
Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

1

A Local Optimization Framework for
Multi-Objective Ergodic Search

Zhongqiang Ren∗, Akshaya Kesarimangalam Srinivasan∗, Howard Coffin∗, Ian Abraham† and Howie Choset∗
∗Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213.

Email: {zhongqir, akesarim, hcoffin, choset}@andrew.cmu.edu
†Yale University, 17 Hillhouse Avenue, New Haven, CT 06511. Email: ian.abraham@yale.edu

Abstract—Robots have the potential to perform search for a
variety of applications under different scenarios. Our work is
motivated by humanitarian assistant and disaster relief (HADR)
where often it is critical to find signs of life in the presence
of conflicting criteria, objectives, and information. We believe
ergodic search can provide a framework for exploiting avail-
able information as well as exploring for new information for
applications such as HADR, especially when time is of the
essence. Ergodic search algorithms plan trajectories such that
the time spent in a region is proportional to the amount of
information in that region, and is able to naturally balance
exploitation (myopically searching high-information areas) and
exploration (visiting all locations in the search space for new
information). Existing ergodic search algorithms, as well as other
information-based approaches, typically consider search using
only a single information map. However, in many scenarios, the
use of multiple information maps that encode different types
of relevant information is common. Ergodic search methods
currently do not possess the ability for simultaneous nor do
they have a way to balance which information gets priority. This
leads us to formulate a Multi-Objective Ergodic Search (MOES)
problem, which aims at finding the so-called Pareto-optimal
solutions, for the purpose of providing human decision makers
various solutions that trade off between conflicting criteria. To
efficiently solve MOES, we develop a framework called Sequential
Local Ergodic Search (SLES) that converts a MOES problem
into a “weight space coverage” problem. It leverages the recent
advances in ergodic search methods as well as the idea of local
optimization to efficiently approximate the Pareto-optimal front.
Our numerical results show that SLES computes solutions of
better quality than the popular multi-objective genetic algorithms
and runs distinctly faster than a naive scalarization method on
a commercial laptop.

I. INTRODUCTION

This work considers the motion planning problem for area
search/coverage, which arises in many applications such as
search and rescue [12, 13], environment monitoring [6], target
localization [10, 20]. Given an information map (abbreviated
as info map), which describes the prior knowledge1 about
the information distribution over the area to be covered, the
problem requires planning a trajectory to efficiently gather
information. Common approaches to this problem span a
spectrum from spatial decomposition methods [3, 26, 27],
which uniformly cover the area, to information-theoretic ap-
proaches [6, 11], which greedily move the robot to the
next location with the highest information gain. This work

1If no prior knowledge is available, a uniform information distribution can
be used.

Fig. 1: A visualization of the MOES problem and our method.
(a) shows a search and rescue task in a hazardous material
warehouse with leakage, where colored areas indicate different
types of information/targets such as survivors, leakage sources,
etc. Each type of information is represented as an info map. (b)
shows the weight space B in the presence of three objectives,
where w(i) is the relative weight of the corresponding info map
ϕ(i), with i = 1, 2, 3. (c) shows the scalarized info map ϕ′,
which is the weighted-sum of all three info maps. An ergodic
trajectory is planned with respect to ϕ′. (d) shows the objective
space, where each element is an ergodic vector that describes
the ergodic metric of the computed trajectory with respect to
ϕ(1), ϕ(2), ϕ(3). The computed ergodic vectors approximate the
Pareto-optimal front.

is interested in ergodic search algorithms [14, 16, 18, 25],
which lie in the middle of the spectrum: this type of methods
optimizes an ergodic metric to plan trajectories along which
the time spent in a region is proportional to the amount of
information in that region. Ergodic search inherently balances
exploitation and exploration.

1

Existing ergodic search algorithms consider covering only
a single info map. However, in many applications, multiple
different info maps, each of which encodes one type of
information, may need to be covered simultaneously. As an
example, consider a search and rescue task in a hazardous
material warehouse with leakage where a robot is deployed
to search for both survivors and leakage sources (Fig. 1
(a)). Multiple info maps describing probable locations of sur-
vivors and leakage sources are required to be simultaneously
covered. Additionally, these info maps may not be readily
scalarized and added into a single info map (via weighted-
sum for example), since the relative importance between them
is unknown or hard to obtain. In this work, we formulate a
Multi-Objective Ergodic Search (MOES) problem to describe
such scenarios, which requires planning trajectories that can
simultaneously cover multiple info maps. In general, there is
no single trajectory that optimizes the ergodic metrics with
regard to all info maps at the same time. Thus, this work
seeks to find a set of Pareto-optimal solution (trajectories): a
solution is Pareto-optimal if one can not improve the ergodic
metric with respect to one info map without deteriorating the
ergodic metric with regard to at least one of the other info
maps. We believe the visualization of a set of Pareto-optimal
solutions can help the human decision makers (who are often
involved in search and rescue tasks [13]) make more informed
decisions based on their domain knowledge.

