

x =
[
xT

T ,x
T
S,x

T
I ,x

T
G1
, . . . ,xT

GN

]T ∈ R(40+7N)×1 (6)

B. System Dynamics

First-order time-dependent differential equations f(x,u,w)
model the UAV’s CoM M dynamics. These equations use the
current state x, the control input u, and the process noise w.
The control input consists of a set of N angular rotor velocities
ωi, u = [ω1, . . . , ωN ]

⊤.
Regarding the system dynamics, the first step in modeling

them is to calculate the force MFt, Eq. (7), and torque MMt,
Eq. (9), acting on the UAV’s CoM. MFi, Eq. (8), and MMi,
Eq. (10), refer to the forces and torques that each rotor
generates, respectively.

MFt =

N∑
i=1

MFi (7)

MFi = αMRi
kfi(ωi + wi)

2 (8)

MMt =

N∑
i=1

(
MMi +

[
MrMRi

]
× MFi

)
(9)

MMi = ±αMRi
kmi

kfi(ωi + wi)
2 (10)

The noise wi ∼ N (0, σ2
i ) models the uncertainty of the

commanded rotor speeds sent to the electronic speed con-
troller (ESC). Other external forces and torques caused by
aerodynamic effects, e.g., velocity induced hub forces and roll
moments, are not modeled. [•]× is the skew-symmetric matrix
according to Solà [14]. By combining Eq. (7) and Eq. (9) with
Newton-Euler equations and a rigid body assumption, we get
the differential equations of xT , Eq. (11) to Eq. (14).

W ṙWM = RWMMvWM (11)

M v̇WM = 1
mMFt + RT

WMWg − [MωWM ]× MvWM (12)

q̇WM = 1
2
qWM ⊗

[
0,MωT

WM

]T
(13)

M ω̇WM = MI-1
(
MMt − [MωWM ]× MI MωWM

)
(14)

Eq. (11) refers to the change in position W rWM caused by the
into the world frame W rotated linear velocity MvWM . The lin-
ear velocity MvWM changes, according to Eq. (12), as a result
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TABLE I. Observability analysis of the system model with a state vector size of 68 (number of rotors N = 4). The observability matrix O shows observable
(green) and jointly observable (blue) subspaces depending on the sensor configuration with the other states being independently unobservable (red).

Measurement observable
dimensions W rWM MvWM qWM MωWM MrMP qMP MrMI qMI Iba Ibω m M i Wg MrMRi

ψMRi
θMRi

kfi kmi

Pose & IMU 62 ok ok ok ok ok ok ok ok ok ok J2 J3 ok J3 ok ok J2 J3

Position & IMU 58 ok ok ok ok ok unobs. ok ok ok ok J2 J3 ok J3 ok ok J2 J3

Pose 49 ok ok ok ok ok ok unobs. unobs. unobs. unobs. J2 J3 ok J3 ok ok J2 J3

Position 45 ok ok ok ok ok unobs. unobs. unobs. unobs. unobs. J2 J3 ok J3 ok ok J2 J3

IMU 30 unobs. unobs. unobs. ok unobs. unobs. ok ok J1 ok J1 J1 unobs. J1 J1 J1 J1 J1

of the force MFt, and accelerations Wg and [MωWM ]× MvWM

acting on M . Eq. (14) models the dynamics of MωWM with
Euler’s rotation equation around M including the torque MMt

and mass inertia matrix MI. Brownian motion describes the
drift of the IMU biases I ḃa = w

I
ba

∼ N (0, σ2

I
ba
) and

I ḃω = w
I
bω

∼ N (0, σ2

I
bω

), respectively. All remaining states
of xS , xI , and xGi

are assumed constant over time.

C. Measurement Models

During the estimation process, the state vector updates
through comparing pose, position, or/and IMU measurements
with measurement models h(x,u,v) based on the current state
x, the control input u, and the measurement noise v. Although
each sensor might be translated and orientated differently than
M , they are assumed to be rigidly attached to the CoM.

