Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

A Learning-based Iterative Control Framework for
Controlling a Robot Arm with Pneumatic Artificial
Muscles

Hao Ma, Dieter Biichler, Bernhard Scholkopf, Michael Muehlebach

Abstract—In this work, we propose a new learning-based
iterative control (IC) framework that enables a complex soft-
robotic arm to track trajectories accurately. Compared to tra-
ditional iterative learning control (ILC), which operates on a
single fixed reference trajectory, we use a deep learning approach
to generalize across various reference trajectories. The resulting
nonlinear mapping computes feedforward actions and is used in a
two degrees of freedom control design. Our method incorporates
prior knowledge about the system dynamics and by learning
only feedforward actions, it mitigates the risk of instability. We
demonstrate a low sample complexity and an excellent tracking
performance in real-world experiments. The experiments are
carried out on a custom-made robot arm with four degrees of
freedom that is actuated with pneumatic artificial muscles. The
experiments include high acceleration and high velocity motion.

I. INTRODUCTION

Since their invention, pneumatic artificial muscles (PAMs)
have been widely used for various tasks, such as aerospace
applications, [7,132], medical applications, [26l 22], and indus-
trial applications, [11} 31]]. Due to their high power-to-weight
ratio, PAMs enable very fast motions, [8]. Moreover, their
compliance and low inertia improve safety in interaction with
humans, which might enable PAMs to be used in warehouse
robotics or factories, where robots work alongside humans. In
our research, we use PAMs to actuate the robot arm shown
in Figure [T} which generates high velocities and accelerations
(as required in table tennis, for example). This indeed imposes
challenging requirements on the speed and accuracy of our
tracking/control algorithms. However, despite the high power-
to-weight ratio and compliance that PAMs offer, they are
inherently nonlinear due to the compressibility of air and the
nonlinear force length and force velocity characteristics of the
muscle, [2]. This motivates the current article that introduces
a learning control framework, which can compensate for
these nonlinearities in a reliable and data-efficient manner.
The effectiveness of our approach is shown in this video:
https://youtu.be/kR9jowEH7PY|, where the robot arm is able
to intercept ping-pong balls that are played to the machine
with a success rate of close to 100%.

A. Related Work

We divide the related work section into two parts. The first
part discusses the literature on trajectory tracking with PAMs,
while the second part summarizes several works that have
used machine learning for solving tracking/control problems
for complex systems.
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Fig. 1: The figure shows the structure of the robot arm. It has
four rotational joints, and each joint is actuated by a pair of
PAMs. For simplicity we consider only the first three degrees
of freedom in this article. Note that DoF stands for degree of
freedom.

Researchers have tried various methods to achieve precise
control of PAMs. In the early stages of research, a theoretical
model, see [30, [24], was used to design a controller. For
example, Ganguly et al. [13] constructed a model based on
the structural characteristics and aerodynamic models of PAMs
and used traditional proportional-integral-derivative (PID) con-
trollers to steer the muscles. Ba et al. [4] used a neural network
to approximate the internal dynamics of PAMs and achieved
precise control by accounting for nonlinearities. Kogiso et al.
[18]] and Hofer and D’ Andrea [14] performed parameter iden-
tification of a structured model by using experimental data,
thereby avoiding a purely white-box modeling. Biichler et al.
[9] went even a step further, completely abandoned a first-
principles model of PAMs, and used Bayesian optimization
for trajectory tracking tasks.

Due to the high nonlinearity of PAMs, Hofer et al. [15] and
Zughaibi et al. [34] proposed the use of ILC to improve the
position tracking performance for an articulated soft robotic
arm during aggressive maneuvers. ILC is a learning control
method, which stands for the repeatability of operating a
given system and the possibility of updating the control input
based on previous operation data to improve the transient
performance of systems over a fixed time interval, [3l 16 [1].
ILC as a feedforward control has been proven to have excellent
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performance in trajectory tracking. For example, Mueller et al.
[23] and Schoellig et al. [28] achieved high-performance
tracking of quadrocopters using ILC; a similar performance
was also achieved with other complex systems, [33, [17]].
However, the most fatal flaw of ILC is that it only works for
fixed reference trajectories. If the reference trajectory changes,
ILC needs to be trained from scratch, which is not only time-
consuming but also infeasible in situations where the reference
trajectory frequently changes (for example when intercepting
balls that are played to the robot). This motivates our work,
which generalizes the ILC approach from fixed reference
trajectories to varying reference trajectories.