Baseline approaches that can be used to solve MOES
include general-purpose multi-objective genetic algorithms
(MOGA) [7, 9, 28]. While being applicable to various
problems, MOGAs typically fail to leverage the underlying
structure of MOES problems (such as the dynamics of the
robot and local metric structures e.g., “convexity”), which can
make them inefficient to optimize. Another baseline is the
scalarization method [8, 9], which can be applied to solve
MOES by sampling a set of weight vectors, computing the
weighted-sum of all the info maps (referred to as a scalarized
info map) for each weight vector, and running regular (single-
objective) ergodic search for each of the scalarized info map in
an episodic manner. While being able to exploit the underlying
problem structure, the scalarization method can be time-
consuming due to the episodic computation corresponding to
weight vectors, especially when many different Pareto-optimal
solutions are desired.

In this work, we take the view that an approximated Pareto-
optimal set of solutions can be efficiently obtained by leverag-
ing local optimization based on the inherent convexity of the
ergodic metric in the Fourier coefficient space, and develop
a framework called Sequential Local Ergodic Search (SLES),
which is conceptually visualized in Fig. 1. SLES resembles
scalarization methods in episodically computing weighted-
sum of the info maps. However, SLES “covers” the weight
space (the space that contains all possible weight vectors) in
a breadth-first manner by (i) sampling new weight vectors
in the neighborhood of the current weight vector, and (ii)
optimizing the trajectory corresponding to the new weight
vector by using the current solution as an initial guess (to

warm-start the optimization). To expedite the coverage of the
weight space by SLES without sacrificing the solution quality,
we also develop a variant called Adaptive SLES (A-SLES),
which can adjust the density of sampled weight vectors based
on the “similarity” of info maps to be covered. Our numerical
results show that SLES and A-SLES compute a set of solution
trajectories with better ergodic metrics in comparison with
naively applying MOGAs to MOES. Additionally, SLES and
A-SLES require less than half of the run time of a naive
scalarization method without sacrificing the quality of the
solutions. We also simulate our method for a search and rescue
task in a hazardous material warehouse in ROS/Gazebo.

The rest of this article is organized as follows. Sec. II briefly
reviews related work and Sec. III introduces basic concepts
and the problem definition. We then elaborate our idea and
method in Sec. IV, discuss the numerical results in Sec. V,
and conclude in Sec. VI.

II. RELATED WORK

Ergodic Coverage. A trajectory is ergodic with respect to
an info map if the amount of time spent in a region is
proportional to the amount of information in that region.
Ergodic metrics, such as [14], measure how far a trajectory
is from being ergodic, and by iteratively minimizing the
metric, an ergodic trajectory can be computed [14]. Ergodic
trajectory planning has been investigated within the framework
of receding horizon control [16], stochastic optimization [4],
and has been leveraged for active learning and search [2, 17],
decentralized exploration [1], real-time area coverage and
target localization [15], etc. However, we are not aware of
any ergodic search method that considers covering multiple
info maps at the same time, which is the focus of this work.

Multi-Objective Optimization (MOO) is a broad topic [8, 9]
and has been investigated in robotics-related problems such
as path planning [21, 22, 23], reinforcement learning [24],
and design [19]. With respect to MOO for coverage/search
tasks, existing work has considered simultaneously optimiz-
ing exploration and exploitation for environment monitoring
tasks [6]. Lee et al. [12] optimizes the coverage of a single info
map using the ergodic metric while optimizing other “non-
ergodic” objectives by using ϵ-constraints. Our work differs
from them, as we aim to ergodically cover multiple info maps,
each of which represents an objective. As shown in Sec. IV-A,
this problem formulation allows us to leverage the inherent
convexity of the ergodic metric in the Fourier coefficient space
to efficiently obtain an approximated Pareto-optimal front.

III. PRELIMINARIES

A. Ergodic Metric

Let W = [0, L1]× [0, L2]× · · · × [0, Lν] ⊂ Rν denote a ν-
dimensional workspace that is to be explored by a robot. The
robot has a n-dimensional state space (n ≥ ν), and let qn :
[0, T] → Rn denote a trajectory in the state space with T ∈
R+ representing the time horizon. The robot (deterministic)
dynamics is described as q̇n(t) = f(qn(t), u(t)), where u(t) is

2

the control input of the robot. Additionally, for each trajectory
qn, let q : [0, T]→W denote the corresponding trajectory in
the workspace (instead of the state space).