The sensor model himu, Eq. (15), of the IMU assumes that
the sensor provides linear acceleration and angular velocity in
3D. Calculating the accelerations at I is possible with the rigid
body acceleration Maact, and the displacement MrMI . The
acceleration Maact includes gravity through the thrust force
MFt of the airborne UAV. We do not model external forces
acting on the UAV (e.g., wind gusts or normal force when
landed). M ω̇WM is modelled through Eq. (14). Further, MωWM

is used as the rigid body assumption makes angular velocities
on the whole system equal, MωWM ≡ MωWI . The angular
velocity model uses the state MωWM . Rotation matrix RT

MI

rotates both models into the IMU frame I . Both measurements
are subject to measurement bias Iba and Ibω as well as noise
va ∼ N (0, σ2

a) and vω ∼ N (0, σ2
ω).

himu =

[
RT

MIMaact + Iba + va

RT
MIMωWM + Ibω + vω

]
, (15)

Maact =
1
mMFt + [M ω̇WM ]× MrMI

+ [MωWM ]×
(
[MωWM ]× MrMI

) (16)

As pose sensor, we assume a sensor that provides the
estimation with absolute position and orientation of the sensor
P with respect to W . Whereas a position sensor, e.g., a global
positioning system (GPS) receiver, can only provide absolute
position information. The pose measurement hpose, Eq. (17),
is a result of the coordinate transformation from M to the
sensor P with MrMP and qMP , respectively. The noise terms
vp ∼ N (0, σ2

p) and vθ ∼ N (0, σ2
θ) depend on the sensor used

and are assumed to be independent.

hpose =

[
W rWM + RWMMrMP + vp

qWM ⊗ qMP ⊗ vq

]
, vq =

[
1

1
2
vθ

]
(17)

V. NONLINEAR OBSERVABILITY ANALYSIS

The observability matrix O of the system model from
Sec. IV shows with its rank and in its null-space observable
and unobservable subspaces of the state space as well as
jointly observable states, Hermann and Krener [7], Kelly and
Sukhatme [9], and Martinelli [10].

O (x,u) =
[
(∇L0h)

T
,
(
∇L1

f0
h
)T
,
(
∇L1

f1
h
)T
, . . .

]T
, (18)

with L0h = h (x,u) and Li
fh =

∂(Li−1
f

h)
∂x

f(x). We use
the control-affine form of f and a variable substitution
u∗ = [ω2

1 , . . . , ω
2
N ]

T of the squared rotor speeds for the Lie
derivatives. Additional measurements ensure that the unit
length constraint holds for rotation quaternions.

hunit =
[
qT

WMqWM , q
T
MP qMP , q

T
MIqMI

]T
(19)

A. Observability Discussion

The analysis of the observability matrix O follows two
steps, a symbolic and numerical rank calculation as well
as a numerical study of its null-space. In the general ob-
servability analysis, all state values and control inputs are
random values within the same order of magnitude. This
avoids ill-conditioned problem sets as it may occur with real
system values (e.g., UAV position value is several orders
of magnitude larger than rotor thrust force coefficients, cf.
Sec. V-B). Rotations are set to random values through their
quaternions and angles, respectively. The results presented in
Tab. I assume a quadrotor system (N = 4). However, the
observability analysis was done with one, four, six, and eight
rotor configurations to show the scalability of the approach.

1) Pose & IMU: With pose and IMU measurements avail-
able, the observability matrix O has a rank of 62 of 68 in
the case of four rotors. Consequently, O has six unobservable
dimensions. This six-dimensional subspace spans over the
24 states m, Mi, MrMRi

, kfi , and kmi
. All other states are

immediately observable (44 dimensions). One unobservable
dimension, J2, is a joint observability between m and kfi . J2
is the result of the thrust force coefficients and mass being in a
ratio to each other, Eq. (8) and Eq. (12). Hence, an estimate of
the relation between those states is feasible due to Eq. (17) but
lacks absolute information. Furthermore, this one-dimensional
subspace J2 remains even with a changing number of rotors.

