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Abstract—We present a coordinated autonomy pipeline for
multi-sensor exploration of confined environments. We simultane-
ously address four broad challenges that are typically overlooked
in prior work: (a) make effective use of both range and vision
sensing modalities, (b) perform this exploration across a wide
range of environments, (c) be resilient to adverse events, and
(d) execute this onboard a team of physical robots. Our solution
centers around a behavior tree architecture, which adaptively
switches between various behaviors involving coordinated explo-
ration and responding to adverse events. Our exploration strategy
exploits the benefits of both visual and range sensors with a new
frontier-based exploration algorithm. The autonomy pipeline is
evaluated with an extensive set of field experiments, with teams
of up to 3 robots that fly up to 3 m/s and distances exceeding one
kilometer. We provide a summary of various field experiments
and detail resilient behaviors that arose: maneuvering narrow
doorways, adapting to unexpected environment changes, and
emergency landing. We provide an extended discussion of lessons
learned, release software as open source, and present a video in
the supplementary material.

I. INTRODUCTION

There is a growing need for the autonomous exploration

of underground or indoor spaces with realistic constraints

on mobility, environmental degradation, and communication

limitations. Achieving this will enable applications of robots

in situations previously infeasible: for example, finding assets

in collapsed mines, preparing for hazardous scenarios in

urban infrastructure, and making scientific observations of

geometrically-complex natural caves. Prior work has primar-

ily considered partial solutions to parts of the problem of

exploration, planning, or ensuring robust behavior. Here, we

are interested in complete autonomy solutions, without human

intervention from takeoff to landing, for enabling robust flight

of teams of aerial robots in a large range of environments—

natural caves, limestone and coal mines, building complexes,

boiler plants, and the DARPA Subterranean Challenge (SubT)

course [9]—without requiring adjustments to the software.

To realize this capability, we believe an effective solution

is required to simultaneously address four broad challenges:

(a) Make effective use of multiple sensing modalities in a

multi-sensor, multi-robot exploration team, especially by

making close-range observations of the environment with

vision sensors that have limited field of view and range.

Fig. 1. Our aerial robots exploring a wide range of environments: caves,
mines, and abandoned buildings. Each environment has unique character-
istics in many different forms, which pose new challenges for navigation,
exploration, and perception. In each case, the robots employ our proposed
coordinated autonomy pipeline for multi-sensor exploration, and adapt to the
various challenges and adverse events, without having any prior knowledge
of the environment being explored.

(b) Perform this exploration effectively across a wide range

of environments with varying features—e.g., narrow

doorways, stairs, expansive rooms, dust, dynamic ob-

stacles, and strongly-attenuated communication—without

adjusting the software between environments.

(c) Operate autonomously throughout the mission, from take-

off to landing, while being resilient to environment-

specific challenges and system faults.

(d) Execute all of the above on physical robots moving

at high speeds, while respecting the limits of onboard

computation, sensing, and communication.

This is the problem we solve in this paper.



Fig. 2. An illustration of the multi-sensor, multi-robot exploration concept
and our solution. The robots visually observe the surfaces of an unknown
environment with coordinated autonomy that is resilient to the various
challenges present in the cave, mine, and urban environments of Fig. 1.

Our proposed exploration autonomy pipeline directly ad-

dresses each of the above challenges in the following ways:

(a) A new exploration strategy that selects viewpoints that

benefit both vision and range sensing while making

realistic assumptions regarding the sensing and motion.

Furthermore, exploration is performed in a coordinated

manner, with robots sharing several maps and switching

between coordination strategies to adapt to the situation.

Figure 2 illustrates this concept.

(b) A robust hierarchy of path planning algorithms and as-

sociated map processing techniques that enables adaptive

exploration behavior and speed to best suit the environ-

ment geometry. Figure 1 illustrates our robots executing

missions in a wide range of environments.

(c) Resiliency through the use of a behavior tree plan execu-

tion architecture [10] that selects between multiple alter-

nate behaviors when an adverse event is detected, such as

recovering from being stuck in dust, emergency landing

in a safe zone, and switching to alternate coordination

strategies when the primary strategy is failing.

(d) We make careful design decisions regarding how each

component of the pipeline uses computational resources.

Also, the robots effectively explore even if communica-

tion is limited. We tested design choices extensively on

physical robots during algorithm development.

We present a selection of results from our extensive field

testing and illustrate examples of resilient behaviors in adverse

conditions. We demonstrate our autonomy on robots exploring

at up to 3 m/s and traveling up to 1100 m in 15 minute

flights, with teams of up to 3 robots. These experiments

were performed in the environments of Fig. 1, including the

SubT Challenge course [9]. We describe the behavior of the

algorithms in various circumstances, and comment on lessons

learned. The discussion is supported by illustrations in the

appendix, and a video in the supplementary material1.

In summary, the contributions of this paper are:

• A comprehensive approach to resilient multi-sensor,

multi-robot exploration and sensor coverage, which

makes many specific innovations at the component level,

to enable exploration with physical teams of robots in a

wide range of unknown environments. The robots lever-

age LiDAR for discovering the geometry of the environ-

ment and cameras for yielding detailed observations. Our

approach is demonstrated to be resilient to adverse events,

including unexpected battery loss, dynamic obstacles,

being stuck in dust, and unreachable areas.

• Evaluation in a large variety of environments with up to

3 robots, and detailed discussion, diagrams, and videos

from these extensive field experiments that demonstrate

the behavior of our adaptive and resilient autonomy.

• We release our software implementation as open source

to the community2.

Relative to our prior publication regarding the broader SubT

system [31], this paper contributes design improvements to

all components, several new resilient behaviors, extended

technical detail, and recent field experiments.