A similar idea is pursued by Chen et al. [12]], where deep
learning is used to reduce the number of iterations by ILC. In
contrast to their work, we use a convolutional neural network
to directly learn a mapping from the reference trajectory to
feedforward inputs. We also quantify the generalization capa-
bilities of the network on different reference trajectories (we
do not require retraining with ILC) and demonstrate excellent
trajectory tracking on a challenging soft-robotic system.

Another common machine learning method that can deal
with the tracking/control problems of complex systems is
reinforcement learning. Hwangbo et al. [16] and Lee et al.
[19] trained a neural network policy and then transferred it to a
legged robot, which enabled the robot to overcome challenging
terrain. Biichler et al. [10] used a reinforcement learning
method for enabling a PAM-driven robot arm to play table
tennis. Alternative approaches include guided policy search,
[21,120]], which aims at finding a global feedback policy. How-
ever, this requires a parametrization over feedback policies.
In contrast to all of these, our proposed framework learns
only feedforward inputs and can compensate for repeatable
disturbances in a non-causal way (it can anticipate repeatable
disturbances, something which cannot be done when learning
feedback policies).

B. Contribution

In this work, we abandon the theoretical modeling of
PAMs and rely on data-driven methods to achieve precise
control. However, in most of our methods, we could easily
include (approximate) first-principle models as prior knowl-
edge, which would speed up the learning and reduce the
sample complexity further. In a first step, we will perform
a system identification experiment, resulting in models that
have a concrete interpretation as linear dynamical systems
and can, in principle, be related to the underlying physics
of the robot arm. Compared to the traditional identification
method in frequency domain, we use a non-standard method-
ology, which allows us to not only measure the frequency
response function, but also precisely characterize the degree of
nonlinearity. In addition, the results characterize the actuation
bandwidth of pneumatic actuators. Starting from our linear
model, we will use ILC to learn and compensate repeatable
disturbances when tracking trajectories. The ILC accounts for
unmodeled nonlinearities and actuation biases, and achieves
excellent tracking performance in our experiments. We will use

deep learning to interpolate between the feedforward inputs
of ILC (for different reference trajectories). This results in
a nonlinear feedforward controller that can handle different
reference trajectories and generalizes the excellent tracking
performance of ILC to non-fixed reference trajectories. Our
method is also one of the few papers that compares learning-
based approaches to traditional control methodologies. We are
able to demonstrate that for our soft-robotic system traditional
control approaches do not yield satisfactory performance, due
to the high nonlinearity and friction of the actuation.

Key advantages of our approach are a low number of
hyperparameters, which have a physical interpretation and can
be tuned in a principled way. Our approach also incorporates
prior knowledge about the system dynamics, which guides the
learning by providing closed-form gradient information. This
not only avoids gradient computations via finite differences
or sampling-based approaches, but also reduces the sample
complexity. Due to the fact that deep learning is only used for
computing feedforward controls, the method mitigates the risk
of destabilizing the system. This will be further discussed in
Section

C. Structure

This paper is structured as follows. In Section [[I, we will
give an overview of the proposed learning control framework.
Section presents system identification results for each
degree of freedom near its operating point. The resulting
models provide important insights into the dynamic properties
(such as the bandwidth) of each degree of freedom. However,
this system identification step could also be skipped if a
first-principle model is available. In Section we will use
ILC to learn feedforward controls for different fixed reference
trajectories, whereby the identification results from Section [ITI|
are incorporated as prior knowledge. The fixed reference
trajectories arise from the specific task for which the robot
arm is used. Since in our case the robot arm is used for
playing ping-pong, the fixed reference trajectories arise from
the interception of ping-pong balls that are played to the
robot arm. In Section [V] we will design a neural network to
generalize the results obtained by ILC. We will also compare
the results of the neural network with the results of ILC
in experiments. The article concludes with a discussion in
Section [Vl

II. OVERVIEW

Our learning-based iterative control framework builds upon
the traditional two degrees of freedom control structure, which
is shown in Figure [2]

The concrete implementation steps of our framework are as
follows:

1) Design a model that approximates the real system (either
first-principles or system identification).