Let c(x, q), x ∈ W denote the time-averaged statistics of a
trajectory q, which is defined as:

c(x, q) =
1

T

∫ T

0

δ(x− q(τ))dτ, (1)

where δ is a Dirac function. Let ϕ : W → R denote a static
info map (i.e., a probability distribution), which describes the
amount of information at each location in the workspace. An
ergodic metric [14] between c(x, q) and an info map ϕ is
defined as:

E(ϕ, q) =
K∑

k=0

λk(ck − ϕk)
2

=

K∑
k=0

λk

(
1

T

∫ T

0

Fk(q(τ))dτ − ϕk

)2 (2)

where (i) ϕk =
∫
W ϕ(x)Fk(x)dx represents the Fourier coeffi-

cients of the info map, with Fk(q) =
1
hk

Πν
j=1 cos(

kjπqj
Lj

) being
the cosine basis function for some index k ∈ Nν and K being
the number of Fourier bases considered, (ii) ck denotes the
Fourier coefficient of c(x, q), (iii) hk denotes the normalization
factor as defined in [14], and (iv) λk = (1 + ||k||2)− ν+1

2

denotes the weight for each corresponding Fourier coefficient.

B. Ergodic Vector and Pareto-Optimality

This work aims to plan robot trajectories to simultaneously
cover multiple info maps. We use the superscript in ϕ(i) to
denote a specific info map, with i = 1, 2, . . . ,m where m is a
finite number indicating the total number of info maps to be
covered. Let E⃗(q) = (E(ϕ(1), q), E(ϕ(2), q), . . . , E(ϕ(m), q))
denote an ergodic vector, which describes the ergodic metrics
of the trajectory q with respect to all info maps. To compare
any two trajectories, we compare the ergodic vectors corre-
sponding to them using the dominance relation from the multi-
objective optimization literature.

Definition 1 (Dominance [8]): Given two vectors a and b
of length m, a dominates b, notationally a ⪰ b, if and only
if a(j) ≤ b(j), ∀j ∈ {1, 2, . . . ,m} and a(j) < b(j), ∃j ∈
{1, 2, . . . ,m} .

If a does not dominate b, this non-dominance is denoted as
a ⪰̸ b. In this work, given two trajectories q1, q2 (with the
same time horizon [0, T]), we say q1 dominates q2 (denoted
as q1 ⪰ q2) if E⃗(q1) ⪰ E⃗(q2). Any two trajectories are non-
dominated (to each other) if the corresponding ergodic vectors
do not dominate each other. Among all feasible trajectories,
the set of all non-dominated trajectories is called the Pareto-
optimal (solution) set, and the set of the corresponding ergodic
vectors is called the Pareto-optimal front.

Problem Statement. This work considers a Multi-Objective
Ergodic Search (MOES) problem, which requires computing
a set of trajectories, whose ergodic vectors approximate the
Pareto-optimal front.

IV. METHOD

A. Basic Concepts and Overview

Fig. 2: Examples of weight space B when (a) m = 2 and (b)
m = 3. Symbol w(i) stands for the i-th component of a weight
vector w⃗.

Let B := {w⃗, w(i) > 0, i = 1, 2, . . . ,m, ||w⃗||1 = 1}
denote the space of possible weight vectors (hereafter referred
to as the weight space), which is the first quadrant of the
m-dimensional ℓ1-norm unit sphere. Examples of B when
m = 2, 3 are shown in Fig. 2. An info map ϕ can be
decomposed with respect to (abbreviated as w.r.t.) a set of
Fourier bases as ϕ = ΣK

k=0ϕkFk, where ϕk denotes the
Fourier coefficient corresponding to each Fourier basis func-
tion Fk, k = 0, 1, . . . ,K. In practice, K is often selected to
be a finite number instead of infinity. For a weight vector
w⃗ ∈ B and a set of info maps, the scalarized info map can be
represented as the weighted-sum of the corresponding Fourier
coefficients:

ϕ′ =

K∑
k=0

ϕ′
kFk

=

m∑
i=1

w(i)ϕ(i) =

m∑
i=1

w(i)

(
K∑

k=0

ϕ
(i)
k Fk

)
. (3)

Then, for each k = 0, 1, . . . ,K:

