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Abstract—Learning from demonstration (LfD) seeks to democ-
ratize robotics by enabling non-experts to intuitively program
robots to perform novel skills through human task demonstration.
Yet, LfD is challenging under a task and motion planning
setting which requires hierarchical abstractions. Prior work has
studied mechanisms for eliciting demonstrations that include
hierarchical specifications of task and motion, via keyframes [1]
or hierarchical task network specifications [2]. However, such
prior works have not examined whether non-roboticist end-
users are capable of providing such hierarchical demonstrations
without explicit training from a roboticist showing how to teach
each task [3]. To address the limitations and assumptions of
prior work, we conduct two novel human-subjects experiments
to answer (1) what are the necessary conditions to teach users
through hierarchy and task abstractions and (2) what instruc-
tional information or feedback is required to support users to
learn to program robots effectively to solve novel tasks. Our first
experiment shows that fewer than half (35.71%) of our subjects
provide demonstrations with sub-task abstractions when not
primed. Our second experiment demonstrates that users fail to
teach the robot correctly when not shown a video demonstration
of an expert’s teaching strategy for the exact task that the subject
is training. Not even showing the video of an analogue task was
sufficient. These experiments reveal the need for fundamentally
different approaches in LfD which can allow end-users to teach
generalizable long-horizon tasks to robots without the need to be
coached by experts at every step.

I. INTRODUCTION

Humans exhibit the ability to learn and solve long-horizon,
multi-task problems. For example, a new warehouse employee
can easily be taught to pack boxes with multiple types of objects
and varying order specifications with a few demonstrations.
Such a problem is multi-task, i.e., the number or types of
objects in an order might be different, and long-horizon, as
the worker solves a series of smaller sub-tasks such as picking
the box, objects, packing materials; safely placing them; and
packing the box, to complete an order. The field of Learning
from Demonstration seeks to enable robots to exhibit a human
ability to learn from end-user demonstration and scale the
power of robotics. Yet, to this day, robots do not have a general-
purpose ability to learn novel multi-task long-horizon tasks by
demonstrations, despite prior work [4].

While prior work in LfD has shown that users can pro-
vide demonstrations at some level of abstractions, such as
keyframes [1] or sub-task specifications for a hierarchical task
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network [2]. Study participants were given explicit instructions
on how to teach the robot each task. Such an approach is
untenable for scaling up to a vision of ubiquitous robotics,
as it is impractical for experts to teach every end-user how
to program robots each and every desired task. Instead, we
examine how people teach novel tasks to robots in the absence
of a roboticist’s explicit tutelage. We first investigate whether
people naturally prefer teaching using abstractions without
explicit priming. Second, we want to test the efficacy of
different modes of end-user instructions and feedback in
soliciting correct sub-task based abstractions to solve robot
learning on multi-task scenarios. We aim for these teaching
modes to enable users to generalize their training towards
teaching novel tasks without needing an expert to show them
how. However, our novel experimental results demonstrate that
roboticists are far from reaching this goal.

To enable humans to teach robots, the human-robot interac-
tion (HRI) community has developed robot learning methods
using Learning from Demonstrations (LfD) or programming by
demonstrations as covered by multiple thorough surveys [4],
[5]. LfD allows non-experts to teach tasks to robots. However,
we do not want robots to solve the same repetitive tasks; we
want robots to learn concepts that can be repurposed under
novel specifications and under novel environmental settings.
Accordingly the robot must learn concepts such as sub-tasks,
skills or sub-goals, that can be repeated under novel task
specifications. For example, a robot given a demonstration to
pick up and stack three blocks on top of another should then
be able to stack five blocks, with the object locations changed.
The robot thus needs to learn a generalizable abstraction for
stacking one block on top of another, which affords repeated
application in the presence of varying block configurations
from novel locations.

The HRI community has also proposed algorithmic solutions
to learn sub-tasks from millions of demonstrations [6], [7], [8].
However, learning sub-task based decompositions algorithmi-
cally from few demonstrations is still an open problem as it is
in the small data regime with high dimensionality. Learning
good sub-task abstractions for tasks computationally is an open
problem in reinforcement learning even with methods that
require millions of learning episodes [9], [10]. To circumvent
this theoretically and algorithmically challenging problem, we
want to test the ability of humans to provide useful abstraction



to robots. Furthermore, these abstractions should enable the
robot to solve novel task and motion planning problems
(TAMP) [11], affording generalization.

In this work we examine if humans can teach abstractions
to agents and if these abstractions are useful to the agent for
the purposes of planning in a Task and Motion Planning based
formalism. We conducted two human-subjects experiments
in which users are given the opportunity to teach robots via
TAMP abstractions. In our first study (n = 28), we tested
whether people can be primed to use abstractions and what
factors induced people to use abstractions effectively. Our first
experiment demonstrated that is challenging for users to provide
sufficient abstractions for multi-task scenarios. This problem
of providing sufficient abstractions relates to the question
of the correspondence problem [12], where subjects do not
know the characteristics of an optimal demonstration from a
robot’s perspective. Hence, we conducted a follow-up study
(n = 24), where we tested different paradigms for soliciting
demonstrations that provide sufficient abstractions to solve
multi-task problems with long horizons. The paradigms that
we tested included (1) a video of an analogue task to the
one the subjects’ solve, (2) a robot debugging demonstration
that used the human’s demonstration to attempt to solve a
task when the object positions have changed, and (3) a video
demonstration of an expert partially teaching the exact same
task the subjects are attempting to teach the robot. The primary
contributions of the paper are as follows:

1) We are the first to conduct human subjects experiments
(n = 28 and n = 24) to compare strategies used by non-
experts for teaching robots in a long-horizon, multi-task
setting.

