Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

Distributed Optimisation and Deconstruction of
Bridges by Self-Assembling Robots

Edward Bray and Roderich Grof3
The University of Sheffield, UK
Email: {enbrayl, r.gross}@sheffield.ac.uk

Abstract—Maulti-robot systems are often made of physically
small robots, meaning obstacles that could be overcome by larger
robots pose a greater challenge to them. This paper considers
how a group of such robots could self-assemble into bridges
to cross large gaps in their environment. We build on previous
work demonstrating construction of cantilevers to show how they
can be modified once the other side of the gap is reached. Two
distributed algorithms are presented: one to reduce the number
of agents in the initial structure once it is supported at both ends,
and another to deconstruct this leaner structure when it is no
longer required. A force-aware approach is taken to ensure that
structures do not collapse under self-weight. The first algorithm
is shown to be capable of reducing the number of agents in the
structure to close to the optimum amount, whereas the second
achieves safe and reliable deconstruction.

I. INTRODUCTION

Using multiple robots to accomplish a common goal instead
of a single robot has benefits in a variety of scenarios, such
as those that cover large areas or in which robots could be
damaged [8]]. Space and cost constraints mean that the robots
constituting many of these systems are small, with bodylengths
up to tens of centimeters [9} [17, (18, |23]]. This presents unique
challenges when navigating difficult terrain: they are able to fit
through tight constrictions with ease, but struggle to overcome
larger obstacles. This paper considers how a group of small
robots could work together to cross gaps in the terrain by
building bridges. Gaps measuring a few meters across are
common in real-world environments, such as woodland or in
natural disaster zones, and could be easily passed by large
robots, but present a much more significant obstacle to agents
with smaller bodies. Bridging these gaps would allow other
robots to more easily traverse them. To ensure resources are
used efficiently, bridges should consist of minimal building
material and be dismantled when no longer required.

This work is inspired by the behaviour of ants, who have
been observed to assemble their bodies into different structures
for the benefit of the colony with no centralised leader [1],
a process called self-assembly. Certain species of ants will
self-assemble into bridges, either to allow them to reach new
locations [7]], or to create shorter paths to important locations
the colony has already visited [[16]].

An area of multi-robot system research in which self-
assembly is particularly relevant is modular robotics, where
a finite set of robotic modules come together to form different
connected structures to achieve different goals [19]. Previous
work has shown how these robots can cross gaps by arranging

(a) (b)

(c) (@

Fig. 1. Bridge optimisation starts with a cantilever that has just reached
the other side of a void (a) and agents reconfigure or remove themselves to
leave a leaner bridge that will not collapse under its own weight (b). When no
longer required, the bridge is deconstructed by first building a structure that
would not collapse if detached from the left support (c), then deconstructing
this columnwise (d). Agents are shown in blue and fixed supports in grey.
The darker portion in (b) shows the equivalent unsupported cantilever, a term
introduced in Section [V-B]

modules in a line longer than the gap and moving directly over
it, as this ensures there are always modules above solid ground
[14) 21]]. These linear structures are unlikely to be rigid enough
to span large distances without sagging, so this approach is
only suitable for small gaps.

Spanning larger gaps requires stronger structures, such as
those created by ants. The manner in which robots could self-
assemble bridges to reduce travel times to popular locations
has been studied in [2, [10]]; the latter work also includes
prototype soft-bodied robots capable of carrying out this self-
assembly. However, these studies do not account for the effect
of gravity, so the structures would potentially break in real-life.

For robots to build bridges to access new areas, they must
first construct a cantilever that can span across the void
without collapsing. One approach is for the robots to build
this structure from external building materials, as explored
in [11, 12 [13]]. These works design custom truss members
in parallel with the robots so that they can be effectively
manipulated, but these specialist materials must also be trans-
ported to the building site. An alternative is to use the robots
themselves as the building material, as explored in [3}, 20]: this
requires a greater number of robots, but the building material
can transport itself to the construction site. However, [3] only
addresses construction of cantilevers, without considering what
should happen when the other side of the void is reached.

Self-assembly of complete bridges is shown in [20], but this
approach requires building from both sides of the gap. Neither
work considers how the structure can be safely deconstructed.

An intuitive way for a team of robots to build useful
structures is for a human to design the desired structure,
and tell each agent exactly what they are to build [23].
Another approach is to give high-level goals, such as to span
a certain distance without breaking [3} [11} 12} 13, [20]]. This
can be applied to a wider range of building scenarios than the
preplanned approach, and the distributed algorithms increase
the scalability of the system while removing the single point
of failure of a global controller.

In our previous work [3], we presented distributed algo-
rithms that enable a group of self-assembling robots to build
cantilevers that span across a void (Fig. [T), while employing
local force measurements to ensure the structure does not
collapse under its own self-weight. In this paper, we build
on this work by considering two additional problems arising
when the cantilever reaches the other side of the void to form a
bridge. Firstly, once the structure becomes supported at both
ends it is likely to benefit from bridge optimisation, where
agents are removed or repositioned to produce a structure
that is thinner in the middle than at the supports, such that
it resembles the arches seen in road bridges (Fig. [Tb): this
also frees agents to complete other tasks. Secondly, when the
structure is no longer required, agents should be able to safely
dismantle it, referred to as deconstruction. They must first
convert the existing bridge to one that is stable when supported
on one side (Fig. , before the other side can be released and
the structure dismantled (Fig. [Id). This initial step is made
more difficult as the guiding force measurements are from
a structure supported on both sides, but the agents aim to
construct a structure that will be stable when only supported
on one side. To the best of the authors’ knowledge, neither
the optimisation or deconstruction of self-assembled robotic
bridges has been investigated in previous studies.

We employ a distributed control strategy that incorporates
local force measurements to build structures that do not
collapse under their own weight. The forces exerted between
interconnected robots could either be measured directly, re-
quiring additional hardware to be incorporated into the links
[3L 12, [13]], or estimated from knowledge of the structure’s
configuration, requiring additional computation [15]: the al-
gorithms presented here assume this knowledge is available.
The algorithms are implemented in Python using the same
custom simulator used in [3] that approximates the structure
as a truss to efficiently calculate the internal forces [22].

II. PROBLEM FORMULATION

This work considers a 2D grid of homogeneous agents of
side length [that can connect to each other through links on
any face: links along rows and columns are called row and
column links respectively. Agents are initially arranged in a
configuration of length L between two fixed support surfaces,
to which agents can also connect (Fig. [Ta). Locations in the
grid are referenced as (row, column), where the agents in the

top left and top right of the structure occupy locations (1, 1)
and (1, L) respectively, and row number increases downwards.
Agents can either be placed or active. Placed agents do
not move, but can become active when they deem it necessary.
Structures must be continuous, meaning that each placed agent
connects to the top of its column by a vertical chain of placed
agents, and to either fixed support by a horizontal chain of
placed agents. While connected to both supports, it must also
contain a single contiguous region with only one placed agent
in each column, referred to as the narrow section (columns
5-7 in Fig. @]) Note that either side of this, the number
of placed agents in each column increases monotonically, so
the centre of the narrow section is called the inflection point
(column 6 in Fig. [Tb). These restrictions are imposed so that
structures resemble arches, a strong shape commonly found
in bridges. We term empty locations with a placed agent on
either side canyons. Active agents cannot place in canyons
without violating the requirement for a narrow section.