ϕ′
k =

m∑
i=1

w(i)ϕ
(i)
k = w⃗ · Φk, (4)

where Φk = (ϕ
(1)
k , ϕ

(2)
k , . . . , ϕ

(m)
k), w⃗ =

(w(1), w(2), . . . , w(m)), and · stands for the vector dot
product. The ergodic metric of a trajectory q(t) (whose time
averaged statistics is described as a set of Fourier coefficients
ck) w.r.t. ϕ′ is

E(ϕ′, q) =

K∑
k=0

λk(ck − ϕ′
k)

2

=

K∑
k=0

λk(ck − w⃗ · Φk)
2 (5)

To obtain a set of trajectories whose ergodic vectors ap-
proximate the Pareto-optimal front, this work develops a
framework (Fig. 1): intuitively, in each planning episode, a w⃗
is sampled from B and a corresponding scalarized info map

3

ϕ′ is computed with Eqn 4. Then, an ergodic trajectory w.r.t.
ϕ′ is planned by minimizing E(ϕ′, q) in Eqn. 5. Note that,
with a given initial state of the robot and a control u(t), a
unique trajectory can be specified (via the so-called forward
simulation). Thus, for presentation purposes, we use a control
u(t), t ∈ [0, T] to identify a trajectory, and let u(t)|w⃗ denote
the ergodic trajectory computed w.r.t. the scalarized info map
based on w⃗. In other words, for each w⃗ ∈ B, a corresponding
ergodic trajectory u(t)|w⃗ can be computed.

Additionally, with Eqn. 5, we can observe that:
• E(ϕ′, q) (i.e., the objective function to be minimized after

scalarizing the info maps) is a convex function w.r.t. w⃗
and ck.

• Although ck is non-convex with respect to u(t) due to the
robot dynamics and the Fourier bases, existing ergodic
search algorithms [14, 15, 18] have shown that this non-
convexity can be handled by iterative gradient descent
optimization in practice.

Based on these observations, we take the view that a set
of Pareto-optimal trajectories can be efficiently obtained by
episodically sampling new w⃗ in the neighborhood of the
current weight vector, and running local optimization in each
episode. Following this idea, we propose a framework called
Sequential Local Ergodic Search (SLES), which is explained
in the next section.

B. Sequential Local Ergodic Search (SLES)

Intuitively, SLES covers (or say explores) the weight space
B from some initial weight vector w⃗init in a breadth-first
manner in order to approximate the Pareto-optimal front. SLES
iteratively (i) scalarizes the info maps based on the current
weight vector w⃗, (ii) leverages regular (single-objective) er-
godic search to compute a trajectory (represented by u(t)|w⃗),
and (iii) samples new weight vectors w⃗′ from B in the
neighborhood of w⃗ and use u(t)|w⃗ as an initial guess to
optimize the ergodic trajectory corresponding to w⃗′. The above
process iterates until B has been “fully covered” by sampled
weight vectors.

Algorithm 1 Pseudocode for SLES

1: w⃗init ← InitWeight()
2: uinit(t)|w⃗init

= 0
3: OPEN ← ∅, CLOSED ← ∅, S ← ∅
4: Add w⃗init into OPEN
5: while OPEN is not empty do
6: w⃗ ← OPEN.pop()
7: Compute {ϕ′

k, k = 0, 1 . . . ,K} with w⃗ and Eqn. 4
8: u(t)|w⃗ ← ErgodicSearch({ϕ′

k}, uinit(t)|w⃗)
9: Add w⃗ into CLOSED

10: Add u(t)|w⃗ into S
11: for all w⃗′ ∈ Neighbor(w⃗) do
12: if w⃗′ /∈ OPEN ∪ CLOSED then
13: uinit(t)|w⃗′ ← u(t)|w⃗
14: Add w⃗′ to OPEN
15: return S

Specifically, as shown in Alg. 1, SLES begins by initializing
a weight vector w⃗init (line 1), which can be either randomly
sampled from B, or specified by the user based on the do-
main knowledge of the specific application. An initial control
uinit(t)|w⃗init

corresponding to w⃗ is also initialized (line 2),
which will later be used as the initial guess for the first
episode of the ergodic search. Let OPEN denote a first-in-
first-out queue containing candidate weight vectors that need
expansion, and expanding a weight vector w⃗ means computing
u(t)|w⃗ and sampling new weight vectors in the neighborhood
of w⃗. Let CLOSED denote a set of weight vectors that have
been expanded, and let S denote the set of corresponding
u(t)|w⃗ for each w⃗ ∈ CLOSED that have been computed at
any time during the computation. Initially, OPEN, CLOSED
and S are all initialized as empty sets (line 3) and then w⃗init