2) Sample suitable fixed reference trajectories for the given
task (e.g. intercepting ping-pong balls).

3) For each fixed reference trajectory, run the ILC algo-
rithm to learn feedforward inputs.
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Fig. 2: The figure shows the block diagram of the traditional
two degrees of freedom control design, which is used to build
our learning-based IC framework.

4) Train a deep network on the fixed reference trajectories
and the feedforward inputs. This yields the nonlinear
feedforward block shown in Figure [2]

Unlike reinforcement learning, which improves system per-
formance by learning a feedback policy, we propose to learn
the feedforward block. This means that our framework is safe,
since in many cases, it can be guaranteed that the learning
cannot destabilize the system. For example, it is a control
theoretic fact that for linear systems, feedforward cannot lead
to instability. This fundamental observation also holds to some
extent to nonlinear systems, such as the ones which are input
to state stable or passive. More precisely, if our feedback
controller is designed in such a way that the closed-loop
system is input-to-state stable (in the presence of constraints
such a feedback controller might not exist), we can ensure that
the state trajectory x(t) of the plant, satisfies the following
bound ([29])

() = @e| < p(t, |2(0) = e]) + ([ @rerl oo + [|ul]oo),

where p is a class L function and ~y is a class K, function,
t > 0 refers to time, x. to the reference trajectory, ug to
the feedforward input, z. denotes the equilibrium, | - | the
Euclidean norm, and || - || the supremum normﬂ We will
ensure that the output of the neural network is bounded by an
appropriate design (for example using the hyperbolic tangent
as activation function in the last layer). This means that even
if we apply our deep iterative controller to an unseen reference
trajectory, we can guarantee from the outset that the state
trajectory of our system will remain bounded. Such an a-priori
bound cannot be easily established if the learning algorithm
optimizes over feedback policies.

The remainder of the article will illustrate and evaluate this
framework on the task of trajectory tracking with the robot
arm shown in Figure [I]

We note that our framework requires the plant to be stable,
since, as will be discussed in the following, the ILC optimizes
over feedforward trajectories in open loop. However, in case
the plant is unstable, it can be prestabilized with a feedback

IA class Koo function is a function v Rt — R, which is continuous,
strictly increasing, unbounded and satisfies v(0) = 0. A class KL function
is a function p : RT x Rt — R such that p(-,t) € Koo for each t and
p(¢,t) — 0 for each ¢ and for t — oo.

controller and our learning-based IC framework can be applied
nonetheless.

III. IDENTIFICATION OF LINEAR BASELINE MODEL

Throughout the article, we decide not to introduce a first-
principle model of PAMs, but work with data-driven ap-
proaches instead. We will start by identifying a non-parametric
model, as this gives us insights about the physical characteris-
tics of our actuation and the robotic arm. In a second step we
will also fit a parametric model, which will be used as prior
knowledge for our learning-based control approach.

A. Non-parametric Model

We first identify a (dynamic) linear model of each degree
of freedom near its operating point. We do the identification
in the frequency domain and for simplicity, we regard each
joint as an independent single-input single-output system. We
use a random-phase multisine signal for exciting the system.
By choosing a multisine signal we avoid leakage (due to
the periodicity) and excite only the relevant frequencies. The
amplitude spectrum is shown in Figure [3a] and excites the
frequency lines 0.1 Hz, 0.2 Hz, . .., 10 Hz. The phase is chosen
randomly, which allows us to generate excitation signals that
evolve differently in the time domain but have the same
amplitude spectrum in the frequency domain. We use these
different signals to characterize the nonlinearity of the system.
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Fig. 3: The figure shows the random multisine signal in the
frequency domain and the time domain. We note that in (a)
the DC component is set to be zero and only the frequencies
0.1Hz,0.2Hz,...,10Hz are excited.