In each simulation timestep, active agents can travel along
the perimeter of the structure by moving into an unoccupied
cell in their Moore neighbourhood if in doing so they will
remain adjacent to another agent. Active agents are required
to be able to pass between the top and bottom perimeters
of the structure, which could be achieved by either moving
into the third dimension in front of existing placed agents,
or by coordinating placed agents to shift down the column
in question by one cell. We choose the former method as
it requires less coordination, but do not allow moving into
the third dimension in other situations as constructing 3D
structures is beyond the scope of this work.

Each agent has self-weight w acting downwards, and is able
to measure the moment M and axial force F' in its links.
Allowable limits M j1owabie A0d Fyiowable are set below the
failure strength of the links, from which the criticalness ~ of
each link is calculated as max (v, ") [3] where:

M v _ max(F,0)

Mallowable Fallowable

This formulation represents links that are equally strong to
bending in all directions, strong in compression, and weak
in tension. We assume that the shear strength is high in
comparison, so can be neglected. This is similar to a simple
connection mechanism such as that of SMORES [5].

When v > 1, links are described as critical, indicating that
they may be close to failure. Structures in which there are no
critical links are deemed stable, otherwise they are unstable.
This work considers how structures can be reconfigured and
deconstructed, while aiming to maintain stability. Specifically,
the bridge optimisation algorithm aims to reduce the number
of agents in an initial configuration spanning between the
two fixed support surfaces, and the deconstruction algorithm
deconstructs the structure and recovers agents on the opposite
side of the void to where the initial bridge was build from. We
set [= 0.1 m and conservatively assume robots are a cube of
solid aluminium, giving w = 19.3 N: our agents are therefore
similar in size to existing robotic platforms, but heavier [3].

III. OFFLINE STRUCTURAL OPTIMISATION

Optimal bridges are generated offline as a baseline to
compare the performance of the distributed bridge optimisation
algorithm to. The optimal configurations of length L are those
that are continuous as defined in Section [II} stable, and consist
of the fewest number of agents V.

Optimal configurations are generated by exhaustive search,
which begins by selecting an L, N, Myjiowabie, a0d Faijowable-
Configurations are generated by setting the number of agents
in row 1 as L, and specifying the number of agents in the
lower rows connected to the left and right supports Ny and
Nr respectively. We iterate over [Y7£] < N, < (N — L)
and enumerate all configurations of Ny agents using integer
partitioning [6], where the i component of the partition
represents the number of agents in row ¢ 4+ 1 connected
to this support Nr; V 1 < ¢ < Np. For each of these
configurations, all configurations of Np = N — L — N, are
also enumerated, giving the number of agents in row 7 + 1
connected to the right support N ;. We arrange the partitions
such that Nz, ; > Np ;41 and Ng; > Npg ;11 to satisfy the
continuity condition, and discount non-physical configurations
in which Nz, ;+Npg; > L. Itis possible that Ny ;+Np; = L,
thus we do not require a narrow section 1 agent high.

Due to symmetry, these iteration ranges are sufficient to
enumerate all possible configurations. Each configuration is
analysed to find the maximum + in all its links. If a stable
configuration is found then L is incremented, otherwise IV is
incremented. Initially, we set L = N = 1 to find the minimum
N required to build stable structures of L > 1.

IV. ALGORITHM DESIGN

The following sections describe the algorithms that achieve
bridge optimisation and deconstruction. Section gives an
overview of the bridge optimisation algorithm, and Section
presents the changes made to it in the deconstruction
algorithm. Section describes how elastic beam theory
is used to improve the performance of the deconstruction
algorithm. Sections and describe aspects of the
algorithms in more detail.

Active agents advance each timestep in a randomised order,
as in the parallel cantilever construction algorithm of [3]. They
transition through several modes as described below. While
moving, they track their location and the heights of columns
that they visit so as to determine which side of the inflection
point they are on. M and F' in links is updated for all agents
at the end of each timestep.

A. Bridge Optimisation

Placed agents on the lower perimeter with an empty cell
on their left or right can become active if they believe they
are not significantly contributing to the structure’s strength.
Every timestep, each eligible agent j will release itself from
the structure with probability P,.cjcqse. This is calculated from

the maximum -y across each link of agent j, v; mqa, as:

l@g*a%’,mam

0 otherwise

for ~; <1
PTelease('Yj7maa;> = { J,max

This function has two shape parameters: « affects the rate the
function decays with v maz, and 8 = Prejeqse(0). Throughout
this work, we set v = 10 but explore the effect of changing 3
to examine how the number of simultaneous active agents in
the simulation affects performance. Each agent that releases
itself becomes active and disconnects all but one of its links
so that it is only connected to the structure by a single link
thus isn’t offering any support (see Section [[V-D). In the next
timestep, they begin to follow Algorithm

Active agents start in the releasing mode, where they
first check the readings of M and F' in links of the agent above.
If their release has caused any of these links to become critical,
they immediately place back here. Otherwise they swap to the
gathering mode and make their first step (lines [2] - [9).

Agents that are gathering move around the lower
perimeter of the structure and communicate with the placed
agents above them to obtain the M and F' values recorded
by their sensors (line [IT). Agents travel left until they reach
column 1, then move right to column L to obtain information
about the whole structure (line 20). If no links were measured
to be critical when they reach column L, they will swap to
the escaping mode (line [T4), in which they pass through
the structure here to reach row 0, then move to the right
support, where they exit the simulation (lines - B3). 1f
an agent believes any links are critical, it will attempt to
reinforce them. This begins with calculating a probability
mass function pe.;(c) as described in [3] that represents the
probability of placing in column c based on the received force
information: this function has a high probability of placement
in columns where high M and F' values were recorded and
thus should be reinforced. Only links on the bottom of the
structure are considered, but this is sufficient to make informed
placement decisions [3]]. It samples from this distribution
without replacement to choose a column to Visit ¢grget, and
switches to the placing mode (lines [16] - [I8).

The placing mode describes how agents reinforce the
structure. Each agent in this mode first checks if it has reached
Ctarget and is directly below a placed agent. If so, it attempts
to place here (line , which will have one of three outcomes:

(i) The agent is not in a canyon and placing here will not
violate the continuity condition, so it does so (line [315[)
(i) The placement location is at the top of a canyon, so
the agent swaps to the escaping mode and will
pass through the structure here instead (line [33). This
decreases the total number of active agents quickly
when there is too much traffic to make informed deci-
sions about placement locations, and reduces congestion
around canyons.
(iii) Placing in this column violates the continuity condition,
so the agent will select another ciqrger from peoi(c)
without replacement (line [35).