is added to OPEN (line 4).
In each planning episode (lines 5-14), a weight vector w⃗

is popped from OPEN and the corresponding scalarized info
map ϕ′ is computed based on Eqn. 4, which is represented by
its Fourier coefficients (line 7). Then, a regular ergodic search
algorithm is invoked to cover ϕ′, which iteratively minimizes
Eqn. 5 from the initial guess uinit(t)|w⃗ (see Sec. IV-C). The
computed solution trajectory (represented by u(t)|w⃗) as well
as the corresponding w⃗ are then added to S and CLOSED
respectively. Finally, neighbor weight vectors of w⃗ in B are
sampled (see Sec. IV-D and IV-E) and is represented by
Neighbor(w⃗). For each w⃗′ ∈ Neighbor(w⃗), if w⃗′ has not been
generated yet (i.e., w⃗′ /∈ OPEN∪CLOSED), w⃗′ is added to
OPEN for future expansion.

SLES terminates when OPEN is empty, which indicates that
B has been fully covered by the sampled weight vectors. At
termination, S is returned (line 15), which contains a set of
controls, each of which specifies a trajectory, and the ergodic
vectors of all these trajectories provide an approximation to
the Pareto-optimal front.

C. Ergodic Search Procedure

A benefit of SLES is its ability to leverage existing ergodic
search algorithms to cover ϕ′ in procedure ErgodicSearch
in each planning episode. This work leverages the existing
approach in [1], which iteratively minimizes the ergodic metric
as introduced in Eqn. 5 within an optimal control framework,
and is able to handle general non-linear dynamics of the robot.
Other ergodic planners, such as [14, 15], can also be used to
implement ErgodicSearch within the framework of SLES.

In each planning episode, SLES invokes ErgodicSearch with
a specific initial guess uinit|w⃗, instead of using a random
or zero control as the initial guess. Specifically, this initial
guess is set to be a solution u(t)|w⃗′ computed in the previous
episodes, whose corresponding weight vector w⃗′ is close to the
current weight vector w⃗ in the weight space B. As shown in
Sec. V), this “local optimization” strategy expedites the overall
planning in comparison with a naive scalarization method,
which uses u(t) = 0 as the initial guess for each episode.

4

Fig. 3: (a) shows the basic sampling method in the weight
space B. (b) shows the adaptive sampling method in the affine
transformed weight space B′. Each sampled point in B′ can
be affine transformed to a (valid) weight vector in B.

D. Basic Version of Neighbor Sampling

While SLES is general to arbitrary m > 1, to simplify
the presentation, we limit our focus to m = 2, 3. Given a
weight vector w⃗ ∈ B, this work takes a deterministic sampling
strategy with a hyper-parameter d denoting the sampling step
size. When m = 2, B is a closed line segment, and the
neighbors of a given w⃗ are defined to be the weight vectors
that is of distance d away from w⃗ along the line segment.
When m = 3, B ⊂ R2 is the closed set enclosed by a triangle
as shown in Fig. 2 (b). The neighbors of a given w⃗ are defined
to be the four weight vectors that are of distance d away from
w⃗ along the four cardinal directions, as shown in Fig. 3 (a).

In general, B is the first quadrant of the m-dimensional ℓ1-
norm unit sphere, which is a (m − 1)-dimensional bounded
closed set. Using the geometry term, B is a (m− 1)-simplex,
and each corner point of B corresponds to an info map to be
covered. Since B is bounded, the aforementioned deterministic
sampling strategy generates a finite number of weight vectors
from B, and SLES is guaranteed to terminate when all
these sampled weight vectors are expanded. Additionally, this
sampling method can be generalized to m > 3. However, the
total number of possible samples grows exponentially w.r.t. m,
and we leave this potential scalability issue (when m is large)
to our future work.

A limitation of this deterministic sampling strategy is that
it does not consider the “similarity” between info maps to be
covered. For example, if two info maps to be covered (i.e., two
objectives) are similar (or very different) to each other, then
only a few (or a lot of) weight vectors are needed to obtain
a good approximation of the Pareto-optimal front. We handle
this limitation in the ensuing section.