2) The results of our first study show that demographic
factors, such as the IQ, of the participants affect the
perceived workload and the ability to provide sub-task based
abstractions (p < 0.05).

3) Results from our first study also show that the majority
of the subjects (64.29%) do not naturally teach tasks
with abstractions to robots. However, subjects improve
at teaching tasks with abstraction when properly induced
(p < 0.05).

4) Our results demonstrate that for each and every task only
a video presenting an optimal teaching strategy allows
100% of the subjects to create necessary and sufficient
abstractions, as opposed to only 25%, 25%, or 58.33%
of participants when primed with text-based instructions,
an expert demonstration on an analogue task, and a
debugging demonstration on the robot, respectively. Our
result highlights the difficulty in teaching a subject to
provide abstractions to teach novel tasks, as it would be
impossible to provide all end users with tutorials for the
exact task they want to teach the robot.

II. PRELIMINARIES

We use this section to provide definitions to ground the
problem of interest.

Multi-modal tasks – A mode can be defined as a sub-
manifold in which a robots motion is limited within because
of the robot’s contact with an object in the world [13], [14],
[15], [16]. For example, when a robot is holding a cup, the
range of motions it can perform is smaller than, and is within
a sub-manifold of, the range of motions the robot can perform
without the cup in its hand. Multi-modal tasks in robot planning
are tasks where the modes in which the robot operates change
during the execution of a task [11], [15], [16]. For example, our
problem consists the robot picking and pouring materials used
in gardening such as sand, lime, and manure. When picking
sand the robot’s scoop is empty and the robot is in a transit
mode [11] until it reaches the sand. When pouring sand the
robot is carrying sand and is in a transfer mode, where it
transfers sand. During the transit mode the robot cannot lose
contact with the sand until it is over the goal location.

Furthermore, Long Horizon tasks are tasks that have multiple
mode switches during their execution. Task and Motion
Planning [11] is a common model used to solve such long
multi-modal problems. Within TAMP planning sub-tasks are
divided based on the modes.

Task and Motion Planning – Task and Motion Planning
(TAMP) problems are inherent to robotics, where a robot needs
to perform discrete symbolic reasoning, and generate motion
in the continuous state-action space without collisions. With
Task planning, to solve the goal condition of stacking four
blocks, the robot reasons about the location of each block, and
checks to see how tall the stack is at any given time. Such
planning does not consider the continuous nature of the world,
and only considers the optimal sequence of blocks that need
to be moved. Motion planning on the other hand attempts to
move the robot without any collisions or breaking any existing
constraints. For example consider the sub-task to place a block
over an existing stack of blocks, the robot needs to move its
arm over the existing block without colliding with the stack
or the table, and without breaking any constraints, such as
opening the gripper. TAMP problems are at the intersection of
both of Task planning and Motion planning problems.

Sub-task-based abstraction – In this work we chose to
learn a TAMP sub-task-based representation of the task. Each
TAMP sub-task specification requires a pre-condition, a set
of constraints, and a goal condition. The pre-condition is a
predicate that tests if the sub-task can be used from a given state
of the world. Constraints are specified to ensure collision free
motion, and other requirements such as ensuring a closed/open
gripper for grasping or maintaining the orientation of the
arm when carrying objects. Finally, a sub-task needs a goal
specification that accomplishes a sub-goal which helps complete
the overall task specified. Given this sub-task specification a
robot trajectory can be generated using constrained motion
planning [17]. In this work, we investigate the conditions under
which the end-users provide demonstrations that have valid
pre-conditions, goal conditions, while maintaining consistent
movement constraints during demonstrations to create valid
TAMP sub-tasks.

We represent the constrained motion itself using Dynamic



Movement Primitives (DMPs) [18] learned from the data
provided by the participants. DMPs are commonly used to
represent learned trajectories because of their stability and
sample efficiency [19], [20], [21], [22]. DMPs can be replaced
with neural policies or a motion planner without any change
to our formalism, but the issue of learning sub-tasks such that
the constraints are demonstrated consistently across a sub-task
demonstration remains the same across all these approaches.
We are using DMPs for their sample efficiency as we are
learning from real subjects.

A demonstrated abstraction with sub-tasks that have the
consistent constraints throughout their execution are referred to
as Sufficient sub-task based abstractions. In this work we
investigate if people can teach sufficient sub-tasks to robots
affording the robots generalizability to solve novel tasks.

III. EXPERIMENT DESIGN

We conduct two human-subjects experiments: (1) a 1 × 4
within-subjects experiment to test if users can be primed to
provide sufficient sub-tasks and (2) a 1 × 4 mixed within-
between-subjects experiment with different paradigms to teach
users to provide sufficient sub-tasks. In this section, we first
describe our research questions, our experiment domain, and
the user interface, and we then provide additional details to
set up the experiment.

A. Research Questions

We will first establish our research questions and then state
our experimental design and study procedures. We formally
state the following Research Questions (RQs):
• RQ 1: Do people naturally provide abstractions for learning

and planning? Given that robots need people to provide sub-
task based abstractions, we want to know whether people
are already naturally primed to provide such demonstrations.

• RQ 2: Can external factors/ inducements elicit abstraction-
based teaching ( e.g., ad nauseum repetition, or variation
in task composition)? We also sought to determine whether
people naturally chose to use sub-task based abstractions to
teach robots when faced with teaching tasks with numerous,
repetitive components or a multi-task scenario where the
robot has to solve different tasks in different instances for
which the tasks share common sub-tasks.

