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Abstract—Cables are ubiquitous in many settings, but are
prone to self-occlusions and knots, making them difficult to
perceive and manipulate. The challenge often increases with cable
length: long cables require more complex slack management
and strategies to facilitate observability and reachability. In
this paper, we focus on autonomously untangling cables up
to 3 meters in length using a bilateral robot. We develop
new motion primitives to efficiently untangle long cables and
novel gripper jaws specialized for this task. We present Sliding
and Grasping for Tangle Manipulation (SGTM), an algorithm
that composes these primitives with RGBD vision to iteratively
untangle. SGTM untangles cables with success rates of 67%
on isolated overhand and figure eight knots and 50% on more
complex configurations. Supplementary material, visualizations,
and videos can be found at https://sites.google.com/
view/rss-2022-untangling/home.

I. INTRODUCTION

Long cables are commonplace in household and industrial
settings, from wires in homes to cables in manufacturing
plants to ropes in sailing [13, 15, 21, 27]. Cables—defined
here as single-dimensional deformable objects—often tangle
and form knots, which can be unsightly, unsafe, and reduce
utility. However, autonomously manipulating cables to un-
tangle them is challenging due to their infinite-dimensional
configuration spaces and tendency to form self-occlusions
and knots [3, 20, 22, 19, 11]. These challenges grow with
increasing cable length as longer cables allow more knots
to form. Additionally, as robots untangle one segment of a
cable, the other cable segments, which we define as the slack,
could form new knots, occlude visibility, or impede grasping.
The stiffness of cables further adds to the slack management
challenge, because untangled slack may appear to hold its
shape even without a knot present. Robustly manipulating long
cables requires policies that perceive cable configurations and
effectively manage slack during manipulation.

Prior work in robot cable untangling considers short cables
and studies how to untangle dense knots, which have no
open space between adjacent cable segments [3, 20, 22], or
considers longer cables, estimated to be no longer than one
meter in length, whose paths can be clearly traced using
analytic methods [11]. This paper studies untangling knots
in cables up to 3 m long that have sufficient stiffness to
prevent the formation of dense knots. Untangling such cables
requires policies to actively manage the slack created during
manipulation to prevent the formation of new knots and
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Fig. 1: Overview of Sliding and Grasping for Tangle Manipulation
(SGTM): SGTM untangles a long cable by (1) performing endpoint separation
to spread out the configuration, 2) shaking to reduce loops and reveal knots, 3)
performing a caged pull apart primitive to untangle a knot, and (4) performing
physical tracing to verify the only remaining loops are trivial.

crossings. We use overhead RGBD images for perception and
a bilateral YuMi robot.

This paper makes 3 contributions: (1) Novel gripper jaw
hardware for untangling that enables two modes of grasping:
caging and pinching. Caging grasps enable the cable to slide
along the gripper jaws without falling out, which is useful
for physically tracing along the cable. Pinching grasps firmly
hold the cable, preventing it from moving. (2) Three novel
bilateral manipulation primitives for cable untangling: shaking,
tracing, and caged pull-apart. Shaking moves can simplify
the cable state before attempting other primitives. Physical
tracing can slide along the cable to actively uncover knots
and loosen dense structures. Caged pull-apart actions can
loosen and undo knots using learning-based perception to
identify isolated knots in the scene. The caged pull apart
action slides apart from a knot center, avoiding the need
to pinch and regrasp the cable repeatedly to undo knots as
in prior work [20, 3, 22]. Building on our previous work,
this paper contributes a learning-based perception pipeline
which leverages RGBD sensing to identify cable endpoints and
knots [22, 20, 3], which are used to select and parameterize the
novel manipulation primitives. (3) A novel untangling algo-
rithm, Sliding and Grasping for Tangle Manipulation (SGTM)
(Fig. 1), to untangle cables of up to 3 meters in length from
starting configurations that contain up to 2 overhand and figure
8 knots (Fig. 2), as well as self-crossings that do not form
knots. To the best of our knowledge, this is also the first work
on robot cable untangling that considers cables up to 3 meters
with multiple knots.
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Fig. 2: Knots that SGTM Untangles: Left: an overhand knot. Right: a figure
8 knot.

II. RELATED WORK

A. Deformable Object Manipulation

Autonomously manipulating deformable objects such as ca-
bles (1D), fabric (2D), and bags (3D) is a challenging problem,
as such materials have near-infinite configuration spaces, form
self-occlusions, and are subject to complex dynamics. This
work focuses on cables, which can present particularly com-
plex configurations due to their tendency to form knots. While
recent years have seen significant progress in robot deformable
manipulation, for instance perception-driven algorithms for
untangling cables [3, 20, 22, 11], smoothing and folding
fabric [16, 24, 2, 5, 6], and placing objects into bags [17],
to the best of our knowledge, the task of autonomously
untangling long household cables remains unstudied.