E. Adaptive Neighbor Sampling

This section develops an adaptive neighbor sampling
method, which can adjust the “density” of samples based on
the similarity of info maps to be covered. Let E(i,j) denote
the ergodic metric between two info maps ϕ(i), ϕ(j):

E(i,j) =
K∑

k=0

λk(ϕ
(i)
k − ϕ

(j)
k)2, (6)

which characterizes the difference between ϕ(i) and ϕ(j) using
Fourier coefficients. For example, in Fig. 7 (a), info maps ϕ(1)

and ϕ(3) are similar to each other (E(1,3) is small) while ϕ(1)

and ϕ(2) are different from each other (E(1,2) is large).
Then, an affine transformed weight space B′ is constructed

as follows. Let B′ be an (m−1)-simplex where (i) each corner
point of B′ corresponds to an info map ϕ(i), and (ii) the line
segment connecting two corner points (corresponding to ϕ(i)

and ϕ(j)) has length E(i,j). B′ exists as the ergodic metric is
a Sobolev metric [14] and satisfies the triangle inequality.2

After specifying a coordinate system to both B′ and B, an
affine transformation A : B′ → B can be found by associating
each pair of corner points (p, p′), p ∈ B, p′ ∈ B′. For each
p′ ∈ B′, a corresponding point A(p′) ∈ B can be found,
and the corresponding weight vector w⃗ can be obtained based
on the coordinate of A(p′). For presentation purposes, let
Aw⃗(p

′), p′ ∈ B′ denote the map from the coordinate of a
point p′ ∈ B′ to the actual weight vector w⃗ that will be used
to scalarize the info maps, and let A−1

w⃗ (w⃗), w⃗ ∈ B denote the
inverse map from a weight vector w⃗ to the coordinate of a
point in B′.

An example when m = 3 is shown in Fig. 3 (b). B′ is a
triangle, where the three enclosing line segments have lengths
E(1,2), E(2,3), E(3,1) respectively. A possible coordinate system
for B′ is to place the origin at point x′ ∈ B′, align the x-axis
with line segment x′y′. Then point y′ has coordinate (E(1,2), 0)
and the coordinate of point z′ can be determined since the
length of x′z′ and y′z′ are both known. With equations
x = A(x′), y = A(y′), z = A(z′), the affine map A can
be determined.

With B′ and the map Aw⃗, SLES can sample points from B′
(instead of directly sampling weight vectors from B), and each
sampled point p′ ∈ B′ can be transformed into a (valid) weight
vector w⃗ ∈ B, which is then used to compute a scalarized info
map. Specifically, as shown in Alg. 2, let O denote the set of
sampled weight vectors, which is initialized as an empty set,
and let ∆ denote the set of possible differences between two
neighboring points in B′ using the aforementioned determin-
istic sampling strategy. Here, we use d′ to denote the step size
to note the difference from the d in the previous section. (Note
that, line 3 in Alg. 2 only shows the ∆ when m = 3.) For

2It is possible that B′ degenerates and is of dimension less than (m− 1).
(For example, when m = 3, the (m − 1)-simplex is a triangle. If the three
corner points of the triangle are co-linear, the triangle degenerates into a
line segment.) For a degenerate case, the proposed adaptive sampling is not
applicable while the basic sampling in Sec. IV-D still works. For the rest of
the presentation, we consider the case where the constructed (m−1)-simplex
is non-degenerate.

5

Algorithm 2 Pseudocode for AdaptiveNeighbor(w⃗)

1: O ← ∅ ▷ The output, a set of weight vectors.
2: p′ ← A−1

w⃗ (w⃗)
3: ∆← {(0, d′), (0,−d′), (d′, 0), (−d′, 0)} ▷ m = 3
4: for all δ ∈ ∆ do
5: p′new ← p′ + δ
6: if p′new /∈ B′ then
7: continue
8: Add Aw⃗(p

′
new) to O

9: return O

each δ ∈ ∆, a neighbor point p′new ← p′+δ is generated. If p′

is still within B′, the corresponding weight vector Aw⃗(p
′
new)

is added to O. Finally, set O is returned, which contains all
sampled neighbor weight vectors. Here, B′ is constructed by
considering the difference between info maps, and sampling
from B′ allows SLES to adapt the sampling density to the
difference between info maps, which is verified in Sec. V.

F. Discussion

1) Earlier Termination: In practice, when a strong prior
preference between info maps (represented by w⃗init) is avail-
able, the termination condition of SLES can be modified so
that SLES terminates earlier when a certain neighborhood of
w⃗init has been explored. Note that SLES explores the weight
space B in a breadth-first manner, and thus SLES explores the
neighborhood around w⃗init in B at first. This allows SLES to
quickly compute an approximated Pareto-optimal front that is
“centered” on the prior preference of the user.

