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Fig. 1: Kilometer-scale autonomous navigation with ViKiNG: Our learning-based navigation system takes as input the current egocentric
image (c), a photograph of the desired destination (b), and an overhead map (which may be a schematic or satellite image) (a) that provides a
hint about the surrounding layout. The robot (d) uses learned models trained in other environments to infer a path to the goal (e), combining
local traversability estimates with global heuristics derived from the map. This enables ViKiNG to navigate previously unseen environments
(e), where a single traversal might involve following roads (f), off-road driving under a canopy (g), and backtracking from dead ends (h).

Abstract—Robotic navigation has been approached as a prob-
lem of 3D reconstruction and planning, as well as an end-to-end
learning problem. However, long-range navigation requires both
planning and reasoning about local traversability, as well as being
able to utilize general knowledge about global geography, in the
form of a roadmap, GPS, or other side information providing
important cues. In this work, we propose an approach that
integrates learning and planning, and can utilize side information
such as schematic roadmaps, satellite maps and GPS coordinates
as a planning heuristic, without relying on them being accurate.
Our method, ViKiNG, incorporates a local traversability model,
which looks at the robot’s current camera observation and a
potential subgoal to infer how easily that subgoal can be reached,
as well as a heuristic model, which looks at overhead maps
for hints and attempts to evaluate the appropriateness of these
subgoals in order to reach the goal. These models are used by a
heuristic planner to identify the best waypoint in order to reach
the final destination. Our method performs no explicit geometric
reconstruction, utilizing only a topological representation of the
environment. Despite having never seen trajectories longer than
80 meters in its training dataset, ViKiNG can leverage its image-
based learned controller and goal-directed heuristic to navigate to
goals up to 3 kilometers away in previously unseen environments,
and exhibit complex behaviors such as probing potential paths
and backtracking when they are found to be non-viable. ViKiNG
is also robust to unreliable maps and GPS, since the low-
level controller ultimately makes decisions based on egocentric
image observations, using maps only as planning heuristics. For
videos of our experiments, please check out our project page:
sites.google.com/view/viking-release

I. INTRODUCTION

Robotic navigation has conventionally been approached
as a geometric problem, where the robot constructs a 3D
model of the environment and then plans a path through this

model. End-to-end learning-based methods offer an alternative
approach, where the robot learns to correlate observations with
traversability information directly from experience, without
full geometric reconstruction [1-3]. This can be advantageous
because, in many cases, geometry alone is neither necessary
nor sufficient to traverse an environment, and a learning-based
method can acquire patterns that are more directly indicative
of traversability, for example by learning that tall grass is
traversable [4] while seemingly traversable muddy soil should
be avoided. More generally, such methods can learn about
common patterns in their environment, such as that houses
tend to be rectangular, or that fences tend to be straight. These
patterns can lead to common-sense inferences about which
path should be taken through an unknown environment even
before that environment has been fully mapped out [5].
However, dispensing with geometry entirely may also be
undesirable: the spatial organization of the world provides
regularities that become important for a robot that needs to
traverse large distances to reach its goal. In fact, when humans
navigate new environments, they make use of both geographic
knowledge, obtained from overhead maps or other cues, and
learned patterns [0]. But in contrast to SLAM, humans don’t
require maps or auxiliary signals to be very accurate: a person
can navigate a neighborhood using a schematic that roughly
indicates streets and houses, and reach a house marked on it.
Humans do not try to accurately reconstruct geometric maps,
but use approximate “mental maps” that relate landmarks to
each other topologically [7]. Our goal is to devise learning-
enabled methods that similarly make use of geographic hints,
which could take the form of GPS, roadmaps, or satellite
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imagery, without requiring these signals to be perfect.

We consider the problem of navigation from raw images in
a novel environment, where the robot is tasked with reaching
a user-designated goal, specified as an egocentric image, as
shown in Figure 1. Note that the robot has no prior experience
in the target environment.The robot has access to geographic
side information in the form of a schematic roadmap or
satellite imagery (see Figure 2), which may be outdated, noisy,
and unreliable, and approximate GPS. This information, while
not sufficient for navigation by itself, contains useful cues that
can be used by the robot. The robot also has access to a large
and diverse dataset of experience from other environments,
which it can use to learn general navigational affordances. We
posit that an effective way to build such a robotic system is
to combine the strengths of machine learning with informed
search, by incorporating the geographic hints into a learned
heuristic for search. The robot uses approximate GPS coor-
dinates and an overhead map as geographic side information
to help solve the navigation task, but does not assume that
this information is particularly accurate—resembling a person
using a paper map, the robot uses the GPS localization and
an overhead map as hints to aid in visual navigation. Note
that while we do assume access to GPS, the measurements
are only accurate up to 2-5 meters (4-10x the scale of the
robot), and cannot be used for local control.

The primary contribution of this work is ViKiNG, an al-
gorithm that combines elements of end-to-end learning-based
control at the low level with a higher-level heuristic planning
method that uses this image-based controller in combination
with the geographic hints. The local image-based controller
is trained on large amounts of prior data from other envi-
ronments, and reasons about navigational affordances directly
from images without any explicit geometric reconstruction.
The planner selects candidate waypoints in order to reach a
faraway goal, incorporating the geographic side information as
a planning heuristic. Thus, when the hints are accurate, they
help the robot navigate toward the goal, and when they are
inaccurate, the robot can still rely on its image observations
to search through the environment. We demonstrate ViKiNG
on a mobile ground robot and evaluate its performance in a
variety of open-world environments not seen in the training
data, including suburban areas, nature parks, and a university
campus. Our local controller is trained on 42 hours of navi-
gational data, and we test our complete system in 10 different
environments. Despite never seeing trajectories longer than
80 meters in its training data, ViKiNG can effectively use
geographic side information in the form of overhead maps to
reach user-specified goals in previously unseen environments
over 2 kilometers away in under 25 minutes.