Developing effective manipulation algorithms for de-
formable objects often involves choosing an abstract object
representation on which an algorithm can operate. Existing
work on deformable manipulation has leveraged a number of
approaches for representing deformable objects. For instance,
dense descriptors [1], which map object images to a pixel-
wise embedding, have been successfully applied to both cable
knot tying [19] and fabric folding and smoothing [2]. Yet, this
approach is not robust to the severe deformation and occlusion
common with lengthier cables. Other works attempt to address
this challenge by learning dynamics models of deformable
objects, which can then be used for planning [5, 23, 28, 9].
These methods have positioned non-knotted cables [28, 23]
and fabric [5, 28, 9] into target configurations. Yet, for heavily
self-occluded knotted cables, robust state estimation remains
challenging, while dynamics are governed by complex knot
structure. Instead of estimating the full state of the cable, our
work leverages perception-based keypoint prediction methods
and knowledge about the geometric problem structure.

Several works meanwhile propose end-to-end model-free
visuomotor learning approaches for deformable manipulation.
These include model-free reinforcement learning, which has
been applied successfully to fabric smoothing and folding [12,
25, 7] and straightening unknotted rope [25], as well as lever-
aging optical flow to predict fabric manipulation actions given
a target image [24]. Imitation learning approaches, which
require demonstrations, have also seen success in manipulating
fabric and non-knotted ropes [16, 17, 14]. However, these
model-free approaches are highly sample inefficient for cable
untangling, as they do not leverage geometric knowledge
specific to cable structure or untangling.

B. Cable Manipulation and Untangling
Existing works on robot cable untangling do not consider

long cables, such as those commonly found in households,
which pose additional challenges compared to short cables.
This paper extends several ideas from prior methods, which
use a combination of vision-based perception and domain
structure to extract the state features necessary for untangling.
Firstly, Lui and Saxena [11] start from initial configurations in
which the cable’s self-crossings are distinctly visible and use
RGBD sensing to extract the cable’s full state via classical fea-
ture extraction. The features are used to construct a graphical
representation of the cables’ self-crossings, which are used for
untangling. The cables in this work are of unspecified length
but do not appear to be longer than one meter in length.
Meanwhile, in [3, 22, 20], the robot does not perform full
state estimation and instead predicts keypoints to parameterize
open-loop untangling actions such as crossing removal and
pulling the endpoints apart. The robot untangles very densely
knotted single and multi-cable knots in short cables without
significant slack. Similar to these prior works, SGTM uses
RGBD sensing and predicts parameterized actions that do not
explicitly require full state estimation. However, while prior
works focus on short cables, SGTM is designed for long
cables, in which the cable’s underlying knot structure can be
significantly obfuscated due to the additional slack, which can
create a number of self-crossings and self-occlusions that are
not part of a knot.

This work defines novel motion primitives for cable un-
tangling and employs perception-based methods to detect
keypoints for executing these primitives. Several of these novel
manipulation primitives slide along the length of the cable,
which enable the robot to undo knots faster and physically
trace the cable to check for knots. Sliding motions in cable
manipulation were studied in [18] using a tactile gripper
with learning-based control to keep the cable centered in
the grippers when sliding along its length. Instead of using
tactile sensing to fix the cable in the grippers, we propose
a physical gripper augmentation that enables two grasping
modes without sophisticated control techniques: caging, which
enables sliding, and pinching, which constrains all movement
in the gripper (Figure 4). This approach allows for a lower-
profile gripper which can fit in tighter knot configurations and
can speed up manipulation time due to the absence of active
control. In addition, caging grasps enable gripper motion along
the cable without applying force to the cable, a mode in which
a tactile sensor could not collect feedback.

III. PROBLEM STATEMENT

A. Workspace Definition and Assumptions
We define an (x, y, z) Cartesian coordinate frame containing

a bilateral robot and a flat manipulation surface that is parallel
to the xy-plane. We assume that the workspace contains
an overhead RGB-D sensor facing the manipulation surface
from above and further assume that the rigid transformations
between the sensor, robot, and workspace coordinate frames
are known.



Fig. 3: Knot Definition: for a cable configuration at time t, ct, a knot exists
between two points (a, b) if pulling apart at those points will not result in
a straight cable. In this example, no knots exist in (0, a) and (b, 1); thus,
k(0, a; ct) = 0 and k(b, 1; ct) = 0. A figure 8 knot exists between indices
a and b, and so k(a, b; ct) = 1. Observe that (a, b) is the smallest interval
that contains the knot, such that K(ct) = {(a, b)}.