• RQ 3: Can participants be explicitly taught using textual
descriptions of an analogue task to provide (more helpful)
abstractions? Requests to provide demonstrations using
textual descriptions with figures for an analogue task are
the simplest teaching guide. We wanted to see if these
descriptions are enough to provide correct sub-task based
demonstrations.

• RQ 4: What demographic subject or objective factors and
covariates influence how well people used abstractions for
teaching? We sought to examine if demographic covariates
help people teach sub-task based abstractions to robots.

• RQ 5: What explicit teaching guides if any might help
the subjects learn to provide sufficient abstractions? Is this
teaching guide generalizable to novel scenarios? We created

our second experiment specifically to answer this research
question. We know that certain teaching guides work better
than others when people are given direct instructions to teach
robots with specific abstractions [3]. In this work, we seek
to determine how little information about the current task
needs to be provided to induce participants to provide correct
sub-task based abstractions

B. Experimental Setup

Fig. 1: Jaco robot setup: Subjects were required to teach the
robot to create different types of soil mixtures in the mixing
bowl using the sand, lime and manure available.

1) Task Domain: We designed a robot task domain setup
in which we could create multi-task settings relatively easily
with readily available raw materials. Hence, we consider a
gardening task in which participants are required to teach the
robot to create soil mixtures for different plants as shown in
Figure 1. The setup consists of a robot arm, a pot of sand, a
pot of manure, a pot of lime (calcium), and a mixing bowl.
The subjects teach the agent to create soil mixtures required
for three similar or different plants. The action space for this
domain is continuous, and the locations of the objects are
assumed to be known. The soil mixture domain allows for
a multi-task setting and creates opportunities for constrained
TAMP problems as described next.

2) Feasible Task and Motion Planning sub-tasks for the Soil
Mixture Domain: In this section, we pick an example problem
within our soil mixture domain: “create a soil mixture with one
scoop of sand, and one scoop of manure.” We then describe
feasible abstractions that a user can provide to solve this task
in our domain at different levels of granularity, going from
coarser to finer grained TAMP abstractions. These abstractions
span the breadth of sub-tasks that our users could demonstrate.
We will also describe the relative merits of these abstractions
for solving all possible tasks in the soil mixture domain.

Coarsest sub-task can be to create the complete soil mixture,
one scoop of sand, and one scoop of manure, as a single sub-
task, that is, use no abstractions at all when teaching as shown
in Fig 2(a). The pre-condition for this sub-task would be that
the scoop is empty. The constraints would be that the agent
never collides and the goal condition would be to deposit one



scoop of sand and one scoop of manure to the bin. However,
given this sub-task, the robot can only solve tasks that are
multiples of the base level task, e.g., four scoops of sand and
four scoops of manure, but not all possible tasks.

A finer sub-task based abstraction would be to teach the
robot to pick and pour one scoop of sand, and one scoop of
manure as shown in Fig 2(b). The pre-condition for each task
would be to have an empty scoop, the constraint would be to
avoid collisions, and the goal condition would be to deposit
the scoop of sand or manure into the bowl. This abstraction is
a more generalizable sub-task abstraction as it allows the agent
to solve novel tasks that are not present in the demonstrations
given by the user. For example, once the robot learns how to
pick and pour one scoop of sand and one scoop of manure,
it can easily repeat these sub-tasks with the help of a task
planner to solve the novel task of one scoop of sand, and
four scoops of manure. The task planner is used to plan for
the right sequence of sub-tasks that will complete the goal
of a novel task. However, there is no constraint or condition
in this demonstration that the robot picks up the scoop of
sand or manure from the correct location, as the location of
the sand or manure is not represented in the pre-condition, or
the constraints, or the goal condition. If the location of the
sand or manure were changed, the planner will ask the robot
to perform the scoop gesture where the sand or manure was
present during the demonstration and pour an empty scoop of
sand or manure in the bowl, never satisfying the sub-tasks goal
condition.

The finest feasible sub-task abstraction would be to teach
the robot to pick sand and manure, and then teach the robot
to pour the sand and manure as shown in Fig 2(c). To teach
the pick sand sub-task, the pre-condition would be an empty
scoop, the constraint would be to avoid collisions, and the
goal would be to have sand in the scoop. To teach the pour
task, the pre-condition would be to have a scoop with sand,
the constraint would be to avoid collisions and the goal would
be to drop the scoop of sand in the bowl. Such a sub-task
demarcation allows the robot to understand the right pre- and
post-conditions for each sub-task. Specifically, the robot learns
to pick up the sand from any location as a sub-goal allowing
the agent to pick up and pour objects to and from any location
on the table. Moreover, the robot can again combine multiple
pick and pour actions to deliver any required ratio of sand,
and manure. This is a sufficient sub-task partition allowing the
robot to solve the entire multi-task soil mixture domain with
changing locations.