Algorithm 1: The procedure followed by active agents
during bridge optimisation (based on [3], Algorithm 2)

1 switch mode do

2 | case releasing do

3 Read M and F' from placed agent above;
4 if Agent above has a critical link then

5 Place back here (agent no longer active);
6 return

7 else

8 mode < gathering;

9 Make step;

10 | case gathering do

11 Record M and F' from placed agent above;
12 if Agent in column L and Previously visited
column 1 then

13 if No measured links critical then
14 | mode < escaping;
15 else

17 Ctarget <— sample from peor;

16 Calculate p..;(c) from recorded M & F';
18 mode < placing;

19 else
20 | Make step;

21 | case escaping do

22 | | if In position (0, L) then
23 Agent leaves simulation;
24 return

25 | | Make step;

26 | case placing do

27 if In column ciqpger then

28 Attempt to place;

29 if Placement succeeded then

30 Agent no longer active;

31 return

32 else if Agent at top of canyon then
33 | mode < escaping;

34 else

35 | Ctarget < sample from peo;

36 | | Make step;

37 | case swapping do
38 | | mode < previous mode;

39 if Agent stationary for > T timesteps then
40 | Attempt placement;

a1 | if Placement succeeded then

42 | | Agent no longer active;

If the agent is subsequently still active, it will move towards
the top of ctarger (line 36).

When two agents attempt to move in opposite directions
past one another, they instead exchange information in order to
become the other agent [3]]. They enter the swapping mode
for one timestep in which they remain stationary, modelling
the real-life time cost of this communication (lines [37] 38).
Section explains this procedure in more detail.

If an agent is stationary for too long, it is deemed to have
got stuck and attempts to place itself where it is (lines [39) -
[2). Here, the timeout 7 is set to 20 timesteps.

B. Deconstruction

In the deconstruction algorithm (Algorithm[2)), agents transi-
tion through broadly the same modes as in bridge optimisation,
but with the changes and additions described below; line
numbers in this section refer to Algorithm [2] We assume the
bridge was built from the left side of the void, so agents finish
on the right side after deconstruction. There are two phases:

(i) Reinforcement: Agents are added to the structure from
above the right support to produce a structure strong
enough to not collapse when it disconnects from the left
support (from Fig. [Tb] to [Ic). The narrow section and
the columns to its right are referred to as the equivalent
unsupported cantilever (the darker region in Fig. [Tb).

(i1) Removal: The structure disconnects from the left support
and agents leave it above the right support (Fig. [Id).

As we will see in Section[[V-C} agents must be able to measure
the shear force S in their links in addition to M and F'.

An additional mode, force-releasing, describes
placed agents that should release and become active regardless
of v in their links (lines [2] — [6). Active agents may instruct
adjacent placed agents to enter this mode to initiate the re-
moval phase, extend the equivalent unsupported cantilever, or
deconstruct canyons as explained below. When such an agent
releases, they either enter the gathering or escaping
mode, depending on the reason they were instructed to release:
agents are therefore described as force-releasing fo
gather or to escape respectively. If a force-releasing
agent becoming active would violate the continuity condi-
tion, messages are instead passed down the column, tak-
ing one timestep per row, to switch the lower agents to
force-releasing to gather (line [6] and Figs. [2a] and [2b).
Columns thus deconstruct from the bottom.

Active agents can arise in two further ways. Firstly, placed
agents on the lower perimeter and the left side of the inflection
point with an empty cell on their right release themselves with
probability Pjejeqse as in the bridge optimisation algorithm,
with S = 0.2. Agents on the right of the inflection point cannot
do this, as we assume that they are placed in a satisfactory
position. Secondly, additional gathering active agents enter
the simulation in location (0, L) a fixed number of timesteps
0 apart, assuming this location is not already occupied, until
the first escaping agent occupies this cell. They then travel
along the top of the structure, obtaining force information from
the agent below them as they move (line [T6), until they are
above the leftmost column of the narrow section, which they
are informed of by the agent at the top of this column. They
pass through the structure to the lower perimeter at this point.
gathering agents on the lower perimeter head directly for
column L without first visiting column 0 (line [T7).

When a gathering agent on the lower perimeter reaches
column L, it calculates p.o;(c) (line and switches to the
placing mode (line regardless of the M and F' mea-
surements it received. If it believes the structure is unstable, it
draws ciarger from peoi(c) as before (line . However, it no
longer transitions to the escaping mode if it believes the

Algorithm 2: The bridge deconstruction algorithm,
emphasising differences with bridge optimisation.

[V N N S R

=)

10
11
12
13
14

15
16

17
18
19
20
21
22

23
24
25

26
27
28
29

30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46

a7
48

49
50

51

52

53
54
55
56

case force-releasing do
if Able to release then
| mode < escaping;
else if Continuity condition would be violated by
release then
| Set agent below to force-releasing;

or
below;
Agent in column L
Calculate p.,;(c) from recorded M & F;

Ctarget < leftmost column in narrow section;

mode < placing;

Attempt to release agent below if required;

or release adjacent agent

else if Released tip then
| mode ¢ escaping;

if Finished in canyon then
| Set agent on left to force-releasing to gather;

if Agent above force-releasing to escape then
| Ctarget < list increasing from column to the right;

if In position (2,1) and placed agent on right then
| Set agent above to force-releasing to escape;

if In row O or agent on the right is
force-releasing fo escape then
| mode < escaping;

)

(b)

(d)

Fig. 2. Forcing agents to release. Placed agents are shown in blue, active
agents in yellow, the fixed supports in grey, and force-releasing agents
have a cream border. (a) The active agent is in a canyon, so the column to
the left should be released. (b) The active agent believes the unsupported
cantilever is stable, so can release another column left of the narrow section.
Alternatively, if the agent marked with an asterisk is force-releasing
to escape, the agents below will release first. In both (a) and (b), agents are
blocked by others below them, so they release in the numbered order shown.
(c) The agent marked by an asterisk is released and deconstruction begins: the
pale blue cell is either empty or a placed agent. (d) Agent a is escaping,
so sets agent b to force-releasing when it moves off. When agent b
reaches the position shown paler, it will set agent ¢ to force-releasing.

structure is stable. It instead attempts to make the equivalent
unsupported cantilever longer by first setting ciqrget to the
leftmost column it believes to be in the narrow section (line
[20). When it reaches this column in the placing mode, it
sets the agent on its left to force-releasing to gather
if it is still the first one left of the narrow section, instead of
attempting to place (line @) If ctarger = 1 here, the active
agent instead sets the agent above to force-releasing
to escape, thus initiating the removal phase (Fig. with
the pale blue cell unoccupied) and enters the escaping
mode itself (lines - . Agents draw from p..;(c) (line
[AT) in two scenarios: if the placement was not possible due
to violations of the continuity condition, as in the bridge
optimisation algorithm, but also after attempting to release
an adjacent agent. In this algorithm p.,(c) is calculated
from measurements in links along the top and bottom of the
structure, and is set to O left of the narrow section.