II. RELATED WORK

While the vast majority of studies on aerial robot exploration

have focused solely on optimizing the primary exploration

behavior, there has been a few recent studies that propose

approaches to full-mission autonomy with finite state ma-

chines [14, 16, 17, 25] and behavior trees [23, 26]. We

are particularly interested in behavior trees [10], which are

common in computer games and have recently gained popu-

larity in robotics [27, 29, 32], due to the ease of design and

introspection. We push the boundary of how behavior trees

are used for aerial robotics, by instantiating them for missions

involving many complex behaviors that aid resiliency.

Exploration algorithms are loosely characterized as informa-

tion theoretic [6, 11, 19, 34], which are seen as mathematically

sound, frontier-based [7, 17, 20, 28, 37, 40], which are com-

putationally efficient, or graph search-based [8, 12, 13, 38],

which are scalable. Our pipeline is primarily frontier-based,

but with a new frontier definition and selection heuristic, and

also uses graph search for specific behaviors.

Multi-sensor exploration combines classic exploration, as

the world needs to be discovered, and sensor coverage, since

we closely observe the discovered world. Existing approaches

to multi-sensor problems involve optimizing for coverage

objectives [8], creating separate viewpoints for exploration

and coverage [4, 36], or combining exploration and coverage

into a single objective [21, 22, 33]. We opt for an approach

that creates separate viewpoints for exploration and coverage,

similar to [36] in the context of underwater exploration, as we

found that viewpoints that favor coverage are most beneficial,

but there are specific scenarios where exploration viewpoints

1Video: https://youtu.be/c223fYNOmf4
2Software: https://theairlab.org/research/2022/05/02/subt code/

https://youtu.be/c223fYNOmf4
https://theairlab.org/research/2022/05/02/subt_code/


are necessary. Similarly to [36], we select viewpoints that

observe frontiers rather than planning directly to frontiers.

For multi-robot exploration, coordination strategies are ei-

ther explicit [5, 7, 11], where robots jointly optimize plans,

or implicit [2, 3], where robots only share knowledge of the

world. We employ an implicit strategy as it is less burdensome

on communication and our robots are usually spread out.

Aerial exploration strategies are typically combined with

local path planners, which enable faster and safer navigation.

Common approaches include trajectory optimizers [40], graph

search [17], and motion primitives [13]. We use a two-layer

approach that combines graph search with motion primitives.

Common map representations include raw point clouds [8]

or voxel structures like octrees [35, 36]. We employ

OpenVDB [24], which is an alternative hierarchical voxel

structure widely used in graphics engines. OpenVDB is yet

to receive much attention in robotics, but is befitting due to

the efficient queries and iterators. We also employ efficient

distance transform maps [30] for fast local planning.

SubT Challenge: While our proposed system is intended

to be generally applicable, it was primarily developed for the

context of the SubT Challenge [9] by Team Explorer. In the

final competition, all teams, including ours, exclusively or

heavily used ground robots. However, our aerial robots quickly

explored regions that were difficult or impossible to reach by

ground robots, which collectively contributed to us winning

the “Most Sectors Explored” award. To our knowledge, our

aerial robots outperformed the aerial robots deployed by other

teams in terms of volume explored, flight speed, doorways

navigated, points scored (∼1/3 of our total score), and overall

reliability3. Further details of our performance are discussed

in Sec. VIII.

The autonomy approaches described by the published work

of SubT teams share similar planning components, such as

roadmap generation [1, 12, 15, 31], frontier-based explo-

ration [1, 12, 15, 17, 31], and map sharing [1, 15, 31]. Notable

absences from this published work include explicit multi-

sensor exploration and coverage objectives, behavior switch-

ing architectures for full-mission autonomy and resiliency, a

diverse set of mapping products designed for specialized pur-

poses, and aerial robot navigation through narrow doorways;

we propose new solutions to each of these problems within

our presented system.

III. PROBLEM FORMULATION

We consider the problem of planning for a team of aerial

robots where the goal is to visually observe the surfaces

of an unknown environment. Each robot is equipped with

range sensors that discover the geometry of the environment,

and close-range vision sensors for observing surfaces. We

are interested in developing an autonomy pipeline for the

full mission—from take-off to landing—that accomplishes the

mission objectives and is resilient to any challenges that may

arise. The autonomy must be resilient across a wide range of

3SubT final event footage: https://www.subtchallenge.com/SubTv.html

environments, which may feature challenges such as narrow

passages, dust, limited communication, unreachable regions,

dynamic obstacles, and unexpected battery drain. We formalize

this problem as follows.

A. Environment

The environment is described as a discrete set E of points

e ∈ R
3. The set E is split into two disjoint subsets: Efree ⊂ E

describes all free-space locations, and Eocc ⊂ E describes all

occupied locations. We additionally define the set of surface

points Esurf , where Esurf ⊂ Eocc, as all occupied points that

are on the boundary of Eocc and Efree. These sets are initially

unknown to the robots, and their geometric features are

unpredictable, with the possible presence of narrow passages,

open rooms, vertical passages, stairs, branching, and loops.

B. Robot State and Action Space

A team of R aerial robots, R = {r1, ..., rR}, are to explore

this environment. At time t, the state of robot ri is defined as a

pose xi(t) ∈ SE(3). The set of collision-free poses is denoted

X , where X ⊂ SE(3). Robot ri takes off at a given time ti
0

with a known pose xi(ti
0
). The union of the R

3 translation

components of each x ∈ X forms a subset of Efree. For now,

we assume X is constant over time, but we later discuss the

possibility of time-varying obstacles. This set is also initially

unknown to the robots.

Each robot can move freely within X with a finite velocity

and acceleration. The yaw of each pose is also specifiable by

the high-level planners, subject to a finite angular velocity,

but the roll and pitch are not controllable and remain near

horizontal. Each robot has an onboard controller to facilitate

these movements; the details of the controller are out of scope

of this paper and the proposed planner does not rely on having

a precise model of the robot dynamics.

Each robot has an uncertain battery capacity that allows it

to fly for time T i. Before time ti
0
+ T i, robot i is to return to

near the take-off pose xi(ti
0
) and land safely on the ground.