3) Robot Platform:
• Sawyer: For our first experiment, we used Sawyer, a seven

degrees-of-freedom (DoF) arm from Rethink Robotics.
• JACO Arm: We switched to using a Kinova JACO seven

(DoF) arm for the second experiment (Figure 1) because
of mechanical failures on the Sawyer robot. Both robots
can play back different demonstrated trajectories with high
precision enabling non-expert users to teach the robot.
4) User Interface: We designed a user interface that allows

participants to save demonstration trajectories and reuse them

Fig. 2: An example of three different types of demonstration
strategies to complete the task of “create a soil mixture with
one scoop of sand, and one scoop of manure.”. (a) If the subject
gives a complete end-to-end demonstration as in the case of
no abstraction, there is very little generalization to other novel
tasks, e.g., creating a soil mixture with two scoops of sand and
three scoops of manure. (b) If the participant breaks the task
into sub-tasks where pick and place are a single sub-task unit,
there is no constraint on picking materials, so if for example,
the sand’s location changes, the the agent cannot generalize
solve tasks. (c) Breaking down the sub-tasks such that picking
a material is a different sub-task and pouring a material is
another sub-task. Such an TAMP abstraction is sufficient and
can solve an undemonstrated novel task within the soil domain,
without requiring the object locations being consistent.

to solve tasks. The design of the interface was fine-tuned using
iterative design methods during the pilot studies. The image
of the interface is shared in the supplementary appendix A.2 1.
The interface enables subjects to create and name sub-tasks, and
then give a fixed number of demonstrations per sub-task. The
sub-tasks can be reused by participants as many times as needed.
Moreover, there is a procedure column for each occasion where
subjects can create tasks by adding the demonstrated sub-tasks
to the column sequentially to satisfy the occasion’s task. The
interface allows subjects to use abstractions, thereby creating
shorter, repeatable, sub-tasks if so chosen.

All study participants were given equivalent training using
the interface via a training video. Modulo latent confounders we
have done our best to reduce confounds created by the interface
itself during the experiment using iterative design, keeping the
interface common across the conditions, and using training
videos to provide equal training. Our results in Section V show
that our interface and training were sufficient for participants to
create abstractions. All our instruction videos and documents
are provided in the supplementary website 1.

C. Experiment 1: Can subjects be primed or induced into
providing sufficient abstractions?

In our first experiment, we investigate whether subjects are
intrinsically motivated to provide abstractions when giving
demonstrations to the robot or can be primed to do so.

1https://sites.google.com/view/rss-learning-sub-tasks-2022/home



We conducted a 1 × 4 within-subjects experiment with 28
participants (39.3% Female, Mean age = 21.42, Standard
Deviation = 2.61) where the independent variable is the phase
of the experiment. We also vary the order in which the phases
are introduced to control learning effects. Each study phase
corresponds to the type of task or amount of training the subject
receives when teaching the agent. In each phase, the subject
has to create three soil mixtures for different plants; we call
these “occasions” in the study so the subject treats them as
three distinct occasions of creating plant soil mixtures. The
four phases are: the Baseline phase, the Multi-task phase, the
Large Number of Repeats phase, and the Multi-task via Written
Instructions phase.
• Baseline (B): Participants teach the agent a single task for

three occasions with a few repetitions within this phase. The
demonstration task for this phase involves creating a mixture
of two cups of sand and one cup of manure.

• Multi-task (MT): The subject has to teach the agent different
tasks for each of the three occasions in the MT phase. These
tasks range from creating a soil mixture with the following
number of scoops of objects for each of the three occasions:
two of sand and one of lime, one of manure and one of lime,
and one of sand and one of manure, respectively.

• Large Number of Repeats (LR): The subject has to teach
the same task for each of the three occasions in the LR
phase, but the task itself has a lot of repetitions within it.
The task for this phase involved creating a soil mixture of
ten scoops of sand and three scoops of lime.

• Multi-task with Explicit Teaching via Written Instruc-
tions (MT+W): The trainer gets explicit written instructions
to use abstractions when training the agent. In the instructions,
we describe abstractions in an unrelated task of cooking eggs.
We also attempt to solicit correct abstractions by describing
the robot’s learning constraint in text.

As this is a within-subjects study with predictable learning
effects across conditions, the ordering of the phases plays an
important role in understanding subjects’ ability to provide
abstractions. Since, we want to study whether the participants
naturally tend to provide abstractions or not, the subjects always
begin with the baseline (B) phase. To establish which phase can
induce abstractions faster we introduced the study phases to
the participants in one of two possible orders. Order 1: B, MT,
LR, MT+W. Order 2: B, LR, MT, MT+W. We only change the
order with the MT and LR phases as giving instructions upfront,
i.e., MT+W will bias the subjects to provide abstractions in
the prior phases. We study the effect of introducing the two
MT and LR in the results section V, RQ 2.

D. Experiment 2: Can teaching modes impact subjects ability
to provide sufficient abstractions?

From our first study, we found that although participants
learned to provide some form of demonstrations the participants
generally failed to provide sufficient abstractions in those
demonstrations to solve multi-task domains with constraints.
Thus, we conduct a follow-up second experiment where
we consider direct teaching modes: (1) a robot’s debugging

demonstration, (2) a video of an analogue task, and (3) an
expert demonstration video of the same task the participants
are teaching. The experiment is a 1 × 4 mixed within-between-
subjects study with 24 subjects (45.83% Female, Mean age =
20.875, Standard deviation = 2.69). The experiment has three
different teaching modes along with a baseline condition of no
teaching. All participants experience the baseline phase and the
phase which shows an expert demonstration video of the same
task that the participants are teaching the robot. Moreover,
half the participants observe the video demonstration of an
analogue task, and the other half of the participants observe
a debug demonstration that shows the consequence of their
demonstration strategy. The experiment was constructed in
this way to avoid learning effects between the teaching mode,
and to avoid fatigue by keeping the length of the experiment
to less than 2.5 hours. In all modes, the subject attempts to
teach the robot in a multi-task scenario where each occasion
has a different task. Moreover, the sand, lime, and manure
pots’ locations are changed between demonstrations. The object
locations are changed to emphasize the need to teach constraint
based sub-task with their demonstrations. The four conditions
are as follows:

• No teaching (NT): Here no instructions are provided to the
subjects. The subjects are free to use any strategy to teach.