2) Weight Space Coverage: SLES can be regarded as a
framework that converts a MOES problem into a “weight
space coverage problem”: SLES iteratively samples weight
vectors from B and terminates when the entire weight space
B is covered. The adaptive sampling method transforms B
into B′ based on the ergodic metrics between info maps and
then covers B′. Note that other types of transformation (e.g.
non-linear transformation) or different sampling methods may
also be leveraged based on the domain knowledge of the
application within the proposed SLES framework.

V. NUMERICAL RESULTS

A. Baseline Methods and Implementation

MOGAs [7, 9] are popular approaches to solve MOO
problems, which are also applicable to the MOES problem
in this work. For comparison, this work uses NSGA-II [7],
a popular MOGA for MOO problems, as the first baseline
approach.3 A second baseline approach considered in this work
is a naive scalarization method, which differs from SLES as
it leverages neither the idea of sequential local optimization
nor adaptive weight sampling. It iteratively samples w⃗ ∈ B,
and plans ergodic trajectory w.r.t. the scalarized info map by

3NSGA-II is popular for MOO problems with two or three objectives. When
there are more than three objectives (sometimes referred to as “many-objective
optimization”), NSGA-III can be used.

Fig. 4: (a) shows the two info maps to be covered. (b) shows
the hyper-volume (H.V.) of the solution set computed by each
method, where we allow NSGA-II (baseline) to run for three
times the run time (R.T., in seconds) of SLES. (c) visualizes
the ergodic vectors of the computed solutions. SLES computes
a set of solutions with similar or better quality than NSGA-II
while using only one third of the run time of NSGA-II.

optimizing from some common naive initial guess, such as a
zero control input.

We implement our algorithms4 and the naive scalarization
method in Python, and use the NSGA-II implementation from
pymoo [5], a MOGA library, for our experiments. We run tests
on a laptop with an Intel Core i7 CPU and 16 GB RAM. All
tests have a workspace of size [0, 1] × [0, 1]. We specify the
robot dynamics as a forward-moving-only differential-drive
robot that initially locates at the center of the workspace
(0.5, 0.5) with orientation zero (pointing to the right). For
presentation purposes, we use “Scala.” to denote the naive
scalarization method, “SLES” to denote our algorithm with the
basic neighbor sampling method (Sec. IV-D), and “A-SLES”
to denote our algorithm with the adaptive neighbor sampling
method (Sec. IV-E). We set a termination threshold ϵ = 10−3

for each ErgodicSearch call in Alg. 1: when the ergodic metric
w.r.t. the scalarized info map (Eqn. 5) is no larger than ϵ,
ErgodicSearch terminates.

To describe the approximation quality of the Pareto-optimal
front, we use the “hyper-volume” indicator (H.V.) [9] from the
MOO literature. Intuitively, H.V. denotes the volume enclosed
by the approximated Pareto-optimal front and a reference point
in the objective space, which is set to (1, 1, . . . , 1) in this work.

B. Comparison with NSGA-II

We begin our tests with m = 2, and the info maps are shown
in Fig. 4 (a). We compare SLES with NSGA-II. We measure
the run time of SLES (denoted as T1) and let NSGA-II run
for three times the run time of SLES (i.e., 3T1). As shown in
Fig. 4, increasing the “population size” (a hyper-parameter in
NSGA-II) can slightly improve the solution quality. However,
SLES computes a set of solutions with similar or better quality

4Our code is available at https://github.com/wonderren/public moes

6

https://github.com/wonderren/public_moes

Fig. 5: The horizontal axis indicates the number of optimization iterations in the ErgodicSearch procedure while the vertical
axis denotes the ergodic metric in Eqn. 5. Note that at the beginning of each episode, a different w⃗ (and thus a different ϕ′)
is considered, and thus the ergodic metric “jumps”. The corresponding tables in (a), (b) and (c) show the hyper-volumes of
different methods with different step sizes. This figure shows that SLES requires obviously less computational time than Scala.
(i.e., baseline) to compute a set of solutions with similar quality in terms of H.V. More discussion can be found in the text.

(in terms of H.V.) than NSGA-II while using only one third of
the run time of NSGA-II. The possible reason is, while being
general to various problems, NSGA-II treats the objective
functions as a “black-box” and often ignores the underlying
structure of the problem (such as the dynamics of the robot
and the local metric structures).