At the start of a trial (time t = 0), the manipulation
workspace entirely contains a cable C with cross-section radius
r and length l, which traces a continuous volume ct(s) :
[0, 1] → (x, y, z) in the workspace. The parameter s ∈ [0, 1]
is used to index into the path, with ct(s) corresponding to
the center of the circular cable cross-section with distance sl
from the endpoint defined as the first endpoint. The circular
slice lies in the plane orthogonal to the cable’s direction,
∇sct(s). We assume that the cable can be segmented from
the manipulation surface using color thresholding and that
in the starting configuration c0, the entire cable is contained
in the workspace. The initial cable configuration can form
self-crossings, which could include knots or loops. A cable
segment contains at least one knot if pulling it taut by pulling
cable segments on either side of it in opposite directions does
not result in a straight cable, i.e. one with no crossings. In
contrast, for simple unknotted loop structures, performing such
an action would straighten the cable. We assume that any knots
in the initial configuration are either overhand or figure 8 knots
(Fig. 2), and that the space within each knot is large enough to
fit both robot jaws inside. We assume that individual knots are
distinct, such that no knots are embedded within other knots.
We classify the initial cable configurations we consider into
tiers of difficulty in Section V.

B. Knot Definition

Let a, b ∈ [0, 1] be two indices on the cable’s path, where
a < b without loss of generality. We say that a knot exists at
time t between indices a and b if grasping and pulling apart the
points ct(a) and ct(b) with sufficient force does not straighten
the cable segment (i.e., by removing all crossings) between
a and b. We let k(a, b; ct) = 1 if a knot exists between a
and b on cable ct. For a particular cable configuration ct, we
can represent its knot structure by the minimal set of intervals

K(ct) = {(a1, b1), . . . , (an, bn)} containing a knot:

K(ct) = argminK(ct)∈
⋃∞

k=0([0,1]×[0,1])k

∑
(ai,bi)∈K(ct)

|bi − ai|

s.t. k(ai, bi; ct) = 1, ∀i ∈ {1, . . . , |K(ct)|},
ai < bi ∀ i; bi ≤ ai+1 ∀ i,

k(ã, b̃; ct) = 0 ∀ ã, b̃ s.t. bi ≤ ã ≤ b̃ ≤ ai+1, b0 := 0.

This definition finds the smallest interval surrounding each
distinct knot in the cable. For a given cable configuration ct,
the number of distinct knots is the number of intervals in
K(ct). This notation is illustrated in Figure 3 for a single figure
8 knot on a cable.

C. Task Objective

The goal of the cable untangling problem is to manipulate
the cable into a configuration ct such that K(ct) = ∅,
indicating that no knots exist in the cable. We call such a
configuration untangled. This is equivalent to the condition
that k(0, 1; ct) = 0, which implies that the cable can theoret-
ically be grasped at the endpoints and pulled apart to remove
all crossings. The cable may still have crossings in its ending
configuration; however, these crossings cannot form any knots.

1) Algorithm Inputs and Outputs: The algorithm is pro-
vided with overhead RGBD images as input, which are
received between manipulation actions. At each step in the
untangling process, the algorithm outputs either an open-loop
trajectory to execute with the bilateral robot or a termination
signal. To output a termination signal on completion, the
robot must detect that it has successfully untangled the cable.
Because the RGBD sensor uses structured light, the workspace
must be static during image capture.

2) Termination Condition: The untangling algorithm ter-
minates successfully if it outputs a termination signal and has
fully untangled the cable, such that K(ct) = ∅. The algorithm
terminates in failure if it outputs a termination signal τdone
when K(ct) ̸= ∅ or reaches a fixed timeout Ttimeout without
successfully completing the task.

3) Performance Metrics: We record the algorithm’s success
rate across three difficulty tiers of problem instances, as
described in Section V. We also report the time taken for the
algorithm to terminate in each trial, as well as the time taken
to first reach an untangled state, which may differ from the
total time if the algorithm takes additional time to identify that
it has fully untangled the cable.

IV. METHODS

SGTM (Figure 7) proceeds in iterations consisting of two
phases. In the first phase, SGTM actively manipulates the cable
to identify knots by pulling apart the endpoints, shaking the
cable, and tracing along the cable physically. In the second
phase, it identifies exposed knots and undoes them using a
novel bilateral manipulation primitive that cages the knot and
slides it apart. In this section we will describe 1) the novel
gripper jaw design, which allows multiple grasping modes
with a compact form factor and no additional moving parts; 2)



Fig. 4: Pinch-Cage (PC) Jaws. Left: a rendering of the design of the pinch-
cage gripper jaws, which attach to the YuMi’s standard white gripper. Center:
the cage grasp, in which the perpendicular ”foot” segment of the attachment
enables the cable to slide freely. Right: the pinch grasp, in which the cable
is held tightly, preventing slack from slipping through.

the manipulation primitives used as sub-components in SGTM;
3) the perception systems used, and 4) how SGTM uses these
components to untangle long cables.