• Debug demonstration (DD): The subjects are first provided
with written instructions with diagrams showing sufficient
abstractions in a similar task of touching two blocks. Further,
the users are shown the consequence of the abstractions
they provided in the “No Teaching” phase using a trajectory
demonstration on the robot. Additionally, we also move
the mixing bowl and the pot of sand to a new location.
We used the demonstration strategies we observed in the
first experiment to create these Wizard of Oz, debugging
demonstrations. They have been designed to be informative
about every sub-task a participant could have taught to
successfully complete the overall task.

• Video of analogue task (VA): We provided the users with
a video that demonstrated using our interface to teach the
robot a related constraint based task of touching different
blocks in a specific sequence.

• Expert demonstration video of the Soil Mixture Task
(EV): We also wanted to see if providing a video demon-
strating sufficient abstractions for parts of the soil mixing task
would aid the subjects to extrapolate and provide sufficient
abstractions for the entire task.

All participants started off with a phase of no teaching
mode. They then either completed a debug demonstration
or a video for an analogue task for their second phase in
the experiment. Then all subjects finished with a final phase
where they were shown a video showing parts of the soil
mixture task. More details about the Experiment 2’s conditions
are provided in Appendix A.3. We know from prior work
that showing a video tutorial for a task is sufficient to teach
abstractions [3]. Hence, we chose to show videos of partial task
solving towards the end to establish that people can provide



sufficient abstractions with a little help from an expert in the
problem domain without the complete solution. We conducted a
between-subjects study, comparing a debugging demonstration
and the video of an analogue task to prevent learning effects
between the two modes, and to keep the study duration fatigue
free for participants.

E. Study Procedure

Prior to the start of both the studies, we obtained approval for
human-subjects experimentation from the Institutional Review
Board at our affiliated institution. We recruited all participants
through university mailing lists for both our studies. Due to
the COVID-19 pandemic, we were unable to conduct large-
scale user studies with off-campus participants. Nonetheless,
we were able to recruit 28 and 24 participants for the first and
second studies, respectively. All participants were compensated
with a $25 and a $35 Amazon gift card for the first and second
studies, respectively. No participant from the first study was
allowed to take part in the second study. The procedure for
both the user studies were quite similar and took a maximum
of 2.5 hours to complete.

Upon arrival, the participants were asked to complete a pre-
experiment questionnaire assessing demographic information,
and pre-surveys that include the Big-5 personality test and their
previous experience in teaching children or students. Subjects
then participated in a practice round to get familiarized with
the user interface while providing kinesthetic demonstrations
to the robot. The experimenter then explained the soil-mixture
task and the user interface to the participants. In the first study,
the participants begin with the baseline condition, and follow
either Order 1 or Order 2. The order for each trial is chosen
at random. After each phase, the participants also filled out a
questionnaire for measuring their workload using the NASA-
TLX [23]. At the end of teaching tasks for all the phases in the
first experiment, the participants took an online IQ test [24].

In the second experiment, the participants follow the same
pre-study procedures. Participants perform three soil mixture
tasks with different teaching modes to help them provide
sufficient abstractions. The subjects will begin with the NT
condition, followed by either DD or VA (the between-subjects
component). They will conclude with the EV condition. Partic-
ipants also filled out the NASA-TLX workload questionnaire
after each condition. The between-subjects variable (DD or
VA) for each trial was randomized at the start of the trial.

IV. METRICS

We used the following metrics to measure the performance
of the users teaching our robots.
• Personality Questionnaire: At the start of the study, partici-

pants filled out the the Big-5 personality questionnaire [25]
on a five-point Likert scale.

• Workload: Participants filled the NASA-TLX questionnaire
[23] to assess perceived workload for each condition.

• IQ Metric: We gave the participants in the first experiment an
approximate open-source Intelligence Quotient (IQ) test [24]
to test whether IQ has any relation to the ability to teach with

abstractions. This test took each participant approximately
30 minutes to perform. We employ this IQ test as a proxy
for measuring traits, such as reasoning skill, vocabulary and
academic achievement [26], [27], [28]. We did not conduct
the IQ test for the participants in the second experiment
because the results from the first experiment answered the
relevant research question.

• Task Completion Time: The duration of each phase was
measured and was known to the participants.

• Abstraction Score: We also created an abstraction rubric
to measure the performance of the participant in providing
useful abstractions. The rubric provided a point for every
valid TAMP abstraction provided by the user as described in
Sec. III-B2. Moreover, a point is also provided for every valid
TAMP abstraction that can be created from the abstractions
provided by the user, i.e., if the user provided finer-grained
TAMP abstractions, such as picking sand and pouring sand,
the rubric also provided points for other coarser TAMP
abstractions that can be satisfied by the finer abstractions,
such as pick and pour one cup of sand. This scoring
strategy is important, as if valid and generalizable low-level
abstractions are provided to the robot it can solve more tasks.
However, we do not to award points for extremely low-level
abstractions, e.g. move 1 cm to the left, which would not be
efficient in solving the task. All the valid abstractions that a
user can provide to the robot in the soil mixture domain have
been described in Sec. III-B2. We show in the Section V and
with Fig. 4 that this is a valid scoring strategy to measure
the generalizability of a given demonstration to solve a wide
variety of tasks.
For example, in the task of making a soil mixture with two
scoops of sand and one scoop of manure, if the participant
gave a demo of the complete task, the demo would get 1
point. However, if the participant broke the task into creating
abstractions of scooping one cup of sand and another for
scooping one cup manure and use these constraint based
sub-tasks to complete the overall task, then the demo would
receive one point for a scoop of sand another for manure and
one additional point to complete the overall task. Abstractions
earn more points as breaking up the tasks in to sub-tasks
help solve other tasks. The rubric does not award points for
just taking a low-level action or teaching an unnecessary
sub-task. To gain a point the created abstraction needs to
create a sub-task based on a valid constraint.