II. RELATED WORK

Robotic navigation has been studied from a number of
different perspectives in different fields. Classically, it is often
approached as a problem of geometric mapping or recon-
struction followed by planning [8]. In unknown environments,

Fig. 2: Geographic hints used by ViKiNG. We evaluate our method
with either satellite images or schematic roadmaps, though the
approach could be used with any other information of this form,
such as contour maps.

the mapping problem can be formulated in terms of informa-
tion gain with local strategies [9—11], global strategies based
on the frontier method [12—15], or by sampling “next-best
views” [16—18], but such methods typically aim to map or
reconstruct an entire environment, rather than achieve a single
navigational goal. Active exploration methods have sought to
modify this by jointly incentivizing an exploration objective
along with reconstruction of the map [19, 20]. Both the goal-
directed and mapping-focused methods aim to reconstruct the
geometry of their environment, and do not directly benefit
from training with prior data. Some approaches have sought to
incorporate learning into mapping and reconstruction [21, 22],
which benefits from prior data, but still aims at dense geomet-
ric reconstruction. Our approach uses a model that is trained
with data from prior environments to predict traversability
rather than geometry, and this model is then used in com-
bination with geographic hints to plan a path to the goal.

In this respect, ViKiNG is also related to prior work on
learning-based navigation, which is often formulated in terms
of the “PointGoal” task [23]. Many such works rely on
simulation and reinforcement learning, utilizing millions (or
billions) of online trials to train a policy [24, 25]. In contrast,
our method learns entirely from previously collected offline
data, extrapolates to significantly longer paths than it is trained
on, and does not require any simulation or online RL.

A number of prior learning-enabled methods also combine
learned models with graph-based planning, using a topological
graph to represent the environment [26—30]. These methods
often assume access to data from the test environment to start
with a viable graph, which may not be available in a new
environment. Some works have studied this unseen setting by
predicting explorable areas for semantically rich parts of the
environment to accelerate visual exploration [31, 32]. While
these methods can yield promising results in a variety of
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Fig. 3: An overview of our method. ViKiNG uses latent subgoals
z proposed by a learned low-level controller, which operates on raw
image observations oy, for global planning on a topological graph
T to reach a distant goal og, indicates by a photograph and an
approximate GPS location. A learned heuristic parses the overhead
image c: to bias this search towards the goal.

domains, they come at the cost of high sample complexity
(over 10M samples) [23], making them difficult to use in
the real world—the most performant algorithms take 10-20
minutes to find goals up to 50m away [33].

The closest prior work to ViKiNG is by Shah et al. (RE-
CON) [33], which uses a learned representation over feasible
subgoals to uniformly explore the environment. Like RECON,
our method trains a local model that predicts temporal dis-
tances and actions for nearby subgoals, and then incorporates
this model into a search procedure that incrementally con-
structs a topological graph in a novel environment. However,
in contrast to RECON, which performs an uninformed search,
ViKiNG incorporates geographic hints in the form of ap-
proximate GPS coordinates and overhead maps. This enables
ViKiNG to reach faraway goals, up to 25x further away than
the furthest goal reported by RECON, and to reach goals up to
15x faster than RECON when exploring a novel environment.

III. VISUAL NAVIGATION WITH GEOGRAPHIC HINTS

Our aim is to design a robotic system that learns to use first-
person visual observations to reach user-specified landmarks,
while also utilizing geographic hints in the form of approxi-
mate GPS coordinates and overhead maps. At the core of our
approach is a deep neural network that takes in the robot’s
current camera observation o;, as well as an observation o,,
of a potential subgoal w (we use “subgoal” and “waypoint” in-
terchangeably), and predicts the time to reach w (or “temporal
distance”), the best current action to do so, and the resulting
spatial offset in terms of GPS coordinates. This model can also
sample latent representations of potential reachable waypoints
from the current observation o;, which are used as candidate
subgoals for planning. The model is trained on large amounts
of data from a variety of training environments and, when
the robot is placed in a new environment that it has not
seen, it is used to incrementally construct a topological (non-
geometric) graph to navigate to a distant user-specified goal.
This goal is indicated by a photograph with an approximate
GPS coordinate, and may be several kilometers away. The
learned model alone is insufficient to navigate to such a distant
goal in one shot, and therefore our planner uses a combination
of the model’s predictions and geographic information to plan

Fig. 4: The learned models used by ViKiNG. The latent goal model
(left) takes in the current image o:. It also takes in either a true
waypoint image 0., or samples a latent waypoint z;" ~ r(z{") from
a prior distribution, and then predicts, its temporal distance from o,
(d?’), the action to reach it (ai’), and its approximate GPS offset
(z3’). The heuristic model (right) takes in an overhead image ci,
the approximate GPS coordinates of the current location (x:) and
destination (), and the coordinates of the waypoint inferred by the
latent goal model (x.,), and predicts an approximate heuristic value
of the waypoint w for reaching the final destination.

a sequence of subgoals that search for a path through the
environment, incrementally constructing the graph.

This process corresponds to a kind of heuristic search,
where the geographic side information provides a heuristic
to bias the robot to explore towards the goal as it con-
structs the topological graph. The latent goal model is used
to determine reachability in this topological graph, and the
geographic heuristic is used to steer the graph by exploring
the environment. In a novel environment, the robot must in-
crementally build this graph using physical search, by visiting
new nodes and expanding its frontier. The decision about
where to actually go is determined by the first-person images,
and the geographic information is used only as a heuristic,
allowing ViKiNG to remain robust to noisy or unreliable side
information. We overview our method in Figure 3.