The escaping mode is modified to describe agents im-
plementing the removal phase, where the structure is dis-
mantled columnwise from the left. Before agents make their
first step in this mode, they set the agent below them to
force-releasing to escape (line 30). They then travel
up their column and right along the top of the structure to
position (0, L), where they exit the simulation. When the agent
that was originally at the bottom of column c reaches the top
of column c+1, it triggers the agent at the top of this column
to release (line 30| and Fig. 2d). If there are agents below
one force-releasing to escape that are not connected to
the right side of the structure, then these agents will become
force-releasing to gather first to maintain continuity
(Fig. 2b] if the asterisked agent is force-releasing to
escape).

Agents still timeout if they have been stationary for too
many timesteps, but now 7 = § (line [53). Before assessing
this, each agent checks those around it to see if any additional
behaviours should be triggered. If the agent is inside a canyon,
it will tell the one to its left to enter the force-releasing
mode to gather (lines 5] — 6] and Fig. [2a), so that the
equivalent unsupported cantilever is extended and congestion

s,
ng EZH M
9 1@ Fc! ((J

®
(a)

Fig. 3. (a) Cutting off the columns to the left of the narrow section (shown
paler) reveals the internal shear force S, axial force F', and moment M.
This represents case of (b), which can be decomposed into the sum of
the separate loading cases @ - @ The double-headed arrow g denotes the
acceleration due to gravity, and the fixed supports are shown in grey.

around canyons is reduced. If the agent is below one that
is force-releasing to escape, then it switches to the
placing mode, and sequentially selects c;qrger to place in
the closest column to its right that satisfies the continuity
condition (lines 7] — [@8): it therefore leaves the area below
where the removal phase is occurring without obstructing
other agents. If the agent is in position (2,1) and there is
a placed agent to its right, it initiates the removal phase (lines
(9] — [B0] and Fig. with the pale blue cell occupied) as
we assume the structure is unlikely to get any more stable.
Finally, if the agent ends its step in row 1 or left of one that
is force-releasing to escape, it swaps to escaping

(lines [51] - B2).
C. Forces in the Equivalent Unsupported Cantilever

During deconstruction, active agents are informed about the
force distribution in the structure when it is supported at both
ends. However, these agents are ultimately trying to build a
cantilever that will only be supported from the right side, so
they should place themselves so as to reduce the forces in the
equivalent unsupported cantilever. This requires each agent to
convert the forces in the bridge into what they would be in this
cantilever. It would be possible to calculate this using the truss
approach employed by the simulator, but this typically requires
eigenvalue calculation, thus is algorithmically complex and
intractable for the low-powered processors commonly found
on modular robotic hardware, especially for large structures.

A faster calculation can be by each agent using the principle
of superposition [4]. The bridge in Fig. Bh can be split on
the left face of column 2 to give the equivalent unsupported
cantilever (shown darker), which has the loads shown in
case (1) of Fig. . Agents measure M and F' under this
loading configuration, but would like to obtain M and F' for
the equivalent unsupported cantilever under gravity, loading
case (2). This can be approximated by subtracting the force
distributions under loading cases (3) — (5) from case (D).

The active agent is informed of measurements of S, F,
and M made by the placed agent at this location. Therefore
the stress distribution under these additional loading configu-
rations can be approximated by elastic beam theory [4] once
the active agent reaches column L as it has obtained all the
available force information and measured the heights of each

v

(a) (b)

Fig. 4. Approximating the stress force distribution due to an arbitrary known
loading (not shown), with the fixed support shown in grey. (a) The outlines of
a collection of agents arranged as a cantilever, where the filled region denotes
the cantilever profile used to calculate the approximate force distribution. (b)
A cut through this cantilever to remove the paler portion reveals the internal
longitudinal stress distribution o a distance y from the neutral axis (the dash-
dotted line, assumed to be at the centroid of the cross-section). The highlighted
regions of this distribution are used to calculate the equivalent M and F' on
the left faces of the agents shown in purple.

column. The structure is modelled as a cantilever whose height
varies continually between these known heights (Fig. [a),
which is analysed using elastic beam theory to calculate the
distribution of the longitudinal stress o across the faces of
each column of agents. Equivalent M and F' in the links of
the top and bottom agents in each face are calculated from
this distribution (Fig. {#b). For these loads, o is a polynomial
function of the structure’s geometric parameters and the known
loads S, F, and M, so this calculation is quick to make.
Note that forces can only be superimposed like this for linear
elastic materials deflecting a small amount [4], and we are
only modelling a simplified case of the stress on this face
for a structure that is similar but not identical to the actual
equivalent unsupported cantilever. The values will therefore
only be approximate, but are still useful in improving p..;(c)
so that agents place in columns more suitable to reinforce the
equivalent unsupported cantilever.

D. Active Links

In order to prevent active agents providing support to the
structure, they choose a single face to attach with by their
active link. If an agent is connected to another agent’s active
link then it does not move so as to prevent the other becoming
unsupported. Usually, the active link is set to the bottom face
of the agent when it is above row 1, and on the top face
otherwise. Exceptions are made when there is no agent on
the normal connection face, or connecting on this face would
prevent movement in the next step, as described below.

1) Escaping the Structure: When agents are escaping the
structure, they pass through the dimension perpendicular to
the 2D plane containing the majority of the agents. The active
link is therefore set to the face in the direction of this plane.

2) Above or in row I: The active link of agents at the
unsupported tip in row 1 is always set to the right face (Fig.[5a
purple). The active link of agents in row O will be the right
face if no agent is below it (Figs. [5a & [5b] green).

3) Canyons: When the active agent is inside a canyon, it
moves up to row 2 then back down to the exit. Agents swap
what side of the inflection point they believe they are on when

Fig. 5. Setting active links in special circumstances. Placed agents are shown
in blue, fixed supports in grey, and active agents in other colours. Each agent’s
active link is shown by the small orange-bordered square of matching colour.
(a) and (b) show scenarios when active agents are around the tip. (c) and (d)
show an active agent entering and leaving a canyon, where the colour gets
paler to denote the position in subsequent timesteps as the red motion arrow
is followed. (e) shows the situations considered in cantilever construction, and
their equivalents shown in paler colours when the same situation occurs on
the other side of the inflection point (adapted from [3]], Fig. 4).

they reach the top of the canyon. The active link is set to the
top face when at the top of the canyon, and otherwise to the
left face when on the left side of the inflection point and vice
versa (Figs. [5c] & [Bd).