• Binary Abstraction Score: We created a binary score where a
participant’s demo scored 1 if the demo had any abstraction
in the phase and 0 if the demo did not.

• Perfect Abstraction Score: Finally, we checked whether the
demonstrations given by the participants create valid sub-
tasks with valid constraints. The participant’s demonstrations
were scored 1 if sufficient abstraction was provided in
the phase, else 0. The participants were unaware of this
rubric, and were told to complete the phases as efficiently
as possible.



(a) Reaching for sand. (b) Picking up sand. (c) Move to bowl. (d) Dumping sand.

Fig. 3: Series of images demonstrating the plan created from learned trajectories on the robot to pick and drop sand from the
set of 10 tasks created to test the learned policies from different demonstrations. For more details refer Appendix B.1.

Fig. 4: Here we have plotted the abstraction score and the
corresponding number of tasks five users’ demonstrations were
able to solve on the robot. There are a total of ten tasks and
seven of these ten tasks are unseen to the robot previously.
The larger circles indicate two users’ demonstrations for the
given score and tasks solved. The colors indicate the type of
abstraction taught, green for no abstraction, blue for imperfect
abstractions and red for sufficient TAMP abstractions. For a
demonstration to be good it should be score higher, as the
robot can solve all the tasks. As it can be seen from the plot
these good demonstrations also have a large abstraction score.
The dotted line is the linear regression of the scores vs the
tasks solved, and it demonstrates that the abstraction scores
that we created correlate well with the number of tasks that a
given demonstration can solve.

V. RESULTS

We first demonstrate that the abstraction score we created as
described in the previous section is valid. We then present our
investigations into the research questions posed in Sec. III-A.

A. Planning with the learned Policies on the Robot

We justify the creation of the abstraction score by comparing
the task solving potential of trajectories demonstrated by our
participants on the real robot. For this we created a set of 10
tasks to be solved by 5 demonstrations-sets chosen to represent

different ranges of the abstraction score. This comparison shows
that demonstrations that are given without sub-task abstractions
can solve fewer than half the tasks. Specifically, tasks where
the locations of the objects is changed arbitrarily can only be
solved by the demonstrations in the highest quartile of the
abstraction scores as observed in the multi-task phase with
clear instructions in the first experiment. To measure this we
create a set of ten tasks, in which seven tasks are completely
novel, i.e., users did not provide any demonstrations for these
seven tasks. Demonstration sets that do not use abstractions to
train the robot are able to solve only the exact task that was
taught to the agent, i.e., three out of ten tasks. With a slightly
higher quality abstraction, where the users break apart tasks
into picking and pouring individual scoops of sand, manure
and lime, the robot can plan arbitrary combinations of these
sub-goals, allowing the robot to solve seven out of ten tasks.
The demonstration sets which were given keeping in mind that
the robot learns using goals and constraints for sub-tasks, and
separates the picking and pouring for scoops of objects solve all
ten tasks even when object locations change. This experiment
primarily demonstrates that our abstraction scoring system
was practical, and higher abstraction scores for demonstrations
indicate the ability to solve a larger number of possible tasks.
Figure 4 shows that demonstrations that solve more novel
tasks on the robot, also have high abstraction scores. Hence,
our abstraction scores are a valid measure a demonstration’s
quality in solving novel tasks using the TAMP formalism. The
complete experimental details are provided in the Appendix B
with the whole set of tasks and their outcomes in Table 1 of the
appendix. An example of the trajectory is shown in Figure 3
along with a video supplement showing multiple trajectories2.
These empirical results validate that our abstractions score
quantifies the capability of a given demonstration to generalize
to novel tasks. Next we will discuss our Research Questions
and their implications.

B. Research Questions

RQ1: Do people naturally provide sufficient abstractions for
learning and planning? Results from our first study using the
Binary Score indicate that only 35.71% of the participants used

2https://sites.google.com/view/rss-learning-sub-tasks-2022/home



Fig. 5: Box plot indicating the abstraction score distributions
for the phases of Baseline, Large number of repeats, multi-
task, multi-task with instructions, respectively for the first
study. As soon as participants’ are directly asked using textual
instructions to teach using sub-task based abstractions, in the
multi-task with instruction phase, majority of the participants
choose to do so, but they still fail to provide optimal sub-task
based abstractions.

any abstraction in the baseline phase, implying that the majority
of the participants do not provide abstractions naturally.

Takeaway: We posit that the majority of subjects have
difficulty in knowing where to break a task in a continuous
robot domain, as there is no natural indication of what a sub-
task for a robot could be.
RQ 2: Can external factors or inducements elicit abstraction-
based teaching? In our first study, we examine the effectiveness
of using different priming methods to help subjects use
abstractions while providing robot demonstrations. A Wilcoxon-
signed rank test with abstraction score as the dependent variable
and study phase as the independent variable shows that there
exists no statistical difference in abstraction scores between
the LR phase and the MT phase. Further, we conducted a
Cox-Regression Hazard analysis to verify if task order might
be critical in determining the number of abstractions a user
provides, but did not find any significance.

Takeaway: Our results imply that seeing a large number
of repetitions and a multi-task setup both encourages people
to use abstractions at similar rates.