Given that T i is difficult to predict, or a robot may fail to find

a path home, each robot must also have a contingency plan to

land safely in case xi(ti
0
) is not reached prior to ti

0
+ T i.

C. Sensor Models

Each robot is equipped with one or more range sensors that

provide information about the environment geometry. Each

observation is a set of range estimates to the nearest surface

points e ∈ Esurf in a fixed set of directions relative to the

robot pose xi(t). These observations may contain noise in the

form of false ‘hits’ off dust or other air particles, or false

‘misses’ through windows and thin obstacles.

Each robot is also equipped with one or more vision

sensors that perform a primary perception task, such as object

detection or providing imagery to an operator. It is assumed

that these cameras are effective at their task of observing the

nearest surfaces up to a fixed range from the robot and within

the camera field of view. At time t, the observation yields

a set of observed surface points zi(t), where zi(t) ⊂ Esurf .

https://www.subtchallenge.com/SubTv.html
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Fig. 3. Overview of the proposed aerial autonomy pipeline, as introduced in Sec. IV

Note that the robot does not necessarily have full knowledge of

zi(t) as Esurf is unknown to the robots, but may be estimated

indirectly via information obtained by the range sensors; this

is discussed further in Sec. V.

We assume the current pose xi(t) is accurately estimated by

each robot, such as through a SLAM solution, but the proposed

pipeline should be resilient to small errors. In our experiments,

we utilize the Super Odometry SLAM solution [39].

D. Multi-Robot Communication

The robots have onboard communication hardware that

enables communicating information between robots. However,

the connectivity and bandwidth of the network is unpredictable

and limited, and this should be considered when designing

what messages are sent between robots.

We assume that robots know the coordinate transforms

between their take-off locations; this allows communicated

maps to be shared in a common global reference frame.

E. Resilience to Unforeseen Challenges

The robots should be prepared to appropriately respond to

all unexpected challenges that may arise during the mission.

These challenges include the issues alluded to above—such

as dust or fog, changes in environment topology, and unpre-

dictable battery life—as well as any unforeseen challenges that

may prevent the continuation of typical mission behavior. In

any case, the robots are to respond in a reasonable manner

similar to how a remotely-operating human pilot may respond

in a similar situation, such as finding alternative paths, back-

tracking from an area, or landing safely at an alternate location.

F. Problem Statement

Denote the trajectory xi(t), ∀t ∈ [ti
0
, ti

0
+ T i] of robot i

as Xi, and the collection of trajectories for all robots as X .

Define the union of the sets of all points visually observed by

all robots throughout the trajectories X as

Eobs(X) =
⋃

i

⋃

t

zi(t). (1)

Given these definitions, the problem to be solved is stated as

follows. We aim to find the optimal collection of trajectories,

denoted X∗, that respects the assumptions and constraints

introduced in the above subsections and maximises the number

of points observed by the visual sensors of at least one robot,

denoted Eobs(X); i.e., find

X∗ = argmax
X

|Eobs(X)|. (2)

Since communication is intermittent, and the team operates

in a decentralized manner, each robot has to solve for its own

trajectory based on its own knowledge of the world. Also,

since the surface points, Esurf , are not known in advance, this

problem cannot be solved directly. Instead, strategies must be

developed that plan to both discover Esurf and observe these

discovered surfaces with vision sensors.

IV. AUTONOMY OVERVIEW

We propose an autonomy solution to this problem that

emphasizes resiliency from take-off to landing, across a wide

range of environments. Figure 3 presents a high-level overview

of our solution and Fig. 4 illustrates a snapshot of these

components working together during an example mission.

Central to the decision making is the behavior executive: It

employs a behavior tree logic structure to reason over various

signals that describe the state of the system to decide which

behavior to execute right now, such as a particular exploration

method, backtrack out of trouble, or a landing sequence. The

map processor processes mapping data provided by SLAM to

generate various mapping products for the different planners
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Fig. 4. A robot exploring a boiler plant in Pittsburgh, PA. The robot has finished observing the room on the left (green points), so it plans a path between
beams hanging from the ceiling and a small hole in the wall (visible in camera field of view) to reach the frontier viewpoints in the unexplored room on the
right. All computation is performed online and onboard the robot. The point cloud is generated with an onboard LiDAR sensor and SLAM solution.

Fig. 5. The number of CPU hardware threads used by the modules of the
autonomy pipeline, averaged over a full flight. Execution rate listed for some
modules. This was run on a single 8-CPU thread (4-core) computer. Note:
This paper focuses on the map processing, global planning, local planning,
behavior tree and diagnostics modules.

and other robots. The global planner selects goals based on

the currently selected behavior, and plans paths to ensure

feasibility and achieve these goals. Low fidelity maps are

opportunistically communicated between robots. The local

planner takes intermediate goals from the global planner, plans

a path while ensuring a higher degree of safety, adapts the

speed, and controls the yaw during tight maneuvers. Trajectory

commands are output to an onboard controller.

Our primary design consideration is the trade-off between

the prospective strengths of an algorithm and its burden on

available time, computation, and communication resources.

This is achieved by maintaining a tight loop between develop-

ment and regular testing, such that we aim for the system to

become resilient to issues that arise during experiments. We

closely monitored the use of computational resources during

development; typical CPU usage is depicted in Fig. 5.

A. Behavior Executive

Our behavior tree, depicted in Fig. 6, commands the high-

level decisions. A behavior tree models plan execution with a

directed tree [10]. Condition nodes are evaluated as true or

false based on the system state. An action node describes

a behavior that is executed when active, and evaluates as

success, running, or failure. The tree is evaluated from left

to right, with the internal nodes recursively controlling which

leaf nodes are active. Fallback nodes are true if any of its

children are true, while sequence nodes are false if any of its

children are false. The left-most children of an active fallback

node are active up to the first evaluated as true/success or

running. Similarly, the children of an active sequence node

are active up to the first false/failure or running.