We excite each degree of freedom individually. For steering
the robot arm we used the application programming interface



developed by Berenz et al. [3]]. Each excitation signal will be
applied for ten periods continuously, and the results of the
first two periods will be discarded in order to eliminate the
effect of transients. Let U’(jwy) and ©°(jwy), i = 1,...,p
and k£ = 1,..., Nf be the discrete Fourier transform (DFT) of
the input and output of the i-th period, where p denotes the
total number of periods, j = v/—1 the imaginary number and
Nt the number of frequencies. For obtaining a non-parametric
transfer function model we first average the input and output
signals in the frequency domain over the different periods,

1< . 1<~ .
EZ@' (jwr), U (jwr) = EZUZ (jwr) . (1)

i=1 i=1

O (jwr) =

The variance of the output signal 632 (jwy) is given by

1 T A i A TF
—— >~ [6" (Gr) — 6 ()] [©7 (o) = 6 (jeon)]
pP=i4

2
where ()" represents complex conjugation, and the average

frequency response function (FRF) G and its uncertainty
0, due to measurement noise, see [25], can be obtained as
follows:

A . N/ - 2 ~ 2 .

U(jw) P |O(jwr)l?

These quantities refer to a single identification experiment
with a fixed excitation signal. If the identified system is linear,
then applying excitation signals with different phase realiza-
tions should not affect the average FRF. Thus, the discrepancy
between the measured average FRFs that arise when having
excitation signals with different phase distributions, provides
a means to quantify the nonlinearities. In our experiments, we
designed ten excitation signals with different phase spectra and
applied each excitation signal again for ten periods. For each
excitation signal, we compute an average FRF and estlmate the
noise level according to (3), which leads to G and 6 o}, where
the superscript ¢ refers to the different excitation s1gna1s.

We then calculate the average FRF over all excitation signals

as follows:
!
Z G (jwr), )

where [ denotes the number of excitation signals (here [ = 10),
and the subscript BLA refers to "best linear approximation”.

As discussed, the discrepancy between G and Gya gives
us an estimation of the nonlinearity of the system:

GBLA ] wk
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which should be compared to the noise level (discrepancy
between the different periods):

l
1
2 (jeor) 32 2 (Gwr))” - 6)

The non-parametric identification results are shown in Fig-
ure ] We note that the noise level is extremely low (signal
to noise ratio of about 40 dB), but the uncertainty due to the
nonlinearities of the system is relatively high with a signal to
noise ratio of 10 dB. This emphasizes once more the need to
depart from a linear control framework, as will be discussed in
the following sections. The results also highlight the speed of
the actuation; the PAMs offer a bandwidth of about 40 rad s~
(~ 6 Hz), which is extremely high compared to other actuators.
This also shows that our choice of the excitation signal, which
excites frequencies below 10 Hz is reasonable.

B. Parametric Model

To obtain a parametric model for each degree of freedom,
we start with the following ansatz:

ansn + e + ao

s™ + b'm—lsm_l +

G(s) =

. ,—TNgs
T € o (D
where n € Z* and m € Z* denote the order of the numer-
ator and denominator of the transfer function, respectively,
whereby m > n is required to ensure causality. The non-
negative integer Ny denotes the number of time delays and
T is the sampling time (here 7" = 0.01s). All unknown pa-
rameters of the numerator and denominator form a parameter
vector YT = [ag, ..., an,bo,...,by_1] € R which we
determine by solving the following optimization problem

. =~ . 2
J{}L{}lefll\, }mm; |G (jwr | ¥, Na) — Gera(jw)”. (8)
m,ne{l,...,5

For fixed values of Ny, m and n, we can multiply by the
denominator of GG, which yields a least squares problem that
combines real and imaginary parts. We therefore obtain a
solution estimate of by enumerating all possible combi-
nations of Ny, m and n, solving the least squares problem
for each, and picking the solution that achieves the lowest
cost in (8). We restrict m and n to be below five to avoid
overfitting. The results of the parametric model are also shown
in Figure ] From the figure, it can be seen that for both, the
amplitude spectrum and the phase spectrum, our parametric
transfer function matches the non-parametric estimate well.