4) Mirroring of cantilever cases: During cantilever con-
struction, the active link is set to the left face if either (i)
there is no agent above, (ii) there is an active agent above
and a placed agent on the left, or (iii) the agent in question
is moving upwards, there is an active agent to its left, and an
active agent above it that is not swapping [3]]. Here we include
the mirror of these conditions about the vertical axis to allow
agents to set their active link to their right face when right of
the inflection point (Fig. [5e]red, purple, and cyan respectively).

E. Swapping

If two agents travelling in opposite directions encounter
each other, they usually exchange information and become
one another. However, there are certain situations where they
should not swap and instead remain stationary or temporarily
turn around to allow space to be made for each other to move
into, as outlined below.

1) Direction: Since agents advance in a random order, it
is possible that two agent moving in the same direction will
attempt to swap. In this situation the swap should not take
place. The initiating agent will normally abort the swap and
remain stationary (Fig. [6a) but if it is attached to the agent
it is trying to swap with, it will step backwards in the next
timestep to allow the other agent to vacate this space (Fig. [6b).

2) Around the tip: As explained in Section|IV-B} any agents
at the tip during the deconstruction algorithm will swap to
the escaping mode. If an agent attempts to swap with an
escaping agent, it will also switch to the escaping mode,
thus its direction will reverse as in Fig.

3) Passing through: If an agent is blocked from passing
through the structure by another active agent it will wait

()

Fig. 6. Special behaviours when agents should not swap information with
each other. Active agents are shown in yellow (as a circle if they are passing
through the structure), placed agents in blue, and the fixed supports in grey.
Active links are shown as small yellow squares with orange borders. Salient
directions of travel are shown by black arrows, and overrides are shown in
red. Agents marked with a red asterisk will skip over the canyon instead of
entering it. Equivalent behaviours exist for the same situations mirrored about
the vertical axis.

for this space to clear instead of swapping (Fig. [6d). Each
algorithm only allows agents to pass through the structure in
one direction, so this is a special case of (1).

4) Within canyons: Canyons represent a significant bottle-
neck in agent motions as each would like to pass up and
down the whole canyon. The total time that colliding agents
spend in canyons is reduced by not swapping agents here, and
instead making the lower agent pass over the canyon without
visiting the top unless strictly necessary. The agents marked
by an asterisk in Figs. [6e] — [6g| are currently on the left of
the canyon, and would usually travel up it, but instead swap
to the right of the canyon and carry on with their motion. If
the lower agent is in the gathering mode, the higher agent
will share its measurements of M and F' in this column with
the lower agent. If the lower agent is in the placing mode
and has set Ciqrger to this column, it instead draws another
Ctarget from peo(c) in the bridge optimisation algorithm. In
the deconstruction algorithm, the swap can continue if the
lower agent will set the agent on the left of this column to
force-releasing, otherwise it scales p..(c) to be 0 in
and left of the canyon, then draws another ciqrget-

5) Different sides of canyon: It is also possible that agents
could attempt to swap when they are outside a canyon but
on opposite sides of it. If they are not attached to each other,
the agent that is not directly below the canyon will abort the
swap and remain stationary (Figs. [6h] & [61). If the agents are
attached, the lower one will take a step backwards to allow
the other to vacate the space in the next timestep (Fig. [6]).

When agents step backwards, they will occasionally be
required to move into a fixed support. In this case, they place
at this location instead, so future agents can step over them.

—— Weak links 7

~
(=]

—— Medium links

=)
2
g T
g 80 Strong links ! L /’ 60
2 |— Brige Y g
S ---= Cantilever .. fore 2 505
%D 607 oo Reduction:” -',;, v 'g
Gy 2 4 o
o 3 40 5
3)
E 40 30 &
= Q
g 20 &
g 20
| 10
=
0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Structure length (m)
Fig. 7. The minimum number of agents required to build stable bridges

(solid lines) or cantilevers (dashed lines) of a given length. Dotted lines show
the percentage of agents in the cantilever that can be removed to leave an
optimal bridge of the same length.

V. SIMULATION RESULTS AND DISCUSSION

The algorithms were tested for the same link strengths as
the cantilever construction in [3]: weak, medium, and strong
links refer to [Mallowablea Fallowable] = [].39NHI7 579 N],
[42.6 Nm, 1159 N], and [86.9 N m, 1738 N] respectively. Weak
links were tested for initial configurations with L &
{1.2,1.4,1.6}m, links of medium strength were tested for
L € {1.4,1.6,1.8,2.1}m, and strong links were tested for
L e{14,1.6,1.8,2.1,2.3}m. The number of active agents in
each simulation at a time was varied in bridge optimisation by
setting 5 € {0.01,0.05,0.1,0.2,0.3}, and in deconstruction by
setting 0 € {6,8,10,12}. 100 trials were performed for each
setting, with simulations stopping when either 50 steps passed
without the structure changing, or no agents remained.

A. Offline Optimal Bridges

Optimal bridges were generated offline for each link
strength for N < 40 agents. As shown in Fig. [/} this allows
for optimal bridges to be compared to all lengths of optimal
cantilever generated in [3l], which are those with N < 100
agents. As expected, stronger links allow bridges of a given L
to be built with fewer agents. Additionally, fewer agents are
required to build stable bridges than cantilevers of equal L,
with the difference increasing for longer structures. For the
structures tested here, up to 73% of the agents in an optimal
cantilever can be removed to create an optimal bridge of equal
L. For all optimal bridges found, N < 2L so only the first
row can span the whole gap: this implies that additional full
rows are inefficient for the L considered here, supporting the
constraint that all valid bridges produced by the algorithms
include a narrow section.

B. Forces in the Equivalent Unsupported Cantilever

An example of calculating the forces in the equivalent
unsupported cantilever through superposition is shown in
Figure 8] in which values of M and F in row links along the
top and bottom of the structure are plotted with and without
the superposition correction applied to the measurements. It

is seen that the correction is not perfect, but the difference
with the unsupported cantilever case is significantly reduced in
almost all links compared to using the raw measurements from
the bridge. The probability an active agent would calculate
of placing in each column is also plotted for weak links.
The link on the right of column 7 is not critical in the
bridge configuration, but would be critical in the equivalent
unsupported cantilever. When the correction is made, there
is a high probability of placing here, which would reduce -y
in this link in the equivalent unsupported cantilever. Without
the correction, the probability distribution is much flatter so
it is harder for agents to differentiate between columns that it
would be effective to place in or not.