A. Low-level Control with a Latent Goal Model

Our low-level model maps the current image observation o,
and a waypoint observation o, to: (1) the temporal distance d’
to reach w from o;; (2) the first action a;’ that the robot must
take now to reach w; (3) a prediction of the (approximate)
offset in GPS readings between o; and w, x3". (1) and (3) will
be used by the higher-level planner, and (2) will be used to
drive to w, if needed. We would also like this model to be
able to propose, in a learned latent space, potential subgoals
w that are reachable from o, and predict their corresponding
values of d’, a}’, and x}°.

We present the model in Figure 4, with precise architecture
details in the supplementary materials. The model is trained by
sampling pairs of time steps in the trajectories in the training
set. For each pair, the earlier time step image becomes o,
and the later image becomes o,,. The number of time steps
between them provides the supervision for dj’, the action
taken at the earlier time step supervises a;’, and the later
GPS reading is transformed into the coordinate frame of the
earlier time step to provide supervision for x}’. The model
is trained via maximum likelihood. Note that by training the
model on data in this way, we not only enable it to evaluate
reachability of prospective waypoints, but also make it possible
to inherit behaviors observed in the data. For example, in our



experiments, we will show that the model has a tendency to
follow sidewalks and forest trails, a behavior it inherits from
the portion of the dataset that is collected via teleoperation.
Besides predicting di’, a3’, and z}’, our planner requires
this model to be able to sample potential reachabale waypoints
from o; (see Figure 3). We implement this via a variational
information bottleneck (VIB) inside of the model that bot-
tlenecks information from o,. Thus, the model can either
take as input a real image o, of a prospective waypoint,
or it can sample a latent waypoint z;’ ~ r(z’) from a
prior distribution. We train the model so that sampled latent
waypoints correspond to feasible locations that the robot can
reach from o; without collision.
Training the latent goal model: The full model, illustrated
in Figure 4, can be split into three parts: a waypoint en-
coder py (2|0, 0¢), a waypoint prior r(z;”), and a predictor
go({a,d, z}¥ |z, o). The latent waypoint representation z;”
can either be sampled from the prior (which is fixed to
r(z*) £ N(0,I)), or from the encoder py(z{*|0y,0;) if a
waypoint image o,, is provided. This latent waypoint is used
together with o; to predict all desired quantities according
to go({a,d,x}}|z",0,). The training set consists of tuples
(0t, 00, {a,d,x}¥"), but the model must be trained so that
samples z}" ~ 7r(z) also produce valid predictions. We
accomplish this by means of the VIB [34], which regularizes
the encoder pgy(2;”|0w,0:) to produce distributions that are
close to the prior r(z) in terms of KL-divergence. We refer
the reader to prior work for a derivation of the VIB [34], and
present our training objective for py and gy below:

Lvis(0,9) = —Ep[E,, [logqe({a,d,z}}" | 2", 01)]
+ BKL (pg (2 | 0w, 00)[|r(2£))] (1)

The outer expectation over all tuples (o, 0, {a,d, x}}") € D
in the training distribution is estimating using the training
set. The first term causes the model to accurately predict
the desired information, while the second term forces the
encoder to remain consistent with the prior, which makes
the model suitable for sampling latent waypoints according
to z" ~ 7(z"). As the encoder p, and decoder gy are
conditioned on o, the representation z;” only encodes relative
information about the subgoal from the context—this allows
the model to represent feasible subgoals in new environments,
and provides a compact representation that abstracts away
irrelevant information, such as time of day or visual appear-
ance. An analogous representation has been proposed in prior
work [33], but did not predict spatial offsets and was used
only for uninformed exploration without geographic hints.

B. Informed Search on a Topological Graph

The model described above can effectively reach nearby
subgoals, for example those on which the robot has line of
sight, but we wish to reach goals that are more than a kilometer
away. To reach distant goals, we combine the model with
a search procedure that incorporates geographic hints from
satellite images or roadmaps. The system does not require
this information to be accurate, instead using it as a planning

Algorithm 1 ViKiNG-A* for Physical Search

1: function VIKING-A*(start S, goal info og, zg)
2 Q<+ {5}

3 while 2 not empty do

4: wy < min(§2, f)

5: DriveTo(w)
6
7

8
9

> update visitations v on the way
observe image o
add w; to graph T
if ClOSG(Ot, OG) finish > use q9,6({a,d,z}}"|ot, 0c)
remove w; from

> use gg,4 On ot to get distances

10: sample waypoints w near w; (Section III-A)
11: for each w sampled near w; do

12: if not contains(2, w) then add w

13: for each waypoint w € €2 do

14: fw) =g(t,w) + d};’r[w] + h(w) + v(Pr[w])