RQ 3: Can participants be explicitly taught to provide
(more helpful) abstractions? In the robot study 24 out of the
28 (85.71%), participants learned to teach abstractions to the
agent after MT+W phase (measured with binary abstraction
score). The remaining four participants could not learn to
break tasks apart to teach the robot. The most common form
of abstraction chosen was to “pick and pour sand,” “pick and
pour manure,” and “pick and pour lime.” When tested against
the MT+W phase where explicit instructions were given to
break down tasks into repeatable sub-goal based abstractions,
participants succeeded in providing abstractions and performed
significantly better. We ran multiple Wilcoxon-signed rank tests
with Bonferroni correction (α = 0.05/6) to compute pairwise
comparisons for abstraction scores across the different study

Fig. 6: Box plot indicating the abstraction score distributions
for the phases of Baseline Multi-task, Debug Demo, Analogue
Video, and Expert training demonstration, respectively for the
second study. Note that the expert training demonstration video
that shows a partial solution performs much better than other
modalities to train subjects.

phases in the first study. Results from the Wilcoxon-signed rank
tests indicate that abstraction scores from the MT+W were
significantly better than the baseline (Z = 165, p < 0.0001),
LR (Z = 598, p < 0.001), and MT (Z = 560, p < 0.001)
with effect sizes 0.779, 0.740, 0.697; respectively. The box-plot
of all the abstraction scores are in Figure 6.

Although 24 participants were able to provide abstractions
in the MT+W phase, only 7 out of the 28 participants provided
demonstrations for sufficient sub-tasks according to the perfect
abstraction score, despite being given clear instructions that
the robot cannot touch two objects in the same trajectory as
these are different goal constraints. Takeaway: From the first
experiment, we note that a majority (24/28) of the participants
were able to provide task abstractions after being primed with
the MT+W phase. However, only a small fraction (7/24) of
the participants were able to provide sufficient abstractions.
These results show that teaching long horizon and multi-task
problems to robots is not trivial, and correspondence problems
between the robot and its teacher can be an issue in robot
teaching.

RQ 4: What demographic subjective or objective factors
and covariates influence how well people used abstractions for
teaching? To analyze which subjective and objective factors
play a significant role in influencing a user’s ability to provide
abstractions, we created a linear mixed effects model with
abstraction score as the dependent variable, and the independent
variables being study phases, conditions, with covariates of age,
IQ, and personality score. We pick the model with the lowest
Akaike information criterion (AIC) by pruning variables, and
covariates from the largest possible model. All of the models
were tested for normality and homoscedasticity for which the
details are in the supplementary Appendix A.13.

For the first experiment, we found the abstraction score was
significantly dependent on the phase of the study (F (3, 112) =
25.05, p < 0.001) and the IQ of the participants with
(F (1, 112) = 6.81, p = 0.01).

3See footnote 1



Condition 1 Condition 2 p value Effect of size
EV VA < 0.005 0.863
EV NT < 0.005 0.829
VA NT < 0.01 0.757
DD NT < 0.005 0.829

TABLE I: p-values for pairwise comparison of teaching modes
on abstraction scores of subjects.

Takeaway: Our analyses indicate that the user’s ability to
provide task abstractions is significantly dependent on the study
phase and IQ.

RQ 5: What explicit teaching strategies, if any, might help
the subjects learn to provide sufficient abstractions? Is this
teaching generalizeable to novel scenarios? We computed
six Wilcoxon-signed rank with Bonferrroni Correction (α =
0.05/6) tests for pairwise comparisons of perfect abstraction
scores across all combinations of the teaching modes used
in the second experiment. The significant results from our
pairwise comparisons are listed in Table I.

We also compare the ability for participants to provide
the right sub-task decomposition (or abstractions) after the
final phases of the first experiment (MT+W) and the second
experiment EV, with a Wilcoxon-signed rank test and find that
the abstraction scores of participants in the EV condition are
significantly better (Z = 568, p < 0.001, effect size=0.616).

Takeaway: Our results indicate that EV is the most effective
technique in eliciting sufficient abstractions from non-experts
for teaching a robot in a multi-task, long horizon setting.
However, this approach does not scale well to novel tasks
that an end-user might want to teach a robot. These results
imply that showing the participants a video of the expert
demonstrating the training to teach the same task that the
participant is teaching is better than other teaching modalities
to help the robot learn to solve novel tasks. However, providing
such videos for a household-hold robot would not be possible
for all cases.

Note on Perceived Workload and Abstractions: To an-
alyze how providing abstractions can affect the perceived
workload of a user, we ran a Wilcoxon-Signed rank test with
workload as the dependent variable. Our results show that
workload was significantly dependent on the interaction effect
between abstraction scores (F (3, 112) = 11.48, p < 0.001),
and the phase of the study, with a linear effect from the
IQ of the participant (F (1, 112) = 5.29, p = 0.02) for
the first experiment. However, the perceived workload was
not dependent on any of the independent variables with
significance in the second experiment. We hypothesize that this
is because all the phases had multi-task scenarios, reducing the
significance of variables such as the study phase or ordering,
to predict workloads.

VI. RELATED WORK

Learning from demonstration (LfD) is a ubiquitous approach
for enabling humans to program robots to perform new skills
via human task demonstrations [29], [30], [31], [4]. Prior work

in LfD has learned impressive dynamic skills on the robot [29],
[30], and the ability to play high-dimensional games [32].
These approaches generally attempt to either directly model
the robot’s unknown policy [31] or infer the robot’s latent
reward function [33], [34], [35]. Some LfD approaches attempt
to acknowledge the way humans teach tasks by modelling
feedback more accurately [36], [37]. However, these works
have not addressed the question of whether people teaching
agents tasks using an abstraction hierarchies.