A. Pinch-Cage (PC) Grippers

Long cables can limit the efficacy of pinch grasps, in
which both grippers firmly grasp the cable, because such
grasps are unable to efficiently manage slack between grippers.
Prior work demonstrates the promise of sliding grippers along
cables [18], and to this end we present a passive mechanical
design that facilitates pinch-pinch, cage-cage, and cage-pinch
grasps. The design, shown in Fig. 4, attaches to the YuMi
robot’s standard parallel jaw grippers. Each jaw includes
a perpendicular “foot” segment that facilitates both caging
grasps, where the jaws open partially and the feet prevent
the cable from slipping out, and pinching grasps, where the
jaws firmly grasp the cable. Caging grasps enable the cable
to freely slide inside the gripper, while pinch grasps impart
more force and prevent slack from slipping through. These
two modes of cable grasping enable a variety of manipulation
primitives that are particularly suitable for long cables, without
the need for sensing or closed-loop control.

B. Manipulation Primitives

SGTM employs 5 cable manipulation primitives which
are facilitated by the PC jaws and use an analytic grasp
planner which selects collision-free gripper poses such that
the grippers avoid each other as well as neighboring cable
segments.

1) Reidemeister move: To uncover the cable’s underlying
knot structure K(ct), the robot spreads it apart by pinching
both of the endpoints, ct(0) and ct(1), and pulling them 1.2
meters apart towards opposite ends of the workspace. This is
an example of a Reidemeister move in knot theory, and in this
case it serves to spread out slack to reveal knots.

2) Cable Shaking: The Reidemeister move requires both
cable endpoints to be visible and graspable. When this con-
dition does not hold, we leverage dynamic shaking actions,
a popular manipulation primitive in deformable manipula-
tion [4, 29]. In this paper, the robot performs shaking actions
to uncover occluded endpoints and loosen knot structure. If no
endpoints are identifiable, the robot computes a random point
on the cable’s mask in the overhead RGBD image. Using the

pointcloud from the RGBD image, the robot identifies and
pinches the 3D point corresponding to this point, cshake. After
pinching, the robot raises its arm 0.7 meters off the table
and executes a shaking motion by rotating the wrist joint 3
times by 2 radians, at a frequency of 1.5Hz, with a radius of
0.1 meters. These parameters were determined empirically to
maximize the disruption to the cable’s visual state. If exactly
one endpoint is visible and graspable, and the previous move
was not a shaking action, the robot pinches this endpoint,
cshake = ct(0) or cshake = ct(1).

We also make use of the shaking action as a recovery move
in case of any failures that may occur in other primitives.

3) Bimanual physical tracing: During bimanual physical
tracing, the robot slides along the cable until it visually
identifies either an endpoint or a knot. In this motion, the robot
first pinches two nearby points on the cable ct(strace,l) and
ct(strace,r) with the left and right arms respectively. Without
loss of generality, let the left arm be the pulling arm and the
right arm be the sliding arm. The robot alternates between
pinching and caging between the two arms to slide the cable
through one gripper with the other. The robot first cages the
cable with the sliding arm while the pulling arm pinches and
pulls the cable through by 0.1 meter chunks as shown in
Fig 5. After each chunk, the sliding arm pinches the cable
and the pulling arm cages the cable, allowing it to move
forward to meet the sliding arm without dropping or pushing
the cable. The robot iterates this procedure until it either
detects an endpoint or a knot approaching the sliding arm
from overhead images. The detection algorithms are described
in Section IV-C.

While sliding along the cable, the robot dangles the cable
0.45 meters above the work surface, causing loose loops to fall
away while knots remain. SGTM uses this behavior to closely
inspect the cable to actively locate knots in the presence of
excess slack.

This motion begins at an endpoint, so that during execution
the portion of cable that has been physically traced contains
no knots, an invariant useful for managing slack in subsequent
steps and indicating untangling success. If the robot slides
uninterrupted from one endpoint to the other without detecting
knots, it can verify that the entire cable contains no more knots.
This is used as a termination condition by SGTM.

4) Knot isolation: Immediately after physical cable tracing
terminates at a knot, we execute a slack management motion
which separates the knot in-hand from other slack accumu-
lated on the table; this primitive maximizes the likelihood of
successful untangling in future steps. During this action, the
arm holding the free endpoint places it toward one side of
the workspace, then moves directly under the arm holding the
knot. It rotates outwards and sideways, cradling the knot and
connected slack above it and gently pushes it to the side. The
arm holding the knot then deposits it onto the workspace.