The remaining five dimensions are part of the subspace J3
that spans over Mi, MrMRi

, and kmi
. It resembles the ambigu-

ity of the rotor geometry and its influence on the rotational dy-
namics. Different values of Mi, MrMRi

, and kmi
can result in
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the same change of angular velocity M ω̇WM , as it contributes
to Eq. (9) and Eq. (14). Knowledge of the Euclidean distance
between any pair of rotors, ∥MrMRj

− MrMRi
∥2, i ̸= j (i.e.

adding this information as a measurement in an estimator),
makes a single dimension out of the five observable. Therefore,
knowing five of six possible rotor-to-rotor distances in a quad-
copter setup makes all five unobservable dimensions in J3 ob-
servable. J3 scales linearly with the number of rotors N used
and has thus 1 + N unobservable dimensions. Interestingly,
this means that these rotor-to-rotor measurements cannot make
one-, two-, and three-rotor configurations observable. Thus,
one can infer that the state vector’s observable dimensions
scale with 38 + 6N without any additional assumptions.

2) Position & IMU: This measurement configuration is of
interest as it resembles most of the outdoor UAV setups. Such
UAVs are often equipped with a global navigation satellite
system (GNSS) measurement sensors, e.g., a GPS receiver, and
an IMU. Interestingly, we see a similar result to Sec. V-A1 sug-
gesting that, if we have motion, the attitude part in Sec. V-A1
does, theoretically, not add new information. Naturally, zero-
dynamics in f and the absence of absolute attitude information
from Eq. (17) make qMP unobservable, stating that the attitude
between the GNSS sensor and M is irrelevant. The analysis
shows that the angular velocity MωWM is observable even
without IMU measurements, only improving the estimation
quality. Looking at different rotor numbers reveals that this
observation holds for all of them, giving us 34+6N observable
dimensions without any additional assumptions.

3) Pose or Position only: Both of those configurations show
the same observable and jointly observable states as the ones
including an IMU besides all self-calibration states of the
IMU. They are unobservable because of the lack of informa-
tion from Eq. (15). This causes no problem as these states can
be disregarded without the presence of an IMU. Interestingly,
as mentioned above, the sole position sensor setup can estimate
the UAV’s world attitude (given enough movement). Once
more, these results hold for all considered rotor configurations.
Therefore, the number of observable dimensions for single
pose or position measurements is 25+6N or 21+6N without
any additional assumptions, respectively.

4) IMU only: The number of observable dimensions de-
creases drastically if the estimation has only access to IMU
measurements. As expected, states that rely on pose or position
information become unobservable. As a result W rWM , WvWM ,
qWM , MrMP , qMP , and Wg are unobservable. The IMU
measurement, Eq. (15), makes MωWM and most of the IMU’s
self-calibration states observable. The states Iba, ψMRi

, and
θMRi

merge with J2 and J3 into J1 which spans 2 + 4N
unobservable dimensions for an arbitrary number of rotors.

B. AscTec Hummingbird Model

The observability matrix O shows different observable,
unobservable, and jointly observable dimensions depending on
the system configuration. Additionally, as some states may be
several orders of magnitude larger than others, the estimator
may face ill-conditioned situations leading to numerical issues

on real systems when extracting information for the theoreti-
cally observable dimensions. The experiments in Sec. VI use
the model of an AscTec Hummingbird quadrotor with pose
and IMU measurements, system parameters listed in Tab. II.

The difference to the general case is that the rotor rotation
axes αMRi

align with the z-axis of the CoM M , ψMRi
= 0.

Thus, the sine entries in the first and second row of αMRi

are zero, Eq. (4). Consequently, the azimuths θMRi
become

unobservable, adding N unobservable dimensions. The skew-
symmetric matrix in Eq. (10) of MMi makes the z-component
of the rotor displacements MrMRi,z

unobservable, replacing
four dimensions in J3 with purely unobservable ones.

Additionally, the setup’s rotor displacements MrMRi
are

symmetric along the x- and y-axis of M and cause J3
to only span one unobservable dimension. This dimension,
again, lacks one rotor-to-rotor distance information. One un-
observable dimension, J2, spans across m and kfi , the same
way as for the general case. An additional one-dimensional
subspace J4 is the result of the setup at use and contains
qWM,z, MωWM,xy, MrMP,xy, qMP,z, MrMI,xy, and qMI,z. The
relationship of these states to one another is known, but
one absolute piece of information needs to be known for a
successful estimation. This results in a rank of 57 of 68,
compared to the rank of 62 of the general analysis.