15: return failure

heuristic while still relying on egocentric camera images for
control. Our high-level planner plans over a topological graph
T that it constructs incrementally using the low-level model
in Section III-A as a local planner. We first describe a generic
version of the algorithm for any heuristic, and then describe
the data-driven heuristic function that we extract from the
geographic hints via contrastive learning.
Challenges with physical search: Our “search” process in-
volves the robot physically searching through the environment,
and is not purely a computational process. In contrast to
standard search algorithms (e.g., Dijkstra, A*, IDA*, D*,
etc.), each “step” of our search involves the robot driving
to a subgoal and updating the graph. Standard graph search
algorithms assume (i) the ability to visit any arbitrary node,
and (ii) access to a set of neighbors for every node and the
corresponding “edge weight,” before visiting each neighbor.
Physical search with a robot violates these assumptions, since
robots cannot “teleport” and visiting a node incurs a driving
cost. Furthermore, the real world does not provide “edge
weights” and the robot needs to estimate the cost to reach
an unvisited node before actually driving to it.
An algorithm for informed physical search: To solve these
challenges, we design ViKiNG-A*, an A*-like search algo-
rithm that uses our latent goal model and a learned heuristic
to perform physical search in real-world environments. While
ViKiNG-A* does prefer shorter paths, it does not aim to be
optimal (in contrast to A*), only to reach the goal successfully.
We will use a heuristic h(w), fully described in the next
section, which we assume provides a comparative evaluation
of candidate waypoints in terms of their anticipated temporal
distance to the destination. Algorithm 1 outlines ViKiNG-A*.
Like A*, ViKiNG-A* maintains a priority queue ‘“open
set” Q of unexplored fringe nodes and a “current” node that
represents the least-cost node in this set, which we refer to
as wy. It also maintains a graph with visited waypoints, 7T,
where nodes correspond to images seen at those nodes, and
edges correspond to temporal distances estimated by the model



in Section III-A. At every iteration, the robot drives to the
least-cost node in the open set (L5), using a procedure that
we outline later. When it reaches w,, it observes the image
o using its camera (L6). This allows it to add o; to the
graph 7 (L7), connecting it to other nodes by evaluating
the distances using the model in Section III-A. The graph
construction is analogous to prior work [29, 33]. If the robot
is close to the final goal image og according to the model
(L8), the search ends. o; also allows it to sample nearby
candidate waypoints using the model in Section III-A (L10):
first sampling z}" ~ r(z}") from the prior, and then decoding
distances d}’, a;’, and x}’, from which it can compute absolute
locations as z,, = x¢ + z}’. Each sampled waypoint is stored
in the open set, and annotated with the current image o; and
dy. We refer to w; as the parent of w, and index it as Pr[w].
Note that we do not have access to the image o,,, as we have
not visited the sampled waypoint w yet, and therefore we must
store the current image o; instead. This also means that we
cannot connect these waypoints to the graph 7 except through
their parent. Next, we re-estimate the cost of each waypoint
in the open set, including the newly added waypoints.

The cost for each waypoint w € €2 from the current point w;
consists of four terms (L14): (1) g(¢,w), the cost to navigate
to the parent of w, which is part of the graph 7; this can be
computed as a shortest path on the graph 7T, and is zero for
the current node. (2) d{;”r[w], the distance from the parent of w
to w itself. (3) h(w), the heuristic cost estimate of reaching
the final goal from w (see Section III-C). (4) v(Pr[w]), the
visitation count of Pr[w], computed as C'N (Pr[w]), where C
is a constant and N (Pr[w]) is a count of how many times the
robot drove to Pr[w] via the DriveTo subroutine; this acts as a
novelty bonus to encourage the robot to explore novel states,
a strategy widely used in RL [35, 36]. Summing these terms
expresses a preferences for nodes that are fast to reach from
we (1 + 2), get us closer to the goal (3), and have not been
heavily explored before (4). At the next iteration (L4), the
robot picks the lowest-cost waypoint and again drives to it.

To navigate to a selected waypoint w (DriveTo), the robot
employs a procedure analogous to prior work on learning-
based navigation with topological graphs [29, 33], planning
the shortest path through 7, and selecting the next waypoint
on this path. Once the waypoint w is selected, the model
q0,6({a, d, 2} |ot, 0,) is used to repeatedly choose the action
ay’ based on the current image o;, until the distance d}’
becomes small, indicating that the waypoint is reached and
the robot can navigate to the next waypoint (in practice, it’s
convenient to replan the path at this point, as is standard in
MPC). Each time the DriveTo subroutine reaches a node, it
also increments its count N (w) which is used for the novelty
bonus v(w). The helper function close uses the model in
Section III-A to check if the estimated temporal distance d}’
is less than € for two observations, and the contains operation
on a set checks if a given node is close to any node inside
the set. These modifications allow A*-like operations on the
nodes of our graph, which are continuous variables.

C. Learning a Goal-Directed Heuristic for Search

We now describe how we extract a heuristic h from geo-
graphic side information. As a warmup, first consider the case
where we only have the GPS coordinates for a waypoint (x,,)
and final goal (zg). We can use ||z, — .|| as a heuristic
to bias the search to waypoints in the direction of the goal,
and this heuristic can be readily obtained from the model
in Section III-A. However, we would like to compute the
heuristic function using some side information c;, such as
a roadmap or satellite image, that does not lie in a metric
space. Thus, we need to learn the heuristic function from data.
Since ViKiNG-A* does not aim to be optimal (only seeking a
feasible path), we do not require the heuristic to be admissible.

We train the heuristic hoyer(Zw, Za, Tt, ;) to score the
favorability of a sampled candidate waypoint w for reaching
the goal G from current location x;, given side information c;.
In our case, c; is an overhead image that is roughly centered
at the current location of the robot. Our heuristic is based on
an estimator for the probability pover(w — G|z, Tq, T, ¢t)
that a given waypoint w lies on a valid path to the goal G.
We use the same training set as in Section III-A to learn a
predictor for poyer. Given poyer, We can generate a heuristic
hover := Aover(1 — Dover) to steer VIKiNG-A* towards the goal
(Alg. 1 L13). Note that, since we evaluate the heuristic for
sampled candidate waypoints, we do not have access to x,,
but we can predict it by using the model in Section III-A
to infer the offset z}” using o; and the sampled latent code,
and then calculate z,, from z; and zy’. Thus, the heuristic is
technically a function of ¢, o, T4, and zg.