Our behavior tree has four components: diagnostics, take-

off, exploration, and landing. The diagnostics has highest

priority, and has the purpose of reacting to critical events,

such as landing if a sensor fails, or disengaging the motors

after a crash. The take-off sub-tree initiates a sequence in-

volving disengaging the UGV latch, booting the sensors, then

launching. Once the take-off is complete, the robot enters the

main exploration mode until the battery is low.

The behavior tree specifies several different exploration

behaviors. If the robot is stuck, then it rewinds by back-

tracking blindly over the previous trajectory. If it has frontier

viewpoints not observed by other robots, then it executes

coordinated exploration. Otherwise, it travels to viewpoints

communicated by other robots. If neither of these are possible,

then independent exploration is performed. As a last resort,



Fig. 6. Our behavior tree is responsible for adaptively switching between autonomous behaviors (actions) as the conditions change. A behavior tree is
interpreted from left to right, as introduced in Sec. IV-A. In the pictured state (colors), there are no diagnostics errors, the robot has successfully taken off,
the battery is not low, and so it is currently exploring. The ‘Roadmap Explore’ behavior is selected because all locally-computed frontiers have been cleared
by other robots, but other robots have shared a roadmap containing paths to frontiers beyond the sensor range.

the robot returns home. If a higher-priority condition becomes

true, then the associated behavior is immediately activated.

Once the battery life is less than the estimated travel time

to the take-off location, the robot follows the roadmap back

and lands. For improved resiliency, we also have fallback

behaviors: backtrack if stuck, emergency land at a safe landing

zone, or repair the roadmap if the path is blocked. We further

describe these behaviors in the following sections.

V. MAP PROCESSING

Our multi-sensor autonomy pipeline uses maps for several

purposes: remembering what has been observed, discovering

what has not been observed, collision avoidance, coordination,

and returning home. As such, we require processing the data

from the range and vision sensors to produce mapping prod-

ucts that are specialized for each purpose. Roadmaps provide

a topological representation of where the robots have been

and how the environment is connected. Collision checking

maps are required by the global and local planners, each with

different considerations. Exploration maps inform the global

planner of the value of future observations.

A. Exploration Maps

The exploration maps are represented as occupancy grids

with the OpenVDB data structure [24]. OpenVDB is a hierar-

chical grid that resembles a B+ Tree, and provides an average

constant-time random access to voxel data. This property

enables fast ray-casting operations for probabilistic occupancy

updates and collision checking, and therefore OpenVDB is

ideal for constructing large-scale maps in real time.

1) Collision Checking: The global map used for collision

checking is a high resolution (10 cm) probabilistic 3D oc-

cupancy grid generated by ray casting with registered range-

sensor scans, and thus is a partial estimate of E . This map

covers the entire observed environment to facilitate long-

horizon planning; this is in contrast to the local planner map

discussed below. We write these maps to shared memory to

enable low-latency sharing to the global planning modules.

Since the global planner often repeats collision-check queries

that each require iterating over a region of the global map,

we cache the collision checking results in another OpenVDB

map, which we found to greatly reduce planning time.

2) Frontier Maps: There are three maps relevant to gen-

erating and scoring viewpoints: vision-observed map, vision-

frontier map, and range-frontier map.

The vision-observed map is a subset of the occupied cells

in the global map that are estimated to have been observed by

the vision sensors, and thus is an estimate of Eobs. An example

of this map is shown with the green shading in Fig. 4. This

map is produced by ray casting from xi(t) to all points in the

global map that are within the camera range and field of view.

This ray casting is also repeated for a small set of prior poses

to account for cases where the camera makes observations of

a surface prior to the range sensors. The vision-observed map

is stored at a lower resolution (0.2 m).

The vision-frontier map is a subset of the occupied cells in

the global map that are estimated to have not yet been observed

by the vision sensors, and thus is an estimate of Eocc\Eobs. The

map leverages the geometry discovered by the range sensors to

direct the planning towards surfaces unobserved by the vision

sensors. This map is computed by maintaining a low-resolution
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Fig. 7. Example of detecting dust and wires in point clouds. Points detected as dust are removed from the cloud while wires are considered as obstacles by
the local planner. Without this dust filtering, the robot would regularly become stuck in environments containing dust.

copy of the global map and removing cells when they are

added to the vision-observed map.

The range-frontier map represents the boundary of the

range-sensor observations and follows the classical frontier

definition [37]. This map contains all free cells in the global

map that neighbor a significant number of unknown cells.

The advantage of using the vision-frontier map is that it

directly corresponds to the objective of expanding Eobs. How-

ever, using this alone would mean that discovering Esurf only

happens opportunistically, which can be problematic. This

motivates our proposed combination of employing frontiers

for both exploration and coverage.

3) Coordination Maps: Our coordination strategy relies on

sharing this mapping information between robots. Thus, we

define the communicated map, which is a map that merges

vision-observed map and vision-frontier map, such that each

cell is marked as vision-observed or vision-frontier. This map

has a resolution of 2.0 m to reduce communication, and we

also found this to aid resiliency when maps were misaligned

between robots. The communicated map is merged with maps

from other robots to form the coordination map, which is used

to aid the global planner decision making.

B. Roadmaps

In order to facilitate traveling to areas that robots have

been, we generate roadmaps from each robot’s odometry. The

roadmaps are graphs with vertices placed at 1 m intervals along

the traversed path, Xi. Edges always connect consecutive

vertices along Xi. Additionally, to find shortcuts, edges are

added between vertices that are up to 5 m apart and are line-

of-sight collision free. Each robot has two roadmaps: single-

robot roadmap and coordination roadmap.

The single-robot roadmap is used for returning home to

land. An example is illustrated later in Fig. 17. Each edge

records a traversal time estimate, which is used for triggering

the ‘Low Battery’ condition. If the roadmap is blocked, it may

be repaired and extended (see Sec. VI).

The coordination roadmap combines all communicated

single-robot roadmaps. Inter-robot edges are added; however,

since these are not necessarily covered by the global map,

we connect edges between all pairs of vertices that are less

than 5 m apart, and give them a very high cost. We also

associate frontier clusters from the vision-frontier map with

nearby reachable vertices.