Rearranging the rotor displacements to model a one, six,
and eight rotor configuration with given parameters shows that
the unobservable dimensions scale linearly with the number of
rotors. These results show that UAVs with similar geometric
constraints (alignment of thrust axis) as the AscTec Humming-
bird quadrotor yield 37 + 5N observable dimensions. How-
ever, these jointly observable dimensions enforce application-
specific assumptions about the system.

VI. EXPERIMENTAL RESULTS

The proposed system model and its observability analysis
are evaluated through realistic simulation experiments with
a filter-based implementation and the AscTec Hummingbird
model, Tab. II, in Gazebo/RotorS [5].

A. Filter-based Estimation

We use the iterative error-state Kalman filter (IEKF) imple-
mentation in Matlab, as mentioned in Sec. II, as it improves
accuracy while still allowing on-board execution on the UAV.
The authors refer to Trawny and Roumeliotis [16], Weiss [19],
and Solà [14] for a more thorough description of the error-
state representation. According to Sec. V-B, it is assumed that
both pose sensor and IMU measurements are present during
the estimation. A fully observable system for the AscTec
Hummingbird model is achieved by adding measurements for
m to make J2 observable, θMRi

and MrMRi,z
as both of them

are unobservable for each rotor, ∥MrMR2
− MrMR1

∥2 for the
one unobservable dimension of J3, and qMP z required by J4
(cf. Sec. V-B). All these parameters can be measured before
take-off. In the following experiments, the initial state values
of the IEKF are approximately 10% off compared to ground
truth to show the convergence of the observable states.
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B. Gazebo/RotorS & Control

The above-stated model of the AscTec Hummingbird UAV
in the Gazebo/RotorS framework (Furrer et al. [5]) is used
to test the IEKF implementation. It models noise and physics
realistically such that the evaluation of the estimator is best
feasible. The advantage of the Gazebo/RotorS simulation
is that most states are known or can be calculated from
simulation properties, like the moments of inertia Mi. These
calculations may show only negligible offsets to the real values
due to differently modeled effects, e.g., moments of inertia
of the spinning rotors. The drag force and rolling moment
coefficients (velocity induced hub forces and roll moments on
the rotors) of the RotorS model are set to zero to reduce errors
due to unmodeled effects. For very fast flights, these effects
will start having some effects in the estimation process.

The bias and noise values applied to the IEKF, Tab. II
and Tab. III, respectively, are taken from multiple time-series
of real hardware measurements. An angular bias Ibω is not
applied as the FCU on the Hummingbird compensates this
during the startup sequence. The noise values of the pose sen-
sor assume an absolute tracking system like OptiTrack. Each
noise source mentioned is assumed to be zero-mean Gaussian
white noise. The frequency at which the FCU and Gazebo
publish the motor speed values and IMU measurements is
set to 200Hz, with pose measurements published at 50Hz.
An aggressively tuned model predictive control (MPC) of
Kamel et al. [8] allows the flight of trajectories with sufficient
excitation in all 6 degrees of freedom (DoF).

This work uses Lissajous figure-based trajectories similar
to the ones used by Svacha et al. [15], combining a low-
frequency high-velocity and a high-frequency low-velocity
motion, Eq. (20). The values of cj are uniformly distributed,

TABLE II. Gazebo/RotorS AscTec Hummingbird Model Parameters.

x/roll y/pitch/value z/yaw Unit

MrMP 2.6 · 101 3.8 · 101 5.9 · 101 mm

qMP 0.0 0.0 0.0 °

MrMI 1.9 · 101 −9.3 3.0 mm

qMI 0.0 0.0 0.0 °

Iba −2.2 · 10−1 −2.1 · 10−1 1.4 · 10−1 m/s2

Ibω 0.0 0.0 0.0 rad/s

m 7.2 · 10−1 kg

M i 7.5 · 10−3 7.5 · 10−3 1.3 · 10−2 kgm2

Wg 0.0 0.0 −9.81 m/s2

MrMR1
1.7 · 102 0.0 1.1 · 101 mm

MrMR2
0.0 1.7 · 102 1.1 · 101 mm

MrMR3
−1.7 · 102 0.0 1.1 · 101 mm

MrMR4
0.0 −1.7 · 102 1.1 · 101 mm

ψMR1...4
0.0 °

θMR1...4
0.0 °

kf1...4 3.4 · 10−4 N/s−2

km1...4
1.6 · 10−2 m

TABLE III. Gazebo/RotorS AscTec Hummingbird Noise Parameters.