5) Cage-cage knot untying: To untie individual knots, the
robot attempts to cage two points inside the knot and then
slowly pull its arms apart while wiggling the wrist joint 15
times by 0.2 radians. This wiggling helps reduce friction



Fig. 5: Physical Tracing Stop Condition: Top: Physical cable tracing uses
an endpoint detector to locate endpoints and terminate when any reach close
to the gripper. Bottom: Physical cable tracing detects knots by horizontally
slicing the pointcloud in front of the gripper (right), then analyzing the cross-
sections for the number of connected components. In this case, the figure
8 knot contributes 4 connected components (black) to a cross section and
reaches the threshold for number of points, so a knot is detected. If neither an
endpoint nor a knot is detected, the robot continues sliding by beginning at the
position shown in the bottom image, caging the left gripper and pinching the
right gripper, and pulling the right gripper back as in the top image, tracing
along the cable.

between segments of cable sliding past each other. Precisely,
given a knot [a, b] in cable ct, the robot grasps two graspable
points ct(sknot,l) and ct(sknot,r) with the left and right arms
respectively, such that sknot,l, sknot,r ∈ (a, b). The double cage
grasps allow the cable to freely slip through the fingers as the
knot loosens, allowing the robot to untie knots in one action
where the arms move as far apart as kinematically feasible,
approximately 1 m apart. If the robot encounters sufficient
resistance due to an endpoint or knot at either gripper, it will
automatically stop and reset.

C. Perception Systems

In contrast to some prior work which performs full state
estimation of the cable [11], we rely on learned perception
methods, since the significant lengths of slack introduce oc-
clusions that make full state estimation difficult. In addition, to
initiate some manipulation primitives in Section IV-B, SGTM
also relies on additional manipulation primitives to expose
key areas of the cable, such as knots, to predict task-relevant
untangling keypoints.

1) Endpoint detection: In the Reidemeister move and bi-
manual physical tracing primitives, SGTM relies on detecting
endpoints in the image. We collect and manually label a dataset
of 700 images in the workspace of the cable either on the
manipulation surface or in the gripper jaws during physical
tracing. We train a fully-convolutional network [10] based on
a ResNet 50 backbone to output a Gaussian heatmap over each
endpoint as in [3, 20, 22].

Fig. 6: Visual Cable Tracing: Beginning from the detected endpoint keypoint
(white), the algorithm traces the cable until it detects that it has reached a
crossing, after which it backtracks to return the grasp point (green) and slide
direction (blue) for subsequent physical cable tracing.

2) Visual cable tracing: SGTM uses visual cable tracing to
identify good starting points for physical tracing (Figure 6).
Given an RGB image of a segmented cable and an endpoint
pixel location, algorithmic cable tracing uses a modified
breadth-first search (BFS) to follow the cable mask in the
image and stop at the first self-crossing. It detects crossings
by monitoring the frontier of added pixels at each BFS
iteration. If the bounding box tightly surrounding the frontier
has side length over 12px, the algorithm terminates, as the
search is now bleeding across different cable segments. After
termination, the algorithm backtracks by 100px and returns a
pixel location along the cable which is a safe distance from
the crossing to grasp. SGTM uses this keypoint to expedite
bimanual physical cable tracing by avoiding physically tracing
segments from the endpoint prior to any crossings.

3) Physical tracing stopping condition: During physical
cable tracing, SGTM pulls the cable through the sliding
gripper in segments of 0.1 meters. After every segment, the
stopping condition categorizes the next segment of cable near
the sliding gripper as a knot, endpoint, or straight cable.
After each segment, the robot takes an overhead image and
evaluates the endpoint detector (Section IV-C1) to check if
any endpoints are within a 0.1 × 0.1 × 0.1m cube around
the sliding arm grippers by using the depth values at each
predicted endpoint. In order to suppress false positives, we
ignore endpoint detections when over 0.4m of the cable
remains to be traced. If an endpoint is found after this range,
the stopping condition returns ENDPOINT.

If an endpoint is not found, the robot analyzes the point-
cloud surrounding the gripper of the sliding arm to categorize
whether the next segment of cable is a knot or a straight cable.
The robot performs a 3× 13× 6 cm volume crop in front of
and beneath the sliding gripper to capture the next segment of
cable. This volume is separated into 1 cm thick horizontally-
sliced cross sections, which are each analyzed for the number
of connected components in a re-projected depth image (see
Fig. 5). If any cross section contains multiple connected
components, this could either indicate a loop that has not been



Fig. 7: Sliding and Grasping for Tangle Manipulation (SGTM): SGTM begins by recognizing endpoints. If both are visible, it proceeds with a Reidemeister
move. If not, it shakes. Afterwards, knot detection is performed after which it untangles if a knot is visible. If not, it performs physical tracing to ensure no
knots remain. If a knot is found while tracing, the knot is isolated and placed in the workspace, and the algorithm returns to the knot detection step.

undone by gravity during physical tracing or a knot. If any
cross section contains multiple connected components and the
number of points in the volume crop is at least 1000 points, the
stopping condition returns KNOT. If no cross sections contain
multiple connected components, a knot could still exist if
it is very tightly zipped together or self-occluded. Thus, if
the volume crop contains at least 2000 points, the stopping
condition also returns KNOT. If none of these conditions are
satisfied, the stopping condition returns STRAIGHT.