IV. ITERATIVE LEARNING CONTROL FOR FIXED
REFERENCE TRAJECTORIES

A. Motivation

We motivate the introduction of our learning-based IC
framework by first discussing the tracking performance that
is obtained with traditional linear control methods. Figure [5]
shows the tracking result of a traditional two degrees of
freedom control design, where we used plant inversion for
the feedforward control and a PID controller for the feedback
block. The gains for the PID controller have been found by
minimizing the H..-norm of the closed-loop sensitivity. Note
that manual tuning of the PID gains (e.g. Ziegler Nichols
method) leads to similar results. The resulting tracking per-
formance is not satisfactory: Due to the large amounts of
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Fig. 4: The figures show the identification results. From left to right are the identification results for the first and second degrees
of freedom, respectively. Each figure consists of two sub-figures. The upper sub-figure represents the amplitude spectrum and
the lower sub-figure represents the phase spectrum. In the amplitude spectrum and the phase spectrum, the measured data
are shown by blue crosses, and the fitted results G are shown by solid curves. In the amplitude spectrum, the level of the

nonlinearity of the system is shown by circles, and the noise level is shown by triangles.

friction and nonlinear characteristics of PAMs, the accuracy
of the linear model is very limited. We will show that with
our learning-based IC framework the tracking performance can
be improved by orders of magnitudes.
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Fig. 5: The figure shows the tracking result of an example
trajectory using a linear control framework. The dashed line
denotes the fixed reference trajectory, and the solid line the
actual trajectory. The tracking accuracy obtained by applying
pure feedforward control are even worse.

B. Formulation

Our ILC formulation is inspired by Hofer et al. [[15] and will
be based on a discrete-time model. For illustration purpose, we
will use the discretization of (7) as our model (denoted by G9).
In many cases, a nonlinear and more accurate model could be
used instead. We will discuss our approach in the case where
n=m =3 and Nq = 2 in (7). All other cases are treated in
a similar manner. By discretizing (7) we obtain the following

discrete-time transfer function
—1 —
Ae(z) _ oo+ a1z i —|—a222
1+ prz=t+ Boz™
GU(z)

2

272 u(z), 9)

where Af(z) € C denotes the z-transform of the angle value
deviating from the reference posture, and u(z) € C represents
the z-transform of the normalized input (pressure value) sent
to the PAMs. By introducing the state variable rT[k] =
[AO[k — 2], AO[k — 1], ulk — 4],u[k — 3]] ,k =0,..., we can
rewrite (9) in state-space form:

rlk + 1] =Ar[k] + beulk — 2] + ba (d[k] + nw[K)),
—_———

disturbance

10

Ak —1]=[0 10 0] r[k], (10)
——

cT

where A and b, are related to the coefficients ag, a1, oo,
f1 and [, and the disturbance is assumed to act directly on
AG[k], which means that by is equal to ¢. The model (I0)
includes additionally the disturbance (d[k]+ ny[k]) where
d[k] represents the repeatable part (e.g. delays, friction and
nonlinearity) and n.[k] the non-repeatable part (e.g. process
noise). The disturbance d[k] is in many cases implicitly depen-
dent on the state r and this dependence could, in principle, be
arbitrarily complex (even non-smooth, [27]). The disturbance
d[k] also contains interactions between the different degrees
of freedom. We can convert (I0) into the lifted state-space:

Af = Agro + Byt + By (d + ny), (11)

where 79 = r[0] denotes the initial state, A € R? denotes
the outputs of the system in the interval k£ € {0,1,...,¢—1},



d € R? and ny, € RY capture the repeatable and non-
repeatable disturbances, respectively. The vectors Af, d, and
ny contain a trajectory of the system of length ¢, that
is, AT = [AG[0],---,Af[qg — 1]] for example. The input
al = [u[-2], -+ ,u[g — 3]] € RY takes the time delays into
account (here the time delay is two).