σi σ
I
ba

σ
I
bω

σa σω σp σθ

s−1 m/
√
s5 rad/

√
s3 m/s2 rad/s m rad

0.5 8.3 · 10−3 1.3 · 10−4 0.83 0.013 1 · 10−3 1.7 · 10−3

cj ∼ U(3, 8), and chosen at random for each trajectory. An ex-
ample of such a trajectory can be found in Fig. 1. Alternatively,
the work of Hausman et al. [6], Preiss et al. [12], and Böhm
et al. [1] show that a more elaborated observability-aware
optimization strategy on the Eigenvalues of the E2LOG further
improves the convergence of self-calibration estimates. In this
work, Lissajous trajectories are used because of computation
time restrictions during the trajectory generation.

yj (t) = sin
(
cj

2πt
t
end

)
+ 1

10
sin

(
5cj

2πt
t
end

)
, (20)

j ∈ {x, y, z, yaw} , cj ∈ R

C. Discussion

We tested the observability empirically on 30 different
30-second Lissajous trajectories to prevent trajectory-induced
biases on the estimates. An average run-time of the estimation
of 18.8 seconds in Matlab on an i7-7820HQ CPU puts this
approach in the real-time application range. The evaluation
is based on the convergence behavior seen in the respective
figures and the mean and standard deviation of the error L2-
norm ∥x̂ − x∥2 of the estimates •̂ compared to ground truth
at the end of the trajectory.

Fig. 1 and Fig. 3 show the resulting estimates based on
the fully observable system from Sec. V-B and Sec. VI-A.
The trajectory state vector xT is not shown in these figures as
each trajectory performs a different motion. All states converge
fast to an appropriate value within a few seconds, even with
a wrong initial guess. This behavior confirms the theoretical
observability results from Sec. V. Tab. IV lists all empirical
results gathered from all 30 test runs.

1) Sensor States: The self-calibration states MrMP show a
relative error below 4% on each axis with qMP errors of less
than 1°. Wuest et al. [21] achieved errors in the range of 15%
to 30% for the pose sensor’s displacement state, neglecting
its orientation. The least-squares algorithm of Burri et al. [3]
performed well with position errors under 8% and orientation
errors below 1°. MrMI is a difficult state to estimate with
maximum 14% in x- and y-direction and almost 86% in z-
direction. This high relative error is in absolute error terms
only 2.6mm and due to the small distance of the IMU to the
CoM resulting in less information through the short lever-arm.
Additionally, the presented approach allows the estimation of
the IMU’s attitude within 1°. In comparison, Wuest et al. [21]
achieved a IMU position estimate for x- and y-axis only based
on the EKF between 16% to 23%. They apply the assumption
that the pose sensor and IMU are aligned along the z-axis
and therefore do not need to estimate this value. It can be
seen that the acceleration bias Iba is the most difficult one to
estimate of the sensor states. On the other hand, the gyroscopic
measurement bias Ibω converges fast and accurate.
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2) Inertial States: Mass m is excluded from the evaluation
as it is assumed to be known a priori mitigating the one
unobservable dimension discussed of J2. The moments of in-
ertia Mi converge close to ground truth with the z-component
having a non-negligible offset. Since this is consistent through
all the experiments, we assume that ground truth might also
be miscalculated and is subject to further investigation. In
addition, low angular velocity values in MωWM around the
z-axis cause a lower quality of the estimate in Mi,z. This can
be seen in the wider z-component spread. As Burri et al.
[3] noticed as well, one can see a coupling with moment
coefficients kmi

as these are the major contributors to yaw
motion. Mi has a relative error of around 1% along the x-
and y-axis and below 8% along the z-axis. In Wuest et al.
[21] they were able to estimate the moments of inertia below
20% relative error. Svacha et al. [15] got similar results in the
region of 5% to 22%. The offline approach from Burri et al.
[3] states an inertia estimation error under 5%. The gravity
vector is converging fast and accurate.