C. Bridge Optimisation

Each trial of the bridge optimisation algorithm was ini-
tialised from a different randomly-selected trial of the parallel
cantilever self-assembly algorithm of [3] with the same link
strength and 10 timesteps between agents when the structure
reaches length L. The Supplementary Material contains an-
imations of example bridge optimisation trials. They show
that trials typically begin with a large number of agents
releasing, as the structure is initially configured inefficiently.
The link connecting the structure to the right support is often
critical to begin with, but is quickly reinforced. The remaining
active agents leave the structure, occasionally forming queues,
particularly around canyons, but the algorithms are observed
to avoid deadlocks in all trials. Over time, the number of active
agents decreases and the changes in the structure become
more minor. The final configuration contains significantly
fewer agents than the initial configuration. The Supplementary
Material also shows a trial where agents travel along the top
of the bridge as it is reconfigured, illustrating how the bridge
enables other agents to explore new areas, and showing the
robustness of the algorithm to different scenarios.

The average performance of the bridge optimisation algo-
rithm is shown in Fig. [0} During each trial, the number of
agents in the structure first decreases at a high rate, then
slows down as the optimum number of agents is approached
(Fig. [9d). This Figure is drawn for links of medium strength
and L = 1.6 m, but the behaviour is similar for all tested pa-
rameter settings. Larger probabilities of leaving result in faster
optimisation, but the effect is minimal for P,¢jeqse > 0.2. The
cost for this faster optimisation is higher maximum v during
construction. This occurs as there are more agents moving
around the structure without providing any support to it at any
time, thus the measured M and F’ values are typically higher
than if there are only a few active agents moving at once.
This means the force information the active agents receive is
outdated by the time they reach a position to reinforce the
structure. Additionally, the agents sometimes cannot reach the
best locations before timing-out due to congestion.

Figs. [Ob] and show results across different L for
Preiease = 0.2. Fig. @] shows that the number of agents
remaining after optimisation is significantly lower than the ini-
tial configuration for all parameter settings. The final number

Links along bottom of structure

Sensor values

(a) 1.4 (b)

2

10 £ =

3 z

058 B

{ . . k= g

0.0 0.5 1.0 =

0.0 =

Distance along structure (m)

Measured (bridge)
Equivalent unsupported
cantilever (true)

Equivalent unsupported
cantilever (calculated)

Absolute error (Nm)

© %D 0.6 T-""Measured A
51 n —
= 0.4 —~Caleulated 1 Z i Z. Error with true equivalent
- ,' “ < 200 5 unsupported cantilever
g ;0 “5) S e Measured
5 0.2 1 I = £
£ II ! = T PP Z === Calculated
o h A % LT z
& 0.0 T T =200 1 7 1 <
0.0 0.5 1.0 T T T T T T T T 0
Distance along structure (m) 0.00 025 050 0.75 1.00 0.00 025 0.50 0.75 1.00

Distance along structure (m)

Fig. 8. (a) An example bridge highlighting its equivalent unsupported cantilever (darker): links are weak and coloured by criticalness. (b) The measured values
of M and F' in row links along the top and bottom of this structure are compared to the true values that would be measured in the equivalent unsupported
cantilever, and the values calculated by superposition. (c) The probability of placing in each column as calculated from the measured values and the values

calculated by superposition.

@ Prcrease(0)
§n 2050 — (.01
< g
SE40 0.5
o 8 0.1
2530
Z 20 —().3
10 Optimum|
0 200 400 600 800
Step number
® Length (m)
£ = ;% -
<2 %{- . . 14
2% = L 16
5 =" (s
i 0 Weak Medium Strong 21
Link strength 23
© 23] Moment Axial force
£
8
E2
5
£
g1
3
= 0
Weak Medium Strong Weak Medium Strong
Link strength

Fig. 9. Performance of the bridge optimisation algorithm shown for different
bridge lengths. Results are averaged over 100 trials. (a) The effect of varying
Preiease(0) (given the symbol 8) on the rate of agent removal, shown for a
bridge of length 1.6 m with links of medium strength; error bars show the 5
and 95t percentiles. (b) and (c) show trials with 8 = 0.2 with vertical red
lines show the 95% confidence intervals, and boxplots showing the equivalent
data during construction of the cantilevers used as the starting configurations.
(b) The number of agents remaining in the bridge after optimisation; horizontal
red lines show the optimum number of agents. (c) The maximum moment and
axial force criticalness throughout the optimisation.

of agents is closer to the optimum for stronger and shorter
structures. Fig. shows that the maximum ~ during bridge
optimisation is typically lower than during the initial cantilever
construction, so assuming the cantilever construction is safe,
the bridge optimisation also will be.

D. Deconstruction

Trials of the deconstruction algorithm were initialised from
a different random trial of the bridge optimisation algorithm
for § = 0.2. Animations of the deconstruction algorithm are
presented in the Supplementary Material. They show how
active agents initialise and place themselves in locations that
reduce v in the equivalent unsupported cantilever, although
these locations may not be the same ones that reduce v in the
current bridge structure. The highest v is typically observed
just before and after the structure is released from the left
support, but it is quickly reduced as the algorithm enters the
removal phase. There is then a constant flow of agents exiting
the simulation at a high rate.

Fig. [I0] shows the average behaviour of the algorithm. The
effect of varying ¢ is shown for links of medium strength with
L = 2.1m in Fig. [I0a This clearly shows the reinforcement
and removal phases as the regions where the number of agents
in the simulation increases and decreases respectively. Lower
0 results in more agents being added to the simulation at
a faster rate, so they are unable to place in good locations
due to congestion around the structure, meaning more agents
are required before the removal phase can begin. However,
the phase change occurs earlier in the simulation, so since
agents leave the structure in the removal phase at the same
rate regardless of J, the overall number of steps taken to
deconstruct the structure is similar for all tested. More agents
were required during the reinforcement phase than in the
optimal cantilever of this length, but the discrepancy decreases
with higher 0. Similar behaviour is observed for the other L
and link strengths tested.

Comparisons are also made across different L and link
strengths by holding § = 10 timesteps. Fig. [T0b] shows the
number of agents in the structure when the removal phase
begins under these circumstances, illustrating how structures
that are longer or have weaker links require more agents. The
number of agents required is greater than in both the optimal

(a) 140
120
100

Insertion delay
(timesteps)

Optimum for
stable cantilever

e

Number of agents
remaining

D B N ®
S OO OO
[E—
N o

0 250 500 750 1000
Step number [Boxplot fill
(b) Cantilever Length (m)
2, 100 [Bridge
52 . 12
g
<35 % I 14
5% : & = 16
S = .
£z . s
- 0 T 21
Weak Medium Strong
Link strength /23
() 27 ! Moment Axial force
g e Barplot fill
g 2 f '%‘ 3 Reinforcement
£ ’ ; é i Removal
Q
£
g
o]
<
=
Weak Medium Strong Weak Medium Strong
Link strength
Fig. 10. Performance of the deconstruction algorithm shown for different

bridge lengths. Results are averaged over 100 trials. (a) The effect of varying
the delay between agents being inserted § on the rate of deconstruction,
shown for a bridge of length 2.1 m with links of medium strength; error
bars show the 5™ and 95" percentiles. (b) and (c) show trials with § = 10
timesteps with vertical red lines showing the 95% confidence intervals. (b)
The number of agents in the bridge when the removal phase begins; horizontal
red lines show the optimum number of agents in a stable cantilever of this
length, and boxplots show the agents in the prior cantilever construction
and bridge optimisation stages separately. (c) The maximum moment and
axial force criticalness throughout the deconstruction, showing the differences
in the reinforcement and removal phases; boxplots show the maximum
criticalnesses during the prior cantilever construction and bridge optimisation
stages combined.

cantilever and the original bridge, but similar to that in the
original cantilever.