4) Knot detection: We train an object detection network,
based on the Mask R-CNN architecture and implemented
using the Detectron2 codebase [26], to detect and classify
figure 8 and overhand knots in cable images taken by the over-
head PhoXi camera. The network is initialized with weights
from a ResNet-50 FPN backbone pretrained on the COCO
dataset [8] and trained on a dataset of 312 images with
manually annotated knots in images containing both knots and
loops.

5) Pull point detection: If the knot detection step lo-
cates a knot bounding box, it outputs a crop of the knot,
which is passed through a two-stage cascading network.
Both independently-trained stages use a Resnet34 backbone
followed by a sigmoid activation to predict two pull points for
performing a cage-cage knot untying action. The first network
outputs a heatmap for both potential pull points. Of these,
we select the location of the highest heatmap value, projected
onto the nearest cable segment. The second network, trained
separately, takes in the same cropped image with a fourth
channel encoding a heatmap centered around the already-
chosen first point, and it outputs a heatmap from which the
second point is chosen the same way, using an argmax. This
process is visualized in Figure 8.

We use the two-network cascading design because with a
single network, we find that pick point multimodality often
causes heatmap outputs to bleed together significantly, making
it difficult to choose two distinct points. Conditional action
prediction has also been previously studied in deformable ma-
nipulation by Wu et al. [25] for cable and fabric manipulation.

Fig. 8: Learned Pull Point Prediction: Left: predictions from the knot detec-
tion method on an image containing two figure 8 knots. Right: visualization
of the cascading pull point detector. The top network outputs a heatmap over
potential grasp points, and we select the point at which the heatmap has the
highest value. The bottom network is conditioned on the first selected pull
point (magenta) to predict a heatmap for the second pull point (blue).

D. Sliding and Grasping for Tangle Manipulation (SGTM)

We now describe the Sliding and Grasping for Tangle Ma-
nipulation (SGTM) algorithm, which combines the manipula-
tion primitives and perception subsystems from Sections IV-B
and IV-C to untangle long cables while managing cable
slack. An overview of the algorithm is displayed in Fig. 7.
During each iteration, SGTM alternates between two phases:
physical manipulation to increase knot visibility (Active Knot
Perception) and predicting keypoints for a) the cage-cage knot
untying maneuver to untie knots once they are detected or b)
physically checking if the cable is untangled when no knots
are detected (Knot Untangling/Physical Tracing).

1) Active Knot Perception: During execution, at each itera-
tion, SGTM begins by detecting visible endpoints. If both
are detected, it executes a Reidemeister move, and if none
are detected it executes a shake action from the centroid
of the cable cluster. If a shake action was previously
performed and no endpoints are visible still, the shake
action is executed again from a random location on the
cable. All three types of moves serve to spread out the



cable and increase the chance of perceiving knots.
2) Knot Untangling/Physical Tracing: Next, if knot bound-

ing boxes are detected, the robot executes a cage-cage
pull apart action to attempt to untie the knot closest to an
endpoint (found using the technique in IV-C2) based on
grasp keypoints the perception system outputs. If SGTM
does not detect knots, the robot initiates the physical
tracing stage to confirm that the cable is untangled, either
ending in termination or by detecting a knot and isolating
it on the table for further untangling.

V. PHYSICAL EXPERIMENTS

We evaluate SGTM on a set of physical cable untangling
experiments using the bilateral ABB YuMi robot. The experi-
ments evaluate whether SGTM can untangle different classes
of initial configurations and terminate when it has completely
untangled the cable.

A. Difficulty Tiers and Performance Metrics

We consider several methods for initializing the cable state,
with examples shown in Fig. 9. These are categorized into the
following tiers of difficulty:

• Tier 0: Cable has no knots, but the slack is piled ran-
domly within the workspace by holding both endpoints
1.5 meters above the workspace and dropping them.
In this tier, the robot must successfully verify that the
cable contains no knots before terminating. We report the
number of trials that successfully detect that the cable is
untangled (Untangled Detection Rate), average number
of manipulation actions (Avg. Number of Actions), and
average time to detect that the cable is untangled (Avg.
Untangled Detection Time).