The matrices Ay € R9%4, B, € R%%? and By € R9¥9
in (TI) can be expressed as follows:

Ay = [ATe, -, (A1) ],
F T, -
cTAb, cTb,

B, = : ’
cTAT=2p, (TAT3p, cTb,
_cTAq_lbu cTAT=2p, chu_
ey -

CTAbd Cde

By = : :

CTAq_2bd CTAq_?’bd Cde
_CTAq_lbd CTAq_zbd Cde_

The iterative learning control algorithm aims at learning the
repeatable disturbances d by applying the following principle:

1) Apply the input signal % to the system and record the
angle trajectories of the degrees of freedom 1 — 3.
2) Update the estimate for the repeatable disturbances d

in and/or (TT).
3) Update the input signal .

The repeatable disturbances d are learned with a Kalman

filter, which is based on the following process equation

dt =d' +nd, n§~N(0,Ily), d® ~N(0,1I), (12)
and measurement equation

AO' — Agry — Byii' = Byd' +n', n' ~ N (0,Tnix), (13)

measurement data

where (-)* denotes the number of ILC iterations. We use the
following forms for the variance of nj, the variance of dy, and
the variance of n':

Iy =031, 1 =0"I, Ui = 04 BaBy + 0,1,

where I € R?%? denotes the identity matrix, and 03 the
measurement uncertainty. The concrete numerical values for
each degree of freedom are shown in Table

We then use the mean value of the Kalman filter estimate
denoted by d' at the i-th iteration to update the feedforward
input %t for the next iteration. More precisely, we update @
in the following way:

) 1 12
@' = arg min 5 ABges — AgTo — Byt — Bad'| ,  (14)

where AOL = [Afues[0], - -+, Abges[g — 1] € R? denotes a

fixed reference trajectory.

TABLE I: Numerical values of the different variances for each
degree of freedom. We note that only the relative magnitudes
of the different variances are important not their absolute val-
ues. The Kalman filter provides an intuitive way of tuning by
trading off measurement uncertainty with process uncertainty.

DoF 03 o2 O'y2
1 10-10 [ 10=7 | 102
2 10-10 [ 107 | 1072
3 10-8 [ 10=7 | 10°3

Although there are pressure constraints on the input of
the robot arm, we do not consider these when solving the
optimization problem in (I4). This leads to the following
closed-form solution of the optimization problem (T4):

@+l = Bl (Aedes — Agro — Bdcii) : (15)

where ()T denotes the Moore-Penrose pseudo inverse.

C. Learning Results

We apply the above ILC method to our robot arm to track
the same trajectory as in Figure [5] We conduct 40 learning
iterations for ILC, and the results of the last three iterations are
shown in Figure [6] From the figure, we can see that there are
only minor differences in the results of the last three learning
iterations, which indicated that the algorithm has converged.
By comparing with the linear control framework we find that
ILC can achieve high tracking accuracy even with feedforward
control alone: The last iterations consistently result in small
steady-state and tracking errors. Compared to the results in
Figure [5 there are no oscillations.
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Fig. 6: The figure shows the learning results of ILC. The
dashed line is the fixed reference trajectory and the solid lines
are the results of the last three learning iterations.

V. GENERALIZING ITERATIVE LEARNING RESULTS WITH
DEEP LEARNING

Given the excellent tracking performance of ILC, it is
natural to replace the feedforward block in Figure 2| with ILC.
However, a fatal flaw of ILC hinders this idea: ILC can only be
applied to fixed reference trajectories and requires retraining
from scratch if the reference trajectory changes. However, in
many applications reference trajectories do frequently change



and retraining from scratch would be infeasible or too time-
consuming. This motivates us to develop a new learning-based
IC framework based on a CNN. The CNN will generalize the
feedforward inputs obtained with ILC, thus enabling tracking
of unseen reference trajectories with a similar accuracy.