Our procedure for training pover(w — G|aw, xa, e, ¢r) is
based on InfoNCE [37], a contrastive learning objective that
can be seen as a binary classification problem between a set of
positives and negatives. At each training iteration, we sample
a random batch B of sub-trajectories k£ from our training
set, where xg is the start of £ and zg is the end, and cg
is an overhead image centered at xg. We sample a positive
example by picking a random time step in this subtrajectory,
and using its position z,+. The negatives x,,— are locations
of other randomly sampled time steps from other trajectories,
comprising the set W~ . In this way, we train a neural network
model to represent poyer(w — G|y, g, Xt, ¢r) (see Figure 4,
right) via the InfoNCE objective:

pover('w+ — E|zw+7$Eax55 CS)

Lnce = —Ep |1
NP 518 Zuﬁewf pover(w_ — Elmw*awlﬁmSacg)
(

This heuristic can only reason about waypoints and goals at
the scale of individual trajectories in the training set (up to
50m). For kilometer-scale navigation, the heuristic needs to
make predictions for goals that are much further away, so we
take inspiration from goal chaining in reinforcement learn-
ing [38] and combine overlapping trajectories in the training
set (according to GPS positions) into larger trajectory groups.
For a batch B of trajectories, we combine two trajectories if
they intersect in 2D space. The resulting macro-trajectories
thus have multiple start and goal positions, and can extend



for several kilometers. We then sample the sub-trajectories for
g, g, and z,,+ from these much longer macro-trajectories,
giving us positive examples between very distant g, g pairs.
This allows pover to be trained on a vast pool of long-horizon
goals and improves the reliability of the heuristic. We provide
more details about this procedure in Appendix A.

IV. VIKING IN THE REAL WORLD

We now describe our experiments deploying ViKiNG in
a variety of real-world outdoor environments for kilometer-
scale navigation. Our experiments compare ViKiNG to other
learning-based methods, evaluate its performance at different
ranges, and study how it responds to degraded or erroneous
geographic information.

A. Mobile Robot Platform

We implement ViKiNG on a Clearpath Jackal UGV plat-
form (see Fig. 1). The default sensor suite consists of a 6-DoF
IMU, a GPS unit for approximate global position estimates,
and wheel encoders to estimate local odometry. Under open
skies, the GPS unit is accurate up to 2-5 meters, which is
4-10x the size of the robot. In addition, we added a forward-
facing 170° field-of-view RGB camera. Compute is provided
by an NVIDIA Jetson TX2 computer, and a cellular hotspot
connection provides for monitoring and (if necessary) teleoper-
ation. Our method uses only the monocular RGB images from
the onboard camera, unfiltered measurements from onboard
GPS, and overhead images (roadmap or satellite) queried at
the current GPS location, without any other processing.

B. Offline Training Dataset

Our aim is to leverage data collected in a wide range
of different environments to (i) enable the robot to learn
navigational affordances that generalize to novel environments,
and (ii) learn a global planning heuristic to steer physical
search in novel environments. To create a diverse dataset
capturing a wide range of navigation behavior, we use 30 hours
of publicly available robot navigation data collected using an
autonomous, randomized data collection procedure in office
park style environments [33]. We augmented this dataset with
another 12 hours of teleoperated data collected by driving
on city sidewalks, hiking trails, and parks. Notably, ViKiNG
never sees trajectories longer than 80 meters, but is able to
leverage the learned heuristic (Section III-C) to reach goals
over a kilometer away at over 80% of the average speed in
the training set. The average trajectory length in the dataset
is 45m, whereas our experiments evaluate runs in excess of
1km. The average velocity in the dataset is 1.68 m/s, and the
average velocity the robot maintains in testing is 1.36 m/s. We
provide more details about the dataset in Appendix B.

C. Kilometer-Scale Testing

For evaluation, we deploy ViKiNG in a variety of previously
unseen open-world environments to demonstrate kilometer-
scale navigation. Figure 5 shows the path taken by the robot in
search for a user-specified goal image and location. ViKiNG

is able to utilize geographic hints, in the form of a roadmap
or satellite image centered at its current position, to steer its
search of the goal. In a university campus (Fig. 5(a, c)), we
observe that the robot can identify large buildings along the
way and plan around it, rather than following a greedy strategy.
Since the training data often contains examples of the robot
driving around buildings, ViKiNG is able to leverage this
prior experience and generalize to novel buildings and environ-
ments. On city roads (Fig. 5(b)), the learned heuristic shows
preference towards following the sidewalks, a characteristic of
the training data in city environments. It is important to note
that while the robot has seen some prior data on sidewalks
and in suburban neighborhoods, it has never seen the specific
areas (see Appendix B for further details). For videos of our
experiments, please check out our project page.

These long-range experiments also exhibit successful back-
tracking behavior—when guided into a cul-de-sac by the
planner, ViKiNG turns around and resumes its search for the
goal from another node in the “openSet”, reaching the goal
successfully (see Figure 1(h)). While the learned heuristic pro-
vides high-level guidance, the local control is done solely from
first person images. This is illustrated in Figure 1(g), where the
robot navigates through a forest, where the satellite image does
not contain any useful information about navigating under a
dense canopy. ViKiNG is able to successfully navigate through
a patch of trees using the image-based model described in
Section III-A. We can also provide ViKiNG with a set of goals
to execute in a sequence to provide more guidance about the
path (e.g., an inspection task with landmarks), as demonstrated
in the next experiment.