C. Local Planner Map Representation

Since the local planner plans at a higher frequency (10 Hz),

over shorter distances, and with greater safety requirements,

we opt for a different representation for local planner collision

checking. We employ a Euclidean distance transform (EDT)

map as it enables efficient querying of distances to closest

obstacles [30]. Two 150×150×150 voxel grids containing

occupancy probability and distance values are instantiated with

10 cm and 30 cm resolutions. The ray casting and distance

updates are executed on the GPU.

1) Dust Filtering: Aerial robots often blow dust into the

air, which causes false LiDAR ‘hits’. If this dust is not

filtered, false obstacles appear in the map, which restricts

movements. Dust typically appears as a small group of points,

as illustrated in Fig. 7(a). We employ an efficient solution that

finds discontinuities in LiDAR scans to label points as dust.

We also employ a wire detector to avoid unintentionally

filtering out thin hazardous obstacles. As seen in Fig. 7(b),

these wire obstacles are often linear. Thus, a line is fit to

the closer points of all discontinuities, and if the fit error is

small, then the points are labelled as wires. This is an efficient

approximation of intensive methods, e.g., RANSAC, and thus

is suitable for executing within the planning loop.

VI. GLOBAL PLANNING AND COORDINATION

The global planning and coordination module seeks to gen-

erate paths that result in sufficiently exploring the environment

with the range sensors and maximally covering the surfaces

with the fields of view of the vision sensors. This is achieved

in several steps: candidate viewpoints are generated, these

viewpoints are scored, then paths are planned to viewpoints.

Figure 4 illustrates these planning components in an example

mission: when the local planner locks the planning point,

the global planner plans from this position. There are several

variants of exploration behaviors, which are selected by the

behavior tree based on information available from other robots.

The global planner also plans for a resilient landing behavior.



A. Viewpoint Generation

1) Vision Viewpoints: A set of vision viewpoints are gener-

ated by processing the vision-frontier map. These viewpoints

are poses where it is predicted the robot will observe surfaces

that have yet to have been observed. The vision-frontier map

is first segmented into fixed-size clusters. Next, candidate

viewpoints are generated on a cylinder around the cluster

centroids with orientations set in the direction of each centroid.

A viewpoint is kept if the viewpoint is in free space and has

line-of-sight visibility to the centroid. Since this process is

CPU-intensive, particularly in expansive environments, we in-

crementally update the viewpoints only where changes occur.

2) Range Viewpoints: While the vision viewpoints are

generated to encourage making vision-observations of known

surfaces, they do not value the discovery of these surfaces with

the range sensors. Thus, we also generate range viewpoints that

encourage discovering Esurf . These viewpoints are generated

by segmenting the range-frontier map into connected compo-

nents and placing a collision-free viewpoint in each cluster.

B. Viewpoint Selection

The candidate viewpoints are then sorted into a priority

queue in order of their predicted value. High-value viewpoints

are likely to: have a small flight time from the current state, be

sufficiently far away to encourage high speeds, and have not

been observed by other robots. We propose a computationally-

efficient heuristic function that balances these objectives, de-

fined as a weighted sum of the following:

• Subtract the Euclidean distance from the planning point

to the viewpoint. This favors close viewpoints.

• Subtract an estimate for the change in momentum re-

quired between the planning point and the viewpoint. This

favors faster flight in straight lines.

• Add a reward for viewpoints approximately 10 m away

if there are other viewpoints near the line connecting the

planning point and the viewpoint. In open spaces, this

favors far viewpoints to increase flight speed.

• Add a large reward if the viewpoint has not been observed

by other robots, as defined in the coordination map.

• Add a reward for selecting a vision viewpoint (not range

viewpoint), to favor the primary coverage objective.

• Subtract a penalty for viewpoints that the path planner

has recently failed for, to avoid repeated failures.

The parameters were tuned through experiments, though we

found the behavior was not overly sensitive to changes.

C. Path Planning

A path, like the orange path in Fig. 4, is planned to the view-

points in order of their scores. We employ RRT-Connect [18]

for path planning in 3D over the global map. For each

viewpoint, we trial a large then a small collision radius. The

viewpoints are trialled in order until a feasible path is found.

If a viewpoint is unreachable, the viewpoint is added to an

unreachable map, which is a periodically-cleared OpenVDB

map. Points in the unreachable map are penalized in the

selection heuristic to reduce the computational burden in

environments with transparent obstacles. The yaw along the

path is a free variable for the controller up until near the

viewpoint where it is specified as the viewpoint heading.

D. Coordinated Roadmap Exploration

If all of the locally-generated viewpoints have already

been observed by other robots, then the behavior switches to

‘Roadmap Explore’. This behavior instead plans to frontiers

generated and shared by other robots. However, since they

are likely to be beyond this robot’s global map, we also need

to rely on the coordination roadmap to find paths to these

frontiers. A path is planned to the frontier that has not been

observed by any robot and has the shortest path distance.

As the robot approaches the selected frontier, new locally-

computed viewpoints should be generated, and the behavior

tree switches back to ‘Coordinated Explore’.

E. Return Home Resiliency

The ‘Return Home’ behavior is triggered if the exploration

is failing or battery life is less than the estimated return-

home time. The return home path is found over the single-

robot roadmap. If the battery is critically low, then the path is

redirected to a safe landing location. If the return home path

is blocked, the local planner will fail to find a path, and this

is communicated to the global planner. If this occurs three

times, then all edges near the current position are removed

from the roadmap. If no path home is found then the roadmap

edge connection radius is increased, which should improve the

connectivity at the cost of a higher risk of introducing incorrect

edges. If there is still no feasible path, then the robot will

return to the closest reachable vertex to the landing location.

An example of this behavior is presented later in Fig. 17.