• Tier 1: Cable has a single overhand or figure 8 knot that
is loose (12-14 cm diameter) or tight (6-8 cm diameter),
located close to an endpoint (side), 0.75 meters from the
endpoint (mid-center), or 1.5 meters from an endpoint
(center). It is arranged with the knot isolated from the rest
of the cable slack, and the slack is randomized by lifting
both endpoints as high above the workspace as possible
without lifting the knot itself from the workspace and
dropped. We report the number of trials that successfully
untangled the knot (Untangling Success Rate), the num-
ber of trials that both untangled the knot and detected
that the knot was untangled (Untangled Detection Rate),
the average time taken to untangle the knot (Avg. Time
to Untangle), and the average time taken to successfully
identify that the cable was untangled (Avg. Untangled
Detection Time).

• Tier 2: Cable has two overhand or figure 8 knots (includ-
ing mixed types) that are loose or tight, in series, located
close to each other (< 0.75 m apart) or far from each
other (> 1.5 m apart). Similar to tier 1, both knots are
isolated from the rest of the cable slack and the endpoints
are lifted as high above the workspace as possible without
lifting either knot from the workspace and dropped. We
record the number of trials that successfully untangle

Fig. 9: Cable Configurations: Shown here are example configurations of the
cable across the 3 tiers we run experiments on.

Untangled Detection Rate 8/12
Avg. Number of Actions 4.33

Avg. Untangled Detection Time (s) 266
Failures A (1), B (1), C (2), D (0), E (0)

TABLE I: Tier 0 results: In 12 tier 0 experiments, SGTM must detect
that a cable with no knots is untangled. We observe that SGTM is able to
successfully terminate in 8/12 cases using an average of 4.33 manipulation
primitive actions. See Section V-D for analysis of the failure modes A-E.

a single knot (Untangling 1 Success Rate), number of
trials that successfully untangle both knots (Untangling
2 Success Rate), the number of trials that untangle both
knots and detect that it is untangled (Untangled Detection
Rate), average number of manipulation actions (Avg.
Number of Actions), average time to untangle the first
knot (Avg. Time to Untangle 1), average time to fully
untangle the cable (Avg. Time to Untangle 2), and the
average time to untangle both knots and detect that the
cable is untangled (Avg. Untangled Detection Time).

For each tier 1 or 2 experiment, we record the average time
until the cable has been successfully untangled. Because the
robot may successfully untangle the cable but not successfully
recognize that the cable is untangled (Section V-D), we sepa-
rately record the average time to successfully detect the cable
is untangled (when this is the case). We cap each experiment
to 15 minutes in tiers 0 and 1 and to 20 minutes in tier 2.
This is because tier 2 configurations are much more difficult
and require more time to untangle. We analyze the observed
failure modes of the algorithm in Section V-D.

B. Experimental Setup

The workspace contains a bimanual ABB YuMi robot with
two PC grippers. The manipulation surface is black and foam-
padded to avoid end effector damage during any workspace
collisions. The cable is a light-gray, braided 2.7 m micro-USB
to USB cable that can be segmented from the manipulation
surface via color thresholding. The workspace has an overhead
PhotoNeo Phoxi Camera that captures depth and grayscale
images of resolution 732 x 1142px.

C. Results

In tier 0, SGTM successfully detects that 8/12 cases are
untangled, taking an average of 4.33 manipulation primitive



Loose Dense
Untangling Success Rate 4/6 4/6
Untangled Detection Rate 1/4 2/4
Avg. Number of Actions 7.17 7.5

Avg. Time to Untangle (s) 154 139
Avg. Untangled Detection Time (s) 270 527

Failures A (1), B (0), A (1), B (0),
C (2), D (0), C (1), D (1),
E (0), F (2) E (0), F (1)

TABLE II: Tier 1 results: In 12 experiments, the cable starts off with a
single knot in its initial configuration. SGTM is able to successfully untangle
the cable 4/6 times in both the loose and dense cases of this problem.
However, when the robot untangles the cable, it often fails to detect that
it has successfully untangled the cable. This occurs because the robot forms
loops that are not knots during execution, which are mistaken for knots during
physical tracing (Failure Mode C).

Loose Dense
Untangling 1 Success Rate 5/6 5/6
Untangling 2 Success Rate 3/6 3/6
Untangled Detection Rate 0/3 1/3
Avg. Number of Actions 9.83 10.17

Avg. Time to Untangle 1 (s) 71 112
Avg. Time to Untangle 2 (s) 475 670

Avg. Untangled Detection Time (s) N/A 1079
Failures A (0), B (1), A (1), B (1),

C (1), D (0), C (1), D (1),
E (1), F (3) E (1), F (0)

TABLE III: Tier 2 results: In this tier of 12 experiments for dense and loose
knots, the cable starts off with two knots in its initial configuration. The robot
is able to successfully untangle at least one of the knots 5/6 times in both
the loose and dense versions of this tier. In 3/6 of both the loose and dense
cases, SGTM successfully untangles both knots. However, similar to Tier 1,
many loops and sometimes new knots are formed during untangling, which
lead to timing out during a trial due to failure of untangled detection.