In the HRI community significant research has shown that
people can teach abstractions, sub-tasks or otherwise, when
tutored to teach the exact same task [3], [2]. Cakmak et
al. [3] attempt to teach keyframe based abstractions when
subjects are show a video tutorial of the same task. Mohseni et
al. [2] attempt to teach hierarchical task networks from human
feedback with a well designed interface and training to use the
interface. Multiple works have shown that novice users can
learn to use their interface and teaching paradigms effectively
to train the agent [8], [6], [7]. These methods generally have
an algorithmic contribution as well where the algorithm can
learn to separate tasks or learn constraints from data [6], [7],
[22].

However, these methods usually extract tasks from low-
dimensional torque and environment data with sophisticated
statistical techniques that are computationally expensive and
might not generalize to novel environments and tasks. Instead,
we seek to empower end-users to train these robots using sub-
tasks. People can remove this computational bottleneck and
provide correct sub-tasks as they have better generalization
capabilities than modern robotics techniques. Hence, we test
whether the users are equipped to provide such demonstrations,
and what type of priming or tutoring would elicit demonstra-
tions using sub-tasks that help the robot to generalize to novel
task specifications while keeping in mind that the robot is
going to solve a TAMP [11] problem, and that the sub-tasks
specified should be usable by a TAMP formalism. We note
that our focus is not on user interface design unlike previous
works [3], [2], [6], [8]. Rather, we are keen on investigating
priming mechanisms and teaching guides to help users teach
useful sub-task based abstractions given a sufficient interface.

Hierarchical learning and abstraction have been of active
areas of research [38]. These hierarchical abstractions have been
shown to be more efficient than learning [39] or planning [11]
at the ground level in the continuous or low-level state space of
the agent. In hierarchical planning and/or learning formalisms,
the abstraction hierarchy is pre-specified and the policies
for the abstractions and over abstractions are learned by
the agent [40], [39], [41], [42]. These methods have been
used to solve challenging robotics problems, such as playing
table-tennis where each stroke is a different skill [43], and
to discrete domains, such as Taxi [39]. Approaches that
attempt to learn both the hierarchy and the policies for the
agents generally work in simulation [9], [10], but can require
significant expert knowledge about the problem domain in
robotics [44], preventing wide adoption of these ideas. Incorrect
specification of a hierarchy for learning has been shown to



hurt learning instead of helping [45].

VII. DISCUSSION

Our novel human-subject experiments show that people can
be trained to teach tasks using sub-tasks to a robot. However, it
is hard to train everyone to teach robots sub-tasks for any task.
Roboticists cannot be expected to create instructional videos
for every possible task that a person might attempt to solve.

A key issue here is the inability of majority of the participants
to teach correct abstractions to the robot when asked to
with a debugging demonstration or a video of a related task.
People can break apart tasks in general, as shown in our first
experiment, but these might not be robot usable abstractions.
Such issues have been raised before with the correspondence
problem [12] where people’s body parts do not match a robot’s
parts. Similarly, a robot’s learning methodology is not akin
to an human’s learning methodology. This discrepancy might
lead people to teach agents tasks incorrectly.

These experiments also show that teaching novel long
horizon tasks to robots is non-trivial and robot learning has to
still make large progress in the realms of sample complexity of
learning, and understanding how humans can teach agents. We
also hypothesize that a curriculum where participants observe
their teaching outcomes over a series of tasks might help
participants help teach other novel tasks to the robot.

In summary, we provide these key takeaways as design
guidelines for researchers in machine learning, planning, and
human-centered design:
1) Non-expert humans do not automatically teach through

abstractions – let alone abstractions sufficient for an
intelligent agent to leverage in a TAMP setting. As such,
researchers must be careful not to make this assumption.

2) Explicitly teaching humans to use sub-tasks to train robots
does not work sufficiently well if the teaching is done using
textual descriptions. Nor are videos of expert demonstrations
of a related task or showing a robot’s failed debugging
demonstrations.

3) Providing an expert demonstration video for the same
task that the participants are teaching allows them to
provide sufficient abstractions 100% of the time, but such
an approach does not scale to support novel tasks.

4) Demographic factors may impact the ability of a person to
provide helpful abstractions. Further research is needed to
characterize this phenomena to ensure equitable access to
the benefits of learning agents.

VIII. LIMITATIONS

Finally, we seek to address key limitations in our work. First,
our sample population consisted primarily of college students,
which may not represent the broader population. We also note
that our measure of IQ is imperfect, as it was performed with
an open-source, online test rather than a trained, in-person
examiner. Finally, we believe there are important mediating
effects between measured IQ, workload, and score, where are
difficult to isolate due to assumptions of available statistical
procedures for mediation analysis.

IX. CONCLUSION

In this paper, we investigated whether non-expert humans
are capable of specifying high-quality sub-tasks when teaching
robot agents to perform multi-step tasks. The assumption of
readily available, informative sub-task abstractions is ubiquitous
in the machine learning and planning communities. We
conducted two novel human subject experiments. In our first
experiment, we show that majority of people do not naturally
provide high-quality abstractions when teaching a learning
agent. Our second experiment shows that people can be trained
to provide sufficient sub-tasks for planning a 100% of the times,
if they are shown a part of an expert teaching demonstration of
the task that they are attempting to teach the robot. While other
more generalizable approaches are not as successful in soliciting
sufficient sub-tasks. Providing such expert demonstrations is not
feasible for all tasks. Our results provide important guidance
to the research community (1) not to rely on non-expert
humans to readily provide sufficient abstractions and (2) renew
research into human-centered design around robot learning to
democratize robot teaching for non-experts.
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