Fig. shows the maximum v during deconstruction with
0 = 10 timesteps, which allows for comparison between the
two phases and against the prior cantilever construction and
bridge optimisation stages. The maximum 7 during decon-
struction is higher for longer structures with weaker links,
and is usually similar or less than that incurred during prior
construction stages. The largest v typically occurs during the
reinforcement phase, indicating that the agents successfully
place themselves in locations that will reduce v™ in the
equivalent unsupported cantilever, but these locations are not
necessarily good for reducing 4™ at that instant. In contrast,
the maximum v occurs during the removal phase, indicating
that agents do not place themselves to efficiently reduce v
in the equivalent unsupported cantilever: the animations in the
Supplementary Material show this high v*" normally occurs
in the top right corner of the structure. These behaviours can
be explained as the largest errors in the approximated M and
F' are seen for I in links along the top of the structure close
to the right support (Fig.). These errors means that agents
do not place in locations that effectively reduce v/ here.

VI. CONCLUSION

This paper presents two distributed algorithms to reconfig-
ure self-assembled structures that bridge a void, while taking
into account local force information to build structures that
will not collapse under self-weight. The first optimises the
initial bridge by reducing the number of agents within it to
allow these agents to accomplish other tasks. The second
enables the structure to be safely deconstructed when no longer
required, leaving all agents on the opposite side of the void to
where they began.

The bridge optimisation algorithm is shown to remove the
majority of the agents from the original configuration to leave
a structure that is near-optimal with respect to the number
of agents required to safely span this gap. The maximum
moment and axial force in links during this optimisation com-
pares favourably with those during construction of the initial
bridge. The deconstruction algorithm is capable of successfully
deconstructing all the structures tested, usually requiring a
similar number of agents to the non-optimised bridge, but
often exceeding the maximum criticalness experienced during
its construction. Having fewer simultaneous active agents led
to the bridge optimisation algorithm creating bridges with
fewer agents, and to the deconstruction algorithm requiring
fewer agents to safely disconnect from the left support. Longer
structures and those with weaker links required more agents
and experienced greater criticalness during the operation of
each algorithm.

Future work could account for the dynamic forces incurred
as agents move from one position to the next. The algorithms
could also be extended to 3D to explore a wider and more
realistic range of structure configurations. Another area for
future work would be to implement these algorithms on real
robotic hardware to explore how they perform in the real-
world.

REFERENCES

[1] Carl Anderson, Guy Theraulaz, and J-L Deneubourg.
Self-assemblages in insect societies. Insectes sociaux,
49(2):99-110, 2002.

Marta Andrés Arroyo, Sarah Cannon, Joshua J Daymude,
Dana Randall, and Andréa W Richa. |A stochastic
approach to shortcut bridging in programmable matter.
Natural Computing, 17(4):723-741, 2018. URL https:
/Nink.springer.com/article/10.1007/s11047-018-9714-x.
Edward Bray and Roderich Gro. Distributed Self-
Assembly of Cantilevers by Force-Aware Robots. In
2021 International Symposium on Multi-Robot and
Multi-Agent Systems (MRS), pages 110-118. IEEE,
2021. URL https://ieeexplore.ieee.org/abstract/document/
9620697.

Stephen H Crandall, Norman C Dahl, and Thomas J
Lardner. An Introduction to the Mechanics of Solids.
McGraw-Hill, 2nd edition, 1978. ISBN 0-07-013441-3.
Jay Davey, Ngai Kwok, and Mark Yim. Emulating self-
reconfigurable robots-design of the SMORES system. In
2012 IEEE/RSJ international conference on intelligent

(2]

(3]

(4]

(5]

https://link.springer.com/article/10.1007/s11047-018-9714-x
https://link.springer.com/article/10.1007/s11047-018-9714-x
https://link.springer.com/article/10.1007/s11047-018-9714-x
https://link.springer.com/article/10.1007/s11047-018-9714-x
https://ieeexplore.ieee.org/abstract/document/9620697
https://ieeexplore.ieee.org/abstract/document/9620697
https://ieeexplore.ieee.org/abstract/document/9620697
https://ieeexplore.ieee.org/abstract/document/9620697
https://ieeexplore.ieee.org/abstract/document/6385845
https://ieeexplore.ieee.org/abstract/document/6385845

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

robots and systems, pages 4464-4469. IEEE, 2012. URL
https://ieeexplore.ieee.org/abstract/document/6385845.
David Guichard. An introduction to combinatorics and
graph theory. Whitman College-Creative Commons,
2020.

Bert Holldobler and Edward O Wilson. The multiple re-
cruitment systems of the African weaver ant Oecophylla
longinoda (Latreille)(Hymenoptera: Formicidae). Behav-
ioral Ecology and Sociobiology, 3(1):19-60, 1978. URL
https://link.springer.com/article/10.1007/BF00300045.
Belkacem Khaldi and Foudil Cherif. An overview of
swarm robotics: Swarm intelligence applied to multi-
robotics. International Journal of Computer Applica-
tions, 126(2), 2015.

Chao Liu, Qian Lin, Hyun Kim, and Mark Yim.
SMORES-EP, a Modular Robot with Parallel Self-
assembly. CoRR, abs/2104.00800, 2021. URL https:
//arxiv.org/abs/2104.00800.

Melinda Malley, Bahar Haghighat, Lucie Houe, and
Radhika Nagpal. Eciton robotica: Design and algorithms
for an adaptive self-assembling soft robot collective. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4565-4571. IEEE, 2020. URL
https://ieeexplore.ieee.org/abstract/document/9196565.
Nathan Melenbrink and Justin Werfel. Local force
cues for strength and stability in a distributed robotic
construction system. Swarm Intelligence, 12(2):129—
153, 2018. URL https://link.springer.com/article/10.
1007/s11721-017-0149-2.