A hiking ViKiNG: We deploy ViKiNG, with access to
satellite images as hints, on a 2.7km hiking trail with a 70m el-
evation gain by providing a sequence of six checkpoint images
and their corresponding GPS coordinates. Algorithmically, we
run ViKiNG-A* on every goal (one at a time) while reusing
the topological graph 7 across goals. Figure 6 shows a top-
down view of the path taken by the robot—ViKiNG is able to
successfully combine the strengths of a learned controller for
collision-free navigation with a learned heuristic that utilizes
the satellite images to encourage on-trail navigation between
checkpoints. Since the offline dataset contains examples of
trail-following, the robot learns to stay on trails when possible.
This behavior is emergent from the data—there is no other
mechanism that encourages staying on the trails, and in several
cases, a straight-line path between the goal waypoints would
not stay on the trail (e.g., the first checkpoint in Figure 6).

Autonomous visual inspection: We further deploy ViKiNG in
a suburban environment for the task of visual inspection spec-
ified by five images of interest. ViKiNG is able to successfully
navigate to the landmarks by using satellite imagery, traveling
a distance of 2.65km without any interventions. Figure 7 shows
the specified images and a top-down view of the path taken
by the robot on the trail.
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Fig. 5: Examples of kilometer-scale goal-seeking in previously unseen environments using only egocentric images (right) and a schematic
roadmap or satellite image as hints (left). ViKiNG can navigate in complex environments composed of roads, meadows, trees and buildings.
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Fig. 6: ViKiNG can follow a sequence of goal checkpoints to perform
search in complex environments, such as this 2.73km hiking trail.

Fig. 7: ViKiNG can utilize a satellite image to follow a sequence of
visual landmarks (top) in complex suburban environments, such as
this 2.65km loop stretching across buildings, meadows and roads.

D. Quantitative Evaluation and Comparisons

We compare ViKiNG to four prior approaches, each trained
using the same offline data as our method. All methods have
access to the egocentric images, GPS location, and satellite
images, and control the robot via the same action space,

corresponding to linear and angular velocities.

Behavioral Cloning: A goal-conditioned behavioral cloning
(BC) policy trained on the offline dataset that maps the three
inputs to control actions [29, 39].

PPO: A policy gradient algorithm that maps the three inputs
to control actions. This comparison is representative of state-
of-the-art “PointGoal” navigation in simulation [25].

GCG: A model-based algorithm that uses a predictive model
to plan a sequence of actions that reach the goal without
causing collision [3]. We use GCG in the goal-directed mode
with a GPS target, using the onboard camera and satellite
images as input modalities.

RECON-H: A variant of RECON, which uses a latent goal
model to represent reachable goals and plans over sampled
subgoals to explore a novel environment [33]. We modify the
algorithm to additionally accept the GPS and satellite images
as additional inputs alongside the onboard camera image.

We evaluate the ability of ViKiNG to discover visually-
indicated goals in 10 unseen environments of varying com-
plexity. For each trial, we provide an RGB image of the desired
target and its rough GPS location (accurate up to 5 meters). A
trial is marked successful if the robot reaches the goal without
requiring a human disengagement (due to a collision or getting
stuck). We report the success rates of all methods in these
environments in Table I and visualize overhead plots of the
trajectories in one such environment in Figure 8.

ViKiNG outperforms all the prior methods, successfully
navigating to goals that are over up to 500 meters away in
our comparisons, including instances where no other method
succeeds. RECON-H is the most performant of the other
methods, successfully reaching most goals in the easier en-
vironments. Visualizing the robot trajectories (Fig. 8) reveals
that RECON-H is unable to successfully utilize the geographic
hints and explores greedily on encountering an obstacle. It
also gets stuck and is unable to backtrack in 2/10 instances.



Method Easy Medium Hard
<50m 50 —150m 150 — 500m
Behavior Cloning 2/3 1/4 0/3
Offline PPO [40] 2/3 1/4 0/3
GCG [3] 3/3 2/4 0/3
RECON-H [33] 3/3 3/4 1/3
ViKiNG (Ours) 3/3 4/4 3/3

TABLE I: Comparison of goal-seeking performance against base-
lines. ViKiNG successfully reaches all goals. RECON-H and GCG
succeed in simpler cases but are unable to utilize the hints effectively
for distant goals. PPO and BC fail in all but the simplest cases.

Method Avg. Displacement (m)  Avg. Velocity (m/s)
Behavior Cloning 19.5 0.35
Offline PPO [40] 47.2 0.85
GCG [3] 78.3 1.40
RECON-H [33] 188.3 0.41
ViKiNG (Ours) 250.0+ 1.36

TABLE II: Average robot displacement and velocity before disen-
gagement. ViKiNG successfully reaches all goals without requiring
any disengagements. RECON-H also reaches some distant goals, but
the low avg. velocity suggests that it takes an efficient path.

While GCG also performs well in simpler environments, it
is limited by its planning horizon (up to 5 seconds) and gets
stuck. PPO and BC both are both unable to learn from prior
data and produce collisions with bushes and a parked car,
respectively. In contrast, ViKiNG is able to effectively use
the local controller to avoid the obstacles and reach the goal.

Analyzing the performance in the harder tasks with ranges
of up to 500 meters (Table II), the average displacements and
velocities before a user disengagement (due to collision or
getting stuck) during these runs further confirm that ViKiNG is
able to effectively use the geographic hints to steer the search
without running into obstacles. While RECON-H manages to
reach some faraway goals, it takes a greedy path to do so and
is over 3x slower than ViKiNG (see Fig. 8).