A. Table Tennis Reference Trajectories

Our final goal is to intercept table tennis balls, and therefore
we choose reference trajectories that are typical for the task
of intercepting balls that are played to the robot. We select
44 typical ball motions (these are recorded from actual mea-
surements) and for each ball motion, we plan a minimum jerk
reference trajectory such that the robot intercepts the ball. We
plan the trajectory for the end-effector in a polar coordinate
system, which gives us reference trajectories for each joint.
These joint trajectories are then tracked by our learning-based
approach. Since the position of the end-effector is not affected
by the last degree of freedom, and its motion range is very
small, the last degree of freedom can be controlled with
a simple PID controller. Hence, in this paper we focus on
controlling the degrees of freedom 1 — 3. We intercept the
ball at the highest point after its first collision with the table,
since at this point its kinetic energy is minimal. The time
duration from the start of the ball’s motion to its arrival at the
interception point is considered to be the ball’s flight time.
During this time window, we plan the reference trajectory
of the end-effector: From a fixed rest position the robot arm
follows a minimum jerk trajectory to the interception point
and then returns to the rest position. Figure [/| shows typical
reference trajectories and their ILC learning results.

As can be seen from the figures, ILC is a very effective
method for trajectory tracking. It is worth emphasizing that
these results only rely on feedforward control. Although there
is still a small steady error in Figure this error decreases
as the number of training iterations increases. However, some
errors cannot be reduced by increasing the number of itera-
tions, which is likely due to the fact that the physical limits
are reached.

B. Generalizing with Nonlinear Feedforward Block

As mentioned before, we will use a CNN to generalize
the feedforward inputs obtained by ILC for tracking unseen
trajectories with similar accuracy. When intercepting the balls
that are played to the robot arm, we need to perform the
inference in real-time. This motivates us to use a CNN instead
of fully connected layers or recurrent neural networks. More-
over, the CNN was also found to be beneficial for handling
the coupling between the various degrees of freedom and the
temporal correlations. We use a CNN with a simple structure to
avoid overfitting since the size of our dataset (44 trajectories) is
limited. We divide all trajectories into a training and validation
dataset according to the ratio of 7 : 3. To speed up the
convergence of the neural network and improve accuracy,
all inputs are regularized (mean value is subtracted) and all
outputs are normalized.

Our neural network consists of six convolutional layers and
four fully connected layers. The convolutional layers do not
contain any pooling layers, and the fully connected layers do
not have a dropout. We use Tanh as the activation function for
the last layer to ensure that the output is between —1 and 1,
and therefore respects the actuation limits of the system. The
rest of the layers use ReLU as an activation function, which
mitigates the risk of gradient disappearance or explosion.

The input of the neural network contains two channels. The
first is a window of the given reference trajectory of length
2h + 1 centered at time point k. The second one is the output
predicted by a linear regression model, which is also a data
segment of length 2h + 1 centered at time point k. We would
like the neural network to capture the coupling between all
degrees of freedom, so the width of the input is three, one
for each degree of freedom. The output of the network is the
feedforward command ug (see block diagram) at time point
k. We train an individual neural network for each degree of
freedom, where each network has the same structure.

The approach for generating the input data to the CNN is
shown in Figure 8] The same approach is used to generate the
first and second input channels.

We use the prediction results of a linear regression model
as the second input channel of the neural network, since we
found in experiments that this improves prediction slightly.
The linear prediction model is obtained from the same training
data as the neural network, and the input is processed in
very similar ways (see Figure [J for a graphical sketch). The
difference is that we stack the data from each degree of
freedom vertically instead of horizontally, and introduce a bias
term.

The parameters for the linear regression model are obtained
by solving:

nr = Elu,, 7=1,2,3, (16)

where 7, € R"*4 is the parameter vector for the linear regres-
sion model which includes a bias term, and u, € R™ contains
the training data (obtained by ILC). The subscript 7 denotes
the index of the degrees of freedom since a linear regression
model is generated for each degree of freedom separately. The
dimension N; represents the number of data points used for
training the CNN, and the matrix = € RN (67+4) jg a stack of
different data points as shown in Figure 9] We experimented
with different choices of h and found that a value of A = 100
yields good results. We note that ~ = 100 implies that the
CNN operates on a window of length 2's, meaning that it can
take future values of the reference trajectories (up to 1s) into
account.