VII. LOCAL PLANNING

The local planner plans collision free paths through X to

goals given by the global planner, by using the EDT map

described in Sec. V-C. The algorithm is designed to increase

speed in open space and move carefully through clutter. It

achieves this by adjusting the target velocity as a function of

the distance to nearest obstacles, and adjusting the collision

radius based on the current velocity. Through narrow passages,

the planner also aligns the yaw since our robots are longer

than they are wide. The algorithm has two steps: perform an

A* graph search, then match the path to a library of feasible

trajectories. We describe these steps as follows.

A* plans a path through a graph generated from the EDT

maps. The graph is 26-connected to neighboring voxels, and

has vertices at collision-free voxels of the fine map at close

distances and the coarse map when beyond the fine map’s

boundary. The edge cost is defined as the Euclidean distance

plus a penalty p that is introduced to favor safer paths.

Specifically, we define p as:

p =











A(dmax − dobst), if dobst < Dclose,

B(dmax − dobst), if Dclose ≤ dobst ≤ Dfar,

0, otherwise,

(3)



Fig. 8. A trajectory library of dynamically-feasible trajectories as the robot
flies to the right. These trajectories are matched to the local planner path.

where dobst is the distance to the nearest obstacle, dmax

is the maximum voxel–obstacle distance in the EDT, and

Dclose, Dfar, A and B are constants with A > B. With

these definitions, A* with a Euclidean heuristic finds the path

that minimizes the sum of edge costs. Narrow passages are

determined as small dobst values, which triggers a reduction

in maximum velocity and collision radius, and sets the heading

to align forwards or backwards with the direction of travel.

To ensure dynamically-feasible trajectories are passed to the

controller, the path output by A* is matched to a library of

feasible trajectories. The library of trajectories adapts based

on the current state of the robot; an example is illustrated in

Fig. 8. Specifically, the library of trajectories are generated for

a discrete set of snap values, S . First, a set of desired velocities

Vd is formed by sampling horizontally in 11.25◦ increments

and pitching at 0◦, 12◦, 24◦, and 80◦. Two additional velocities

are added in the direction of points on the A* path. Using Vd,

the snap values are computed as:

S = {s : s = −kv(vp − vd)− kaap − kjjp, ∀vd ∈ Vd}, (4)

where vp, ap, and jp are the current velocity, acceleration,

and jerk, and kv , ka, and kj are constant gains that specify

aggressiveness. At the end of each trajectory, the desired

velocity is set to 0 so the robot has enough time to stop if

necessary. The trajectories are formed by integrating the snap

values in S . The output trajectory is selected that is collision

free and minimizes the sum of distances to the A* path.

VIII. FIELD EXPERIMENTS

Our proposed autonomy pipeline for multi-sensor explo-

ration has been extensively validated on physical robots in

a wide range of environments, as illustrated earlier in Fig. 1.

These experiments directly motivated and informed the ongo-

ing development of the autonomy. Here, we present a selection

of results that aim to showcase a variety of experimental sce-

narios and provide interesting examples of resilient behaviors.

The experiments are summarized in Table I with illustrations

provided later in the appendix.

A. Hardware Setup

Our experiments were performed with a team of custom-

built quadrotor aerial robots. All sensing and computation is

performed onboard the robots. Each robot weighs approxi-

mately 5.2 kg, is 68 cm wide and 81 cm long. The battery

life varied significantly, but was typically 10 to 15 minutes

of flight time. The motors were controlled by a PX4-based

flight controller. Each robot was equipped with one Velodyne

VLP-16 LiDAR, and upward- and downward-pointing Intel

Realsense L515 RGB-D sensors, which provide the range

observations. Each robot is also equipped with one forward-

facing camera with a 200◦ fish-eye lens, which provides the

visual observations, zi(t), that are the basis of our objective

function in (2). The robots had an Intel NUC computer with

an Intel Core i7-8550U CPU that has 8 threads (4 cores).

Communication between robots was through a wireless mesh

network, but was often intermittent and unreliable. We also

performed experiments with a different robot model, with

the main differences being increased size and weight, and an

additional backward-facing fish-eye camera.

B. Results and Discussion

As described in Table I, each environment presented unique

features and challenges. No software changes were made to

account for these differences, but rather the autonomy had to

adapt to the observed situation.

Adaptive Speeds: The most noticeable difference between

the environments that influenced the autonomy was that some

had narrow passages only slightly wider then the width of

the robot, others had wide open tunnels, while some were

mixed. These differences can be clearly seen in Fig. 1. How

the autonomy adapted to these differences can be observed by

comparing the distances and speeds. The most open environ-

ments were the limestone mine and large cavern, where the

robots travelled approximately 1000 m and with speeds up to

3 m/s. The boiler room and office warehouse were the tightest,

resulting in slower speeds to guarantee safety and stability.

Multi-sensor Objectives: The benefits of the multi-sensor

exploration formulation, compared to the classic exploration

problem, are most evident in the large cavern (Fig. 11). The

entire environment is observed by the LiDAR very quickly

due to the openness of the space, and so the mission would

finish very quickly if performing pure exploration. However,

many more passes are required to sufficiently observe the

environment with the close-range vision sensor, and this is

made possible with the use of the vision-frontiers.

Range-frontiers: Conversely, the range-frontiers are still

vital in specific scenarios, which is especially evident in the

boiler room. The range-frontiers were necessary for finding

a path through the small hole in the wall illustrated earlier

in Fig. 4, as the LiDAR does not sufficiently observe through

to discover the geometry and generate vision-frontiers. Hence,

generating both frontier types is necessary to complete the full

mission shown in Fig. 12.

Coordination Behaviors: In the missions with multiple

robots, different coordination behaviors arose. In the limestone

mine (see Fig. 9), there were enough branches in the environ-

ment for the robots to primarily rely on the shared observed

maps to spread out into different directions; the robots mostly



TABLE I
A summary of the selection of presented field experiments. The Fig. 1 references are specified in parentheses, with ‘1’ at the top of the diagram then

counting clockwise. The cell counts in the last column refer to the number of occupied voxels (0.2 m cubes) observed by the vision sensors.