V. THE ROLE OF GEOGRAPHIC HINTS

In this section, we closely examine the role of geographic
hints on the performance of ViKiNG by studying how it deals
with a low-fidelity roadmap (versus a satellite image), and with
incorrect hints and degraded geographic information. For the

== PPO [45] GCG [3]
RECON-H [33] == ViKiNG (Ours)

Fig. 8: Trajectories taken by the methods in a previously unseen
environment. Only ViKiNG is able to effectively use the overhead
images to reach the goal (270m away) successfully, following a
smooth path around the building. RECON-H and GCG get stuck,
while PPO and BC result in collisions.
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Fig. 9: ViKiNG can use geographic hints in the form of a schematic
roadmap or a satellite image. Providing roadmap hints encourages
ViKiNG to follow marked roads (left); with satellite images, it is
able to find a more direct path by cutting across a meadow (right).

experiment in Section V-A, we use models trained on the same
dataset, but using schematic roadmaps as geographic hints. In
Sections V-B and V-C, we use the same satellite image model
from Section IV, with no additional retraining to accommodate
missing or imperfect geographic information.

A. Comparing Different Types of Hints

To understand the nature of hints learned by the heuristic for
different sources of geographic side information, we compare
two separate versions of ViKiNG: one trained with schematic
roadmaps as hints, and another trained with satellite images.
Note that the method is identical in both cases, only the hint
image in the data changes. For identical start-goal pairs, we
observe that a model trained with roadmaps prefers following
marked roads, whereas one trained with satellite images often
cuts across patches of traversable terrain (e.g., grass meadows
or trails) to take the quicker path, despite being trained on
the same data. We hypothesize that this is due to the ability
of the learned models to extract better correlations from the
feature-rich satellite images, in contrast to the more abstract
roadmap. Figure 9 shows a top-down view of the paths taken
by the robot in the two cases in one such experiment.

B. Outdated Hints

To test the robustness of ViKiNG to outdated hints, we set
up a goal-seeking experiment in one of the earlier environ-
ments and added a new obstacle—a large truck—blocking the
path that ViKiNG took in the original trial. Since the satellite
images are queried from a pre-recorded dataset, they do not
reflect the addition of the truck, and hence continue to show
a feasible path. We observe that the robot drives up to the
truck and takes an alternate path to the goal, without colliding
with it (see Figure 10). The lower-level latent goal model
is robust to such obstacles and only proposes valid subgoal
candidates that do not lead to collision; since the learned
heuristic only evaluates valid subgoals, ViKiNG is robust to
small discrepancies in the hints.

C. Incorrect Hints

Next, we set up a goal-seeking experiment in one of the
easy environments with modified GPS measurements, so that
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Fig. 10: On navigating with outdated hints, like the truck (top right)
that is absent in the satellite image, ViKiNG uses its learned local

controller to propose feasible subgoals that avoid obstacles and finds
a new path (blue) to the goal that avoids the truck.
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Fig. 11: On navigation with invalid hints, like the map at a different
location, ViKiNG deviates from its original path (magenta) and
reaches the goal by following the learned heuristic (blue).

the satellite images available to ViKiNG are offset by a ~5km
constant. As a result, this hints to the robot that there may be
a road that it should follow, where in fact there isn’t one (see
Figure 11). We observe that the robot indeed deviates from its
earlier path (with a valid map, the robot drives straight to the
goal); upon overlaying this trajectory on the invalid map, we
find that the learned heuristic indeed encourages the robot to
follow the curvature of the road, but this path is still successful
because it corresponds to open space.

D. A Disoriented VIKiNG

Finally, we analyze the effects of disabling the geographic
hints and GPS localization on the goal-seeking performance of
ViKiNG. Towards this, we run two variants of our algorithm:
No Overhead Image: We provide the robot with GPS, but
no satellite images. To accommodate this, we use a simple /5
heuristic hgps(Tw, Tg, 2t) = ||Tg — Tw |-

No GPS: The robot does not have access to GPS or satellite
images. To accommodate this, we remove the heuristic & from

3, S il ) / N
= ViKiNG (0.31km, 06:40) === No Overhead Map (0.73km, 17:20)

Fig. 12: Ablations of ViKiNG by withholding geographic hints.
ViKiNG without overhead images (magenta) acts greedily, driving
close to buildings, gets caught into a cul-de-sac and eventually
reaches the goal 2.6x slower that ViKiNG with access to satellite
images (blue), which avoids the building cluster by following a
smoother dirt path. Search without GPS (cyan) performs uninformed
exploration and is unable to reach the goal in over 30 minutes.

No GPS (N/A)

ViKiNG-A*, making it an uninformed search algorithm.
Figure 12 summarizes the path taken by the robot, distance
traversed, and time taken. When we disable the overhead hints
and only use hgps, VIKiING-A* can still reach the destination,
but takes significantly longer to do so, initially exploring a
dead-end path that it then has to back out of. That said, this
experiment also illustrates the ability of ViKiNG-A* to handle
less useful heuristics: while the path is significantly longer,
the method is still able to eventually reach the destination,
and in some sense the mistakes the method makes are to be
expected of any system that has no prior map information.
If we remove GPS as well, ViKiNG-A* corresponds to a
Dijkstra-like uninformed search (resembling RECON [33]).
In this case, the robot searches its environment without any
guidance and is unable to reach the goal in over 30 minutes.