3) Geometrical & Aerodynamic States: The performance of
the rotor displacement estimates MrMRi

cannot be compared
to previous works, as they have never been, to the authors’
knowledge, included in such an estimation process. Besides
that, we are able to estimate the distance to the CoM M
with a relative error of 1% or an absolute error of 9mm,
respectively. The lower standard deviation seen in Fig. 1 for
MrMR1

and MrMR2
are due to the additional knowledge of

the respective rotor-to-rotor distance ∥MrMR2
− MrMR1

∥2,
Sec. V-B. The inclination angles converge with slight offset
as the sinψMRi

is very small around zero. Nonetheless, it
converges to an absolute error of less than 3°. The thrust
force coefficients kfi and the drag moment coefficients kmi

show a relative error of maximum 3% and 12%, respectively.
It is worth mentioning that the approach is capable of similar
results compared to Burri et al. [3] which was able to estimate
the drag moment coefficient below 10% relative error. The
drag moment coefficients exhibit a higher standard deviations
because of the limited yaw motions possible with the system.

These results show that the proposed approach is on the
same performance level as other works with less states and
more assumptions and/or constraints.

4) Joint Observability: Fig. 4 shows the impact on the
estimation if the assumption that the mass m is known does not
apply during the estimation process. The joint observability J2
is present in both left figures as shared drift between the UAV’s
mass m and the individual rotor’s thrust force coefficients kfi .
A wrong initial guess in m and kfi will not converge to the
ground truth. The moments of inertia Mi and drag moment
coefficients kmi

on the right half of Fig. 4 emphasize that J2
and J3 are independent joint observabilites.

Fig. 5 displays the influence of J3 and the unobservable
z-components of the rotor displacements MrMRi

on the esti-
mates. J3 causes a diverging behavior of non-zero MrMRi,xy

elements, moments of inertia Mi, and drag moment coeffi-
cients kmi

on all 30 test runs indicated by the spread. The
unobservable dimensions of MrMRi,z

are a result of the rotor’s
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Fig. 3. Estimated sensor, inertial, and aerodynamic parameters based on
Lissajous trajectories. Known values of m and θMRi

are not shown. The
solid lines are the mean, the shaded areas the standard deviation, and the
dashed lines the ground truth of the respective estimates over 30 test runs.
Axis x (blue), y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange).

TABLE IV. Results of the fully observable system shown through the
L2-norm ∥x̂− x∥2 of each state. m and θMRi

are not listed as those
parameters are assumed known.

Absolute Error Standard Deviation Unit

MrMP 1.8 2.6 mm

qMP 4.0 · 10−2 2.1 · 10−1 °

MrMI 3.3 3.7 mm

qMI 4.5 · 10−2 2.2 · 10−1 °

Iba 2.1 · 10−2 3.0 · 10−2 m/s2

Ibω 7.8 · 10−4 1.2 · 10−3 rad/s

M i 1.0 · 10−3 1.2 · 10−3 kgm2

Wg 1.5 · 10−2 1.9 · 10−2 m/s2

MrMR1
1.4 7.3 mm

MrMR2
1.3 7.1 mm

MrMR3
7.1 1.3 · 101 mm

MrMR4
8.6 1.3 · 101 mm

ψMR1...4
5.1 2.6 °

kf1...4 1.7 · 10−5 3.1 · 10−5 N/s−2

km1...4
2.9 · 10−3 3.6 · 10−3 m
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alignment with the CoM’s z-axis, prohibiting the convergence
of these states. Again, a wrong initial guess of those states
will not converge to the ground truth. Fig. 5 confirms that zero
value components of MrMRi,xy

are observable and converge to
ground truth, as stated in Sec. V-B.