Environment Location Figures Features & Challenges Robots Distances
Traveled

(m)

Average
Speeds

(m/s)

Maximum
Speeds

(m/s)

Average
Number

View-

points

Vision-
observed

Voxels

(’000s)

Natural
cave

Laurel Caverns,
PA

1 (10, 12),
10

open & narrow, steep
slopes, unstructured,

unreachable areas

1 439 0.7 2.0 46 283

Large
cavern

Louisville Mega
Cavern, KY

1 (3), 11 very open, high ceilings 1 874 1.3 3.0 334 224

Boiler
room

Abandoned
complex,

Pittsburgh PA

1 (2), 4,
12

multi-level, vertical
passages, thin obstacles

1 365 0.6 2.2 141 239

Office
warehouse

Louisville Mega
Cavern, KY

1 (7), 13 doorways, clutter,
dynamic obstacles

2 189, 273 0.5, 0.5 1.9, 1.8 124, 2267 162, 208

Subway
station

Louisville Mega
Cavern, KY

1 (1, 5, 9),
14, 15

long distances, fog,
unreachable areas

3 224, 473,
385

0.9, 0.8,
0.8

1.9, 2.1,
2.2

80, 2461,
2651

236, 248,
235

Limestone
mine

Brady’s Bend, PA 1 (6), 9 long distances, wide
tunnels, dust

3 1106,
660, 1073

1.5, 1.2,
1.7

2.6, 2.9,
2.7

881, 652,
1617

552, 396,
412

Auditorium
corridors

Abandoned
complex,

Pittsburgh PA

16 doorways, open &
narrow, unreachable areas

2 555, 233 0.9, 0.5 2.7, 2.0 425, 374 292, 229

Abandoned
hospital

Abandoned
complex,

Pittsburgh PA

17 doorways, dynamic
obstacles, structured

1 491 0.7 1.7 435 365

executed the ‘Coordinated Explore’ behavior tree action. In the

auditorium corridors (see Fig. 16), the robots had no option

but to follow each other down the corridor until the branching

point; the second robot executed the ‘Roadmap Explore’ action

and leveraged the roadmap shared by the first robot to find

the unexplored rooms. A similar coordination behavior was

observed in the subway station, where the robots followed

similar paths until they reached the open space of Fig. 14(b).

Constrained Environments: Comparing the behavior in the

two most open environments, the large cavern was mostly

one large room while the limestone mine was unconstrained

in size. While similar speeds and distances were achieved in

these environments, the number of cells in the vision-observed

voxel map was significantly lower in the large cavern since the

later part of the flight was spent revisiting small areas missed

in the earlier passes of the environment (see Fig. 11).

Viewpoint Density: The number of global planning view-

points varied greatly between environments. The number of

viewpoints increases when the LiDAR can observe much

farther than the cameras, resulting in more vision-frontiers; this

was particularly evident in the limestone mine and the large

cavern. In contrast, in the natural caves and boiler room, the

LiDAR field of view was significantly occluded by obstacles.

The algorithm is designed to ensure sufficient viewpoints for

full coverage, while also being mindful of CPU usage.

Unreachable Regions: Another challenge for viewpoint

generation was that the office warehouse, subway station, and

auditorium corridors had large unreachable regions that were

visible to the LiDAR, e.g., through glass and netting. During

initial testing, the unreachable viewpoints would introduce

latency due to repeated path planning failures. This motivated

the unreachable map and incremental viewpoint updates.

Resilient Behaviors: We encountered numerous examples

of resilient behaviors; here, we describe three examples:

• Figure 13 illustrates how the local planner adapts to the

current situation: the robot begins at high speed in the

wide corridor, then decreases speed when near obstacles

for safety, then rotates to fit through a doorway that is

barely wider than the width of the robot.

• Figure 17 demonstrates the resilient return home behav-

ior: when the battery is low the robot plans a path home,

attempts to follow that path, detects this path is blocked

by a door, so repairs and extends the roadmap to find an

alternative path home, then safely lands.

• Figure 10 shows a case where the return home time

is underestimated due to an extended steep climb at

slower speed. The battery falls critically low, so the robot

backtracks and lands at the safe landing zone at the

bottom of the stairs.

SubT Challenge Final Event: Our autonomy pipeline was

employed on our aerial robots during the DARPA Subterranean

Challenge final event. During the prize round, labeled as

subway station and illustrated in Fig. 14, we deployed three

aerial robots that focused on the ‘urban’ section while our

ground robots explored the other areas. The first aerial robot

launched from a ground robot near the stairs that lead to the

subway station. The other two aerial robots were deployed



launch purple robot,

then green and red

simultaneously

100 m

Fig. 9. An example coordination mission in a limestone mine. Three robots were launched at the same location, with the purple robot launching earlier.
The next two robots used coordination maps from the purple robot to discover new areas. In this open environment, the achieved speeds of up to 3 m/s and
distances exceeding 1000 m in 10–15 minute flights. Other missions with different behaviors are illustrated in the appendix.

from the start gate, guided by the human operator towards the

urban section, then explored autonomously. Unlike the other

presented experiments, this mission involved human input and

UGV map sharing; the details are out of the scope of this

paper. The robots flew between 200 m and 400 m each, with

speeds sometimes exceeding 2 m/s, then landed safely. The

aerial robots detected, localized and communicated all of the

8 objects in that area, which was the competition objective.

Three object detections are shown in Fig. 15.

IX. LESSONS LEARNED AND FUTURE WORK

Our extensive experiments and ongoing development re-

vealed several key challenges and trade-offs:

• Avoid Overfitting: When learning from an experiment, it

is essential to respond in a way that both fixes any issues

that arose and does not cause new issues in other exper-

imental scenarios. Overfitting to particular environments

and scenarios may be avoided by testing in a wide range

of environments, and having the scenarios be unknown

to both the robots and the developers.