C. Generalizing Results

We use the neural network architecture from the previous
subsection and train it on 31 ball trajectories. We then use
the CNN as the feedforward block in Figure 2| and implement
the resulting two degrees of freedom controller. We retain the
same feedback controller as in Section [III} apply the learning-
based IC framework to our robot arm and evaluate the tracking
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Fig. 7: The figure shows the results of the last iteration of ILC and learning-based IC framework. The fixed reference trajectories
Abfqes are shown in dashed curves. The results of the last iteration A# obtained by different methods are shown in solid curves.
“ILC” denotes the results of traditional ILC method and "LBIC” the learning-based IC framework. The hitting time point is
shown in a vertical dashed line. Both trajectories are from the validation dataset. We note that the movement range is large
(4+/ — 50° in the first degree of freedom and —40° in the second degree of freedom) and that the motion is dynamic reaching
5ms~! at the interception point. The right sub-figure shows the small steady-errors.
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Fig. 8: The figure shows the approach for generating the input
data for CNN. We use a window of length 2h + 1 at time
point k. The input data for the CNN has two channels, the first
channel contains the desired trajectories for different degrees
of freedom and the second channel is generated from the
prediction results of a linear regression model. We emphasize
that the length of the reference trajectory is not necessarily
fixed.

performance on all trajectories. We use the root-mean squared
tracking error of the end-effector as our performance metric:

qi
5= =3 lelk] ikl a7
% =0

where ef[k] € R? and e;[k] € R? denote the i-th reference
trajectory and actual trajectory at time point k, respectively,
1=1,...,44.

The values of ¢§; for the different trajectories are shown
in Figure [I0] As shown in the figure, when relying only
on feedforward control, the tracking accuracy of the neural

k_

Time tins
> =

Fig. 9: The figure shows the method for generating the input
data for the linear regression model. We also use a window
of length 2h + 1 at each point in time and for each degree
of freedom and introduce a bias term (the last element of &
is set to 1). Finally, we stack all the segments £ to form the
data matrix = used in the linear regression model.

network is worse than ILC even though the neural network has
excellent prediction results (there is almost no performance
difference between training and test trajectories). Therefore,
we introduce feedback to compensate for initial errors and
non-repeatable disturbances, which results in the two degrees
of freedom structure shown in Figure 2] The final tracking
accuracy is even better than ILC, reaching an average error of
under 0.04 m.

In Figure [7| we compare the tracking results of the learning-
based IC framework and ILC. It is worth mentioning that both
trajectories are from the validation dataset. As can be seen
from the figure, the generalization results of the learning-based
IC framework are very close to the tracking results of ILC. It is
also worth noting that the average root-mean squared tracking
error over all ball trajectories obtained by the learning-based
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Fig. 10: The figure shows the average Euclidean distance to
the desired trajectory in Cartesian space of all ball trajectories
with different methods. The left side of the dashed line is the
index of the training trajectories and the right side is the index
of the test trajectories. The index of ball is sorted in ascending
order according to the results of ILC on the training dataset
and validation dataset respectively

IC framework is better than the learning results of ILC in
both the training and validation datasets, see Figure which
indicates that our learning-based IC framework successfully
generalizes the results from ILC.

VI. CONCLUSION

In summary, we conclude that by identifying a linear dy-
namical model of the system near the operating point and then
combining ILC with deep learning techniques, we can achieve
outstanding tracking performance even on very complex sys-
tems and when performing dynamic motions. We found that
ILC converges even when the initial linear model is a poor
approximation of the true underlying dynamics. However, a
more accurate model is likely to reduce the iterations needed
for ILC to converge.

The traditional ILC framework can only accurately track
fixed reference trajectories and requires retraining from scratch
if the reference changes. In contrast, our learning-based IC
framework generalizes the results and enables accurate track-
ing of previously unseen trajectories. We also found that
including a linear regression model as input to the CNN can
effectively improve the convergence speed and accuracy of
the latter. Finally, we have shown that our two degrees of
freedom approach with the CNN as feedforward controller
results in excellent tracking results on the real robot (see also
https://youtu.be/kR9jowEH7PY)).

In the future, we aim at collecting a larger dataset, which
might enable us to improve the performance further. We
would also like to use some of the ILC data to quantify the
uncertainty of our disturbances estimates.
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