Fig. 10: Failure Mode A Examples: These are examples of complex knots
or unseen knots that form while untangling, but fall out of the distribution of
training samples for the knot detector, causing a failed knot detection.

actions and 266 seconds (Table I). In the cases where SGTM
does not terminate successfully, the robot either moves the
cable off the manipulation surface, creates a new knot during
execution, or falsely detects loops as knots during physical
tracing.

In tier 1, SGTM successfully untangles the cable in 4/6
trials in both the loose and the dense categories (Table II).
The untangled detection rate is 1/4 for loose configurations
and 2/4 for dense configurations, and the most common errors
are detection of loops as knots during physical tracing and
system errors with the YuMi robot.

In tier 2, SGTM is able to untangle a single knot in 5/6 trials
in both the loose and dense cases (Table III). In both cases,
the robot untangles both knots 3/6 times. The robot often has
trouble detecting that it has successfully untangled the cable in
this case, due to an accumulation of twists during untangling
that lead to loops that look like knots during physical tracing.

D. Failure Modes

In experiments for SGTM, we observe the following failure
modes:
(A) Unseen or complex knots form while untangling and are

not detected by Mask R-CNN for knot bounding box
detection.

(B) The cable falls out of the reachable workspace.
(C) Repeated false positive knot detections during physical

tracing result in hitting the time limit.
(D) Missed knots during physical cable tracing cause knots

to tighten.
(E) Knot untangled, but not enough time to check termina-

tion.
(F) YuMi robot system or reset errors.

(A) During execution, SGTM sometimes introduces new knots
by pulling endpoints through existing loops on top of them as
shown in Figure 10. Though unlikely, these occurrences are
often difficult to recover from since knots formed in this way
are visually distinct from the training set of knot bounding
box detection model. This failure happens particularly often
after no endpoints are detected and the robot must shake from
a random cable location, after which endpoints are buried
underneath slack.

(B) Because we shake near the edge of the table, sometimes
the motion causes part of the cable to drop off the side, which
can cause the rest of the cable to follow after it is released.

(C) One particularly confusing case for knot detection
during physical tracing is tightly twisted loops which do not
fall away due to gravity. Sometimes this happens multiple
times in a rollout, wasting time and eventually causing the
time limit Ttimeout to be reached.

(D) If SGTM fails to detect a knot during physical cable
tracing, the sliding actions can tighten the knot until it is too
dense to fit grippers inside, resulting in failure.

(E) Sometimes, SGTM is able to recover from situations
like failure mode (A), but this can happen very late in the
experiment, resulting in not enough time to check termination.

(F) YuMi errors result from 1) the robot getting stuck
at a singularity from which it is unable to reset or 2) the
robot attempting to reach a point just outside of its reachable
workspace and producing errors from which it cannot recover.

We observe that the physical tracing termination condition
is low-recall but high-precision; that is, if it claims that the
cable is untangled, it most likely is (only in one case out
of 36 experiments did it output a false positive). However,
while false positives terminate by presenting a tangled cable
as untangled, a false negative results in the robot continuing
to try to untangle an untangled cable. The latter is less severe,
because the robot often eventually discovers that the cable is
untangled; thus, we prefer SGTM to err on the side of false
negatives.

VI. DISCUSSION AND FUTURE WORK

For untangling a single long (up to 3m) cable, this work
presents a formal problem definition, a novel jaw design, novel



perception-based primitives, and Sliding and Grasping for Tan-
gle Manipulation (SGTM), an algorithm for untangling long
cables. SGTM introduces 3 novel manipulation primitives for
cable manipulation: shaking, physical tracing, and caged pull
apart. These primitives aid in easing perception and managing
slack in long cables. SGTM also introduces perception systems
that guide the usage of these primitives. Experiments show
that SGTM can untangle long cables with a 58.3% success
rate overall across tiers containing one to two knots.

Future work will investigate refining these primitives to im-
prove performance, generalizing this method to less structured
starting configurations of cables and knots, as well as multiple
cables. Further, active perception for cable manipulation is
of interest, for example investigating ways of interrogating
the presence of knots with finer precision via high frame
rate videos and gripper perturbations. In addition, replacing
the manually tuned components of SGTM, for example the
knot detection threshold, with more data-driven methods and
self supervised data collection may increase robustness and
generalization.
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