• Solution Complexity: Algorithm design involves a trade-

off between selecting complex algorithms that provide

benefits such as theoretical guarantees, and less compli-

cated algorithms that may be resource-efficient and easier

to get working. Our system is evidence that an appropri-

ate answer to this trade-off varies between components;

e.g., frontier-based exploration is an established method

that we generalized for multi-sensor exploration, but

OpenVDB is a complicated data structure that provides

practically-meaningful query-time guarantees.

• Multi-Objective Exploration: While classic robot ex-

ploration poses the problem of mapping for the sake of

mapping, we are increasingly seeing robots being useful

for other tasks where mapping is a secondary objective. If

the primary objective is neglected in favor of exploration,

then this may be detrimental to the mission success.

However, exploration objectives cannot be ignored either

as high quality maps may be essential for achieving the

primary objective.

• Resiliency through Redundancy: One of our aims was

to develop a system that never stopped moving, no matter

what went wrong, even if it meant behaving suboptimally.

We found the best way to achieve this was to provide op-

tions to the autonomy that worked in different scenarios.

We found the behavior tree architecture to be a convenient

tool for facilitating this resiliency.

Regarding future work, we are interested in incorporating

other behaviors, such as rendezvous and data muling behaviors

for sharing information. We are also interested in studying

other ways to balance exploration and coverage; perhaps

employing machine learning to generate policies from data

would be fruitful. Our implicit coordination strategy was



appropriate for our scenarios, but scenarios requiring tightly-

coupled coordination would benefit from planning in the

joint space. We aim to continue expanding the autonomy for

systems with more robots, faster flying, and complex mission

objectives.
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X. APPENDIX: FIGURES FOR FIELD EXPERIMENTS

Below, we provide several figures that illustrate a selection

of our field experiments and resilient behaviors. These ex-

periments are described further in the captions and earlier in

Table I.
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Fig. 10. A single-robot mission in a natural cave. The green shaded is the vision-observed map. This environment features a steep from left to right. Inset:
The robot underestimated the return home time while returning up the steep stairs. It therefore returned to a suitable emergency landing area at the bottom
of the stairs. Background: 10 m grid.

Fig. 11. A single robot explores a large cavern. This was a wide open area that enabled long-range LiDAR observations with a few high-velocity straight
trajectories, but many more passes of the environment were required to sufficiently observe with the vision sensor. The ceiling was also very high, meaning
that each location in the horizontal plane had to be observed from multiple altitudes.



(a) Top-down view of the 3D structure.

(b) Side-on view with walls cut out.

Fig. 12. A single-robot mission in a boiler room, which is a complex multi-level structure with many narrow and vertical openings between beams. The
take-off location is in the left of both images. Same mission as earlier in Fig. 4.



(a) Time: 0s. Robot increases speed in the wider corridor. (b) Time: 6s. Robot cannot fit sideways through this doorway.

(c) Time: 13s. Robot rotates to fly backwards through doorway. (d) Time: 17s. Doorway maneuver successfully completed.

Fig. 13. A timelapse sequence of a robot exploring an office warehouse. The local planner adjusts the speed and yaw of the robot as the robot maneuvers
through the doorway. The yellow arrows are a history of poses; inset is the view from the forward facing camera; the purple sphere is the current local planner
goal; the solid path is the local planner path (with red indicating a narrow passage, and green otherwise); the dots and coloring near the future trajectory
represent clearance checking.
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(a) Top-down view with ceilings cut out. (b) Subway station viewed from the side with walls cut out.

Fig. 14. Three robots (red, green, purple) coordinate during the DARPA Subterranean Challenge prize run. The red robot was launched from the back of a
ground robot near the stairs that lead to the subway station. The other two robots explored a similar area since our human operator in the competition deemed
this area to be most suitable for our aerial robots. Only the purple robot’s point cloud is visible. All robots landed at their launch location.



(a) Backpack artifact hidden on the roof of the
subway platform.

(b) Vent artifact behind pillars of subway platform. (c) Survivor artifact in the walkway.

Fig. 15. Three visually-detected hidden objects during the DARPA SubT Challenge final event. The proposed pipeline aims to generate good viewpoints for
visual detection algorithms.
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Fig. 16. Two robots sequentially explore the auditorium corridors. Figure shows information from the perspective of the second robot. The first robot went
down the corridor then explored the auditorium to the right (coarse pink map), while skipping several rooms in the middle. This information was shared
with the second robot, which used the shared coordination roadmap to discover the rooms in the middle then switches to the primary exploration behavior.
Background: 10 m grid.
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(a) The planned return home path from the time that a low battery was detected.
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(b) A blockage is detected while returning home, which triggers the repairing and replanning behavior: Edges are removed near the blocked doorway
and the maximum edge length is increased throughout the roadmap to find a new path home.

Fig. 17. An example of the return home behavior by a single robot in an abandoned hospital. A path home is planned over the roadmap, but it is discovered
that this path has been blocked. Typically only paths close to the roadmap are planned to minimize the risk of crashes on a return. The planner repairs the
roadmap, discovers there is no path home on the repaired roadmap, so then extends the roadmap to find a new feasible path. Note: The green cube in the
room on the left is predefined as ‘observed’ to avoid that area.


	Introduction
	Related Work
	Problem Formulation
	Environment
	Robot State and Action Space
	Sensor Models
	Multi-Robot Communication
	Resilience to Unforeseen Challenges
	Problem Statement

	Autonomy Overview
	Behavior Executive

	Map Processing
	Exploration Maps
	Collision Checking
	Frontier Maps
	Coordination Maps

	Roadmaps
	Local Planner Map Representation
	Dust Filtering


	Global Planning and Coordination
	Viewpoint Generation
	Vision Viewpoints
	Range Viewpoints

	Viewpoint Selection
	Path Planning
	Coordinated Roadmap Exploration
	Return Home Resiliency

	Local Planning
	Field Experiments
	Hardware Setup
	Results and Discussion

	Lessons Learned and Future Work
	Appendix: Figures for Field Experiments