VI. DISCUSSION

We proposed a method for efficiently learning vision-based
navigation in previously unseen environments at a kilometer-
scale. Our key insight is that effectively leveraging a small
amount of geographic knowledge in a learning-based frame-
work can provide strong regularities that enable robots to
navigate to distant goals. We find that incorporating geo-
graphic hints as goal-directed heuristics for planning enables
emergent preferences such as following roads or hiking trails.
Additionally, ViKiNG only uses the hints for biasing the high-
level search; the learned control policy at the lower-level
relies solely on egocentric image observations, and is thus
robust to imperfect hints. While we only use overhead images
in our experiments, an existing avenue for future work is
to explore how such a system could use other information
sources, including paper maps or textual instructions, which
can be incorporated into our contrastive objective.
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APPENDIX

A. Implementation Details

Layer  Input [Dimensions] Output [Dimensions] Layer Details

Encoder py(z | ot, 0w) = N (; pip, Xp)

1 ot, oy [3, 160, 120]  I3* [6, 160, 120] Concatenate along channel dimension.
2 1Y [6, 160, 120] £} [1024] MobileNet Encoder [41]
3 E}Y [1024] p [64], op [64] Fully-Connected Layer, exp activation of oy,
4 op [64] 3p [64, 64] torch.diag(op)

Decoder qp(a,d,x | o¢,z{") = N (+; g, 2q)
1 ot [3, 160, 120] FEy [1024] MobileNet Encoder [41]
2 Ey [1024], 230 [64] F = FE; @z [1088]  Concatenate image and goal representation
3 F [1088] g 3], oq [3] Fully-Connected Layer, exp activation of og
4 oq [5] ¥q 5, 5] torch.diag(oq)
5 g [5] ay[2],dw 1],z [2] Split into actions, distances and offsets

TABLE III: Architectural details of the latent goal model (Section III-A)

1) Latent Goal Model (Section III-A): Inputs to the encoder py are pairs of observations of the environment—current and
goal—represented by a stack of two RGB images obtained from the onboard camera at a resolution of 160 x 120 pixels. pg
is implemented by a MobileNet encoder [41] followed by a fully-connected layer projecting the 1024-dimensional latents to a
stochastic, context-conditioned representation z;" of the goal that uses 64-dimensions each to represent the mean and diagonal
covariance of a Gaussian distribution. Inputs to the decoder gy are the context (current observation)—processed with another
MobileNet—and z;”. We use the reparametrization trick [42] to sample from the latent and use the concatenated encodings to
learn the optimal actions a;’, temporal distances d;’ and spatial offsets z}". Details of our network architecture are provided
in Table III. During pretraining, we maximize Lyig (Eq. 1) with a batch size of 128 and perform gradient updates using the
Adam optimizer with learning rate A = 10~ until convergence.

2) Learned Heuristic (Section III-C): Inputs to the encoder poye, are (i) satellite image cg and (ii) the triplet of GPS locations
{Zw,Zs, TG} Pover is implemented as a multi-input neural network with a MobileNet encoder [41] to featurize cg, which is
then concatenated with the location inputs. This is followed by a series of fully-connected layers [512, 128, 32, 1] down to
a single cell to predict the binary classification scores. During pretraining, we minimize Lncg with a batch size of 256 and
perform gradient updates using the Adam optimizer with learning rate A = 10~ until convergence.

3) Miscellaneous Hyperparameters: We provide the hyperparameters associated with our algorithms in Table IV.

Hyperparameter ~ Value Meaning
At 0.5 Time step of the robot (s)

€ 10 Threshold for close (Sec. III-B)

C 20 Scaling constant for v (Alg. 1 L14)

Aover 200 Scaling constant for hover (Sec. III-C)

TABLE IV: Hyperparameters used in our experiments.

B. Offline Trajectory Dataset

For the offline dataset discussed in Section IV-B, we use a combination of a 30 hours of autonomously collected data, and
12 hours of human teleoperated data. The complete dataset was collected by 3 independent sets of researchers over the course
of 24 months in environments spanning multiple cities. We provide more information below.

1) Autonomously Collected Data: We use the published dataset by Shah et al. [33], that contains over 5000 self-supervised
trajectories collected over 9 distinct real-world environments. These trajectories capture the interaction of the robot in diverse
environments, including phenomena like collisions with obstacles and walls, getting stuck in the mud or pits, or flipping due
to bumpy terrain.

During data collection, a robot is equipped with a 2D LIDAR sensor to detect collisions ahead of time and generate
autonomous pseudo-labels for collision events. To ensure that the control policy achieves sufficient coverage of the environment
while also ensuring that the action sequences executed by the robot are realistic, we use a time-correlated random walk to
gather data.



Training Dataset ~ ViKiNG Deployment

Avg. Length 45m >1km
Avg. Velocity (m/s) 1.68 1.36

TABLE V: Trajectory statistics for offline training dataset and real-world deployment.

Environment Type Amount of Data (hrs)
Paved Hiking Trails 01:45
City Sidewalks 02:15
Suburban Neighborhood Roads 01:30
Unpaved Grasslands 01:00
University/Office Campus 02:30
Miscellaneous 03:00
Total 12:00

TABLE VI: Approximate composition of various environment types in the teleoperated dataset.

2) Human Teleoperated Data: The above dataset contains extremely diverse dataset that is great for learning general
notions of traversability and collision avoidance. However, the random nature of the dataset means that it does not contain any
semantically interesting behavior that may be desired of a robotic system, such as following a sidewalk or through a patch
of trees. To enhance the quality of learned behaviors, we augment this dataset with about 12 hours of human teleoperated
data in semantically rich environments such as hiking trails, city sidewalks, parking lots and suburban neighborhoods. These
environments represent realistic scenarios where such a robotic system would be deployed.

Table V summarizes key statistics of the trajectories, such as length and velocity. Table VI summarizes the various
environments in which the dataset was collected, and their relative composition. Figure 13 visualizes the geographic locations
of these data collection sites (location anonymized for the double-blind review process). We ensure no overlap between the
training and test environments—success in these test environments requires frue generalization to unseen environments.

Fig. 13: Rough geographical locations of data collection by human teleoperation and testing (Section IV)

C. Project Page

We share experiment videos, including third-person perspectives of trajectories traversed by ViKiNG, on our project page:
sites.google.com/view/viking-release.


https://sites.google.com/view/viking-release
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