5) Tilted Rotors: Repeating the 30 test runs with the
Hummingbird simulation model having tilted rotors proves
the validity of the claim that the rotor’s spin axis αMRi

is observable in the general case. For this experiment, an
inclination angle ψMRi

of 20° is applied to each rotor. The
azimuth angles θMRi

align the x-axes of αMRi
with the

respective rotor arm (0°, 90°, 180°, and 270°, respectively).
Fig. 6 shows the result of this experiment and that a non-
zero inclination angle makes the rotor spin axis observable as
claimed in Sec. V-A. The offset in the estimate of ψMRi

is
due to the weak contribution of it to the spin axis, Eq. (4).

VII. CONCLUSION

This paper presented a holistic Bayesian filter approach that
allows online estimation of geometric, inertial, aerodynamic,
and sensor parameters of a multicopter UAV with N -arms.

One insight of this research is that the use of the so-
called body frame seems to be tempting for engineering
conveniences, but it introduces unobservable dimensions into
the estimation process. Therefore, the proposed system model
defines the center of mass M aligned with the UAV’s inertia
matrix principal axes as its reference frame. The addition of a
5D rotor placement through a 3D translation MrMRi

and a 2D
thrust/spin direction using spherical coordinates (ψMRi

, θMRi
)

combined with aerodynamic parameters of the rotor (kfi , kmi
)

allows for a new level of self-awareness on UAV multicopter.
Another major part is the observability of the newly added

parameters. Hence, a thorough observability analysis of the
proposed system model has been conducted in theory, on a
practical realization, and is generalized to N -arm multicopters
to show its versatility. Different measurement configurations
(e.g., GPS and IMU) were discussed to identify observable,
unobservable, and jointly observable dimensions in the state
space. Significant findings are: the world referenced attitude
of M is observable through proper motion even with only
position measurements, and jointly observable dimensions
(e.g., between m and kfi ) arise depending on the application.

The experimental validation was done with an IEKF imple-
mentation in Matlab and the simulation environment Gaze-
bo/RotorS, which has the UAV as a model available. The
empirical results confirm the insights from the observability
analysis, and the estimation results can compete with state-of-
the-art frameworks where comparisons are possible. State-of-
the-art calibration methods with parameters based on the body
frame struggle to achieve comparable results to ours.

The inertial, aerodynamic, and sensor states achieved ap-
proximately 24% better estimation accuracy compared to the
state-of-the-art. Comparing the estimation performance of the
geometric states of each rotor was not possible since, to the
authors’ knowledge, no approach currently estimates these
system parameters.
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Fig. 4. Estimation without a priori knowledge of the state m. The one
unobservable dimension of J2 gets spanned by m and kfi

and shows as
overall drift. M i and kmi

show that J2 has no influence on J3. The solid
lines are the mean, the shaded areas the standard deviation, and the dashed
lines the ground truth of the respective estimates over 30 test runs. Axis x
(blue), y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange).
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Fig. 5. Estimation without a priori knowledge of the state MrMRi,z
and

∥MrMR2
−MrMR1

∥2. The five dimensional unobservable sub-space of J3
gets spanned by M i, MrMRi

and kmi
and shows as increase of the spread.

The solid lines are the mean, the shaded areas the standard deviation, and the
dashed lines the ground truth of the respective estimates over 30 test runs.
Axis x (blue), y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange).
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Fig. 6. Observable rotor axis angles θMRi
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.

The solid lines are the mean, the shaded areas the standard deviation, and the
dashed lines the ground truth of the respective estimates over 30 test runs.
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[14] J. Solà. Quaternion kinematics for the error-state Kalman
filter. arXiv e-prints, arXiv:1711.02508, November 2017.

[15] J. Svacha, J. Paulos, G. Loianno, and V. Kumar. IMU-
Based Inertia Estimation for a Quadrotor Using Newton-
Euler Dynamics. IEEE Robotics and Automation Letters
(RA-L), 5(3):3861–3867, February 2020.

[16] N. Trawny and S. I. Roumeliotis. Indirect Kalman Filter
for 3D Attitude Estimation. Technical Report 2005-002,
MARS Lab, March 2005.

[17] D. Tzoumanikas, F. Graule, Q. Yan, D. Shah,
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