Nathan Melenbrink, Paul Kassabian, Achim Menges, and
Justin Werfel. Towards Force-aware Robot Collectives
for On-site Construction. In ACADIA 2017:Disciplines
& Disruption, pages 382-391, 2017. URL http://papers.
cumincad.org/cgi-bin/works/paper/acadial 7_382.
Nathan Melenbrink, Panagiotis Michalatos, Paul Kass-
abian, and Justin Werfel. Using local force measurements
to guide construction by distributed climbing robots. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4333-4340. IEEE,
2017. URL https://ieeexplore.ieee.org/abstract/document/
8206298,

Francesco Mondada, Michael Bonani, André Guignard,
Stéphane Magnenat, Christian Studer, and Dario Flore-
ano. Superlinear physical performances in a SWARM-
BOT. In European Conference on Artificial Life, pages
282-291. Springer, 2005. URL https://link.springer.com/
chapter/10.1007/11553090_29,

Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut,
Stéphane P. A. Bordas, Julien Bourgeois, and Jakub
Lengiewicz. Distributed prediction of unsafe reconfigura-
tion scenarios of modular-robotic Programmable Matter.
CoRR, abs/2006.11071, 2020. URL https://arxiv.org/abs/
2006.11071.

Chris R Reid, Matthew J Lutz, Scott Powell, Albert B
Kao, Iain D Couzin, and Simon Garnier. |Army ants
dynamically adjust living bridges in response to a cost—

(17]

(18]

[19]

[20]

(21]

(22]

(23]

benefit trade-off. Proceedings of the National Academy
of Sciences, 112(49):15113-15118, 2015. URL ttps:
/fwww.pnas.org/content/112/49/15113.short.

John W Romanishin, Kyle Gilpin, Sebastian Claici, and
Daniela Rus. 3D M-Blocks: Self-reconfiguring robots
capable of locomotion via pivoting in three dimensions.
In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1925-1932. IEEE, 2015. URL
https://ieeexplore.ieee.org/abstract/document/7139450.
Michael Rubenstein, Alejandro Cornejo, and Radhika
Nagpal. Programmable self-assembly in a thousand-robot
swarm. Science, 345(6198):795-799, 2014. URL https:
/Iwww.science.org/doi/full/10.1126/science.1254295.
Kasper Stoy, David Brandt, and David Christensen. Self-

Reconfigurable Robots: An Introduction. MIT press,
2010.
Petras Swissler and Michael Rubenstein. Reactive-

Build: Environment-Adaptive Self-Assembly of Amor-
phous Structures. In International Symposium Dis-
tributed Autonomous Robotic Systems, pages 363-375.
Springer, 2021. URL https://link.springer.com/chapter/
10.1007/978-3-030-92790-5_28.

Niken Syafitri. Self-organising assembly using swarm
robots. PhD thesis, University of Southampton, 2018.
URL https://eprints.soton.ac.uk/418969/.

Ritchie Vink. anaStruct. 2021. URL ttps://github.com/
ritchie46/anaStruct.

Justin Werfel, Kirstin Petersen, and Radhika Nag-
pal. Designing collective behavior in a termite-inspired
robot construction team. Science, 343(6172):754-758,
2014. URL https://www.science.org/doi/full/10.1126/
science.1245842.

https://ieeexplore.ieee.org/abstract/document/6385845
https://link.springer.com/article/10.1007/BF00300045
https://link.springer.com/article/10.1007/BF00300045
https://link.springer.com/article/10.1007/BF00300045
https://link.springer.com/article/10.1007/BF00300045
https://arxiv.org/abs/2104.00800
https://arxiv.org/abs/2104.00800
https://arxiv.org/abs/2104.00800
https://arxiv.org/abs/2104.00800
https://ieeexplore.ieee.org/abstract/document/9196565
https://ieeexplore.ieee.org/abstract/document/9196565
https://ieeexplore.ieee.org/abstract/document/9196565
https://link.springer.com/article/10.1007/s11721-017-0149-2
https://link.springer.com/article/10.1007/s11721-017-0149-2
https://link.springer.com/article/10.1007/s11721-017-0149-2
https://link.springer.com/article/10.1007/s11721-017-0149-2
https://link.springer.com/article/10.1007/s11721-017-0149-2
http://papers.cumincad.org/cgi-bin/works/paper/acadia17_382
http://papers.cumincad.org/cgi-bin/works/paper/acadia17_382
http://papers.cumincad.org/cgi-bin/works/paper/acadia17_382
http://papers.cumincad.org/cgi-bin/works/paper/acadia17_382
https://ieeexplore.ieee.org/abstract/document/8206298
https://ieeexplore.ieee.org/abstract/document/8206298
https://ieeexplore.ieee.org/abstract/document/8206298
https://ieeexplore.ieee.org/abstract/document/8206298
https://link.springer.com/chapter/10.1007/11553090_29
https://link.springer.com/chapter/10.1007/11553090_29
https://link.springer.com/chapter/10.1007/11553090_29
https://link.springer.com/chapter/10.1007/11553090_29
https://arxiv.org/abs/2006.11071
https://arxiv.org/abs/2006.11071
https://arxiv.org/abs/2006.11071
https://arxiv.org/abs/2006.11071
https://www.pnas.org/content/112/49/15113.short
https://www.pnas.org/content/112/49/15113.short
https://www.pnas.org/content/112/49/15113.short
https://www.pnas.org/content/112/49/15113.short
https://www.pnas.org/content/112/49/15113.short
https://ieeexplore.ieee.org/abstract/document/7139450
https://ieeexplore.ieee.org/abstract/document/7139450
https://ieeexplore.ieee.org/abstract/document/7139450
https://www.science.org/doi/full/10.1126/science.1254295
https://www.science.org/doi/full/10.1126/science.1254295
https://www.science.org/doi/full/10.1126/science.1254295
https://www.science.org/doi/full/10.1126/science.1254295
https://link.springer.com/chapter/10.1007/978-3-030-92790-5_28
https://link.springer.com/chapter/10.1007/978-3-030-92790-5_28
https://link.springer.com/chapter/10.1007/978-3-030-92790-5_28
https://link.springer.com/chapter/10.1007/978-3-030-92790-5_28
https://link.springer.com/chapter/10.1007/978-3-030-92790-5_28
https://eprints.soton.ac.uk/418969/
https://eprints.soton.ac.uk/418969/
https://eprints.soton.ac.uk/418969/
https://github.com/ritchie46/anaStruct
https://github.com/ritchie46/anaStruct
https://github.com/ritchie46/anaStruct
https://www.science.org/doi/full/10.1126/science.1245842
https://www.science.org/doi/full/10.1126/science.1245842
https://www.science.org/doi/full/10.1126/science.1245842
https://www.science.org/doi/full/10.1126/science.1245842

	Introduction
	Problem Formulation
	Offline Structural Optimisation
	Algorithm Design
	Bridge Optimisation
	Deconstruction
	Forces in the Equivalent Unsupported Cantilever
	Active Links
	Escaping the Structure
	Above or in row 1
	Canyons
	Mirroring of cantilever cases

	Swapping
	Direction
	Around the tip
	Passing through
	Within canyons
	Different sides of canyon

	Simulation Results and Discussion
	Offline Optimal Bridges
	Forces in the Equivalent Unsupported Cantilever
	Bridge Optimisation
	Deconstruction

	Conclusion