C. Comparison with Naive Scalarization

We then compare SLES against the naive scalarization
method (Scala.) with the same test settings as in the previous
section. In Fig. 5, the horizontal axis indicates the number of
optimization iterations in the ErgodicSearch procedure while
the vertical axis denotes the ergodic metric in Eqn. 5. Note
that at the beginning of each episode, a different w⃗ (and
thus a different ϕ′) is considered, and thus the ergodic metric
changes. As shown in Fig. 5, Scala. takes the most number of
optimization iterations in each episode since it always starts
from the same naive initial guess (i.e., a zero control input).
Both SLES and A-SLES run faster than Scala. especially when
d decreases (which means there are more planning episodes).
Take Fig. 5 (b) for example, SLES requires less than half of
the run time in comparison with Scala., and still computes a
solution set with the same quality in terms of H.V. It shows that
running local optimization by (i) sampling weight vectors that
are near to each other, and (ii) reusing the solution from the

previous episodes as the initial guess for the current episode,
can expedite the computation.

Fig. 5 also demonstrates the benefit of the proposed adaptive
neighbor sampling: specifying d in B is not intuitive and can
lead to either too sparse (d = 0.2) or too dense sampling
(d = 0.05), which leads to either a low H.V. value or a
large number of episodes. Sampling based on d′ in the affine
transformed weight space B′ allows the algorithm to adapt to
the differences between info maps. Additionally, d′ has the
same unit as the ergodic metric between info maps, and is
thus more intuitive to specify.

D. Different Sampling Step Sizes

This section tests A-SLES with varying step sizes d′, with
m = 2, and with the same info maps as in the previous section.
As shown in Fig. 6, by tuning d′, there is a trade-off between
H.V. values, which indicate the quality of the approximation,
and the computational burden, which is indicated by the run
time. Having slightly larger d′ can speed up the computation
significantly with small decrease in H.V.

E. Three Objectives

Finally, we test NSGA-II, SLES and A-SLES with m = 3.
The info maps are shown in Fig. 7 (a). Note that ϕ(1) is similar
to ϕ(3) while they are both quite different from ϕ(2). Fig. 7
(d) shows that A-SLES provides an approximation of similar

7

Fig. 6: Hyper-volume (H.V.) and run time (R.T.) (in seconds)
of A-SLES with varying sampling step size d′. This figure
shows, by tuning d′, A-SLES can trade-off between solution
quality and run time. Having slightly larger d′ can speed up
the computation with small decrease in the H.V.

quality in comparison with SLES (in terms of H.V.) while
having a much smaller run time. From Fig. 7 (b) and (c), it
is obvious that A-SLES can adaptively sample weight vectors
based on the difference between each pair of info maps: there
are only a few blue points in Fig. 7 (c) to approximate the
Pareto-optimal front. In contrast, SLES has a lot of samples
(the red points in Fig. 7 (b)) to approximate the Pareto-optimal
front.

F. Robot Simulation

We apply the proposed A-SLES algorithm to an example
MOES problem and simulate the computed trajectory in ROS.5

The example involves a search and rescue mission in a
warehouse with hazardous gas leakage. The goal is to find
both sources of leakage and search for survivors. The two
objectives are described using two info maps, which can be
generated based on the prior knowledge of the warehouse
(Fig. 8). Usually these two objectives cannot be optimized
simultaneously as survivors can be far away from the gas
leakage source. We use A-SLES to compute a set of Pareto-
optimal trajectories, which can then be visualized to the
decision maker on site so that a more informed decision can
be made. For example, if the effect of the gas for humans is
minor but it affects the goods in the warehouse significantly,
one might want to choose a trajectory that prioritizes finding
the leakage source more than searching for humans inside.

Fig. 8 (b) visualizes three Pareto-optimal solutions. For
instance, the green trajectory prioritizes finding survivors (the
pink info map) while the red one favors localizing leakage
sources (the yellow info map). Please refer to our multi-media
attachment (https://youtu.be/SEkwti-pGjE) for more details.

VI. CONCLUSION AND FUTURE WORK

This work formulates a Multi-Objective Ergodic Search
(MOES) problem, which requires planning trajectories to
simultaneously cover multiple information maps. To solve the

5Our ROS implementation leverages https://github.com/wh200720041/
warehouse simulation toolkit and https://github.com/bostoncleek/ergodic
exploration.

Fig. 7: (a) shows the three info maps to be covered. (b)
highlights the solution (red) computed by SLES and (c)
highlights the solution (blue) computed by A-SLES. (d) shows
the hyper-volume and run time (in seconds) of each method.
(e) shows a scalarized info map and the corresponding ergodic
trajectory. A-SLES computes solutions of similar quality while
requiring less than half of the run time in comparison with
SLES and NSGA-II.

MOES problem, a framework called Sequential Local Ergodic
Search (SLES) is proposed, which explores the weight space
(the space that contains all possible weight vectors) in a
breadth-first manner by (i) sampling new weight vectors in the
neighborhood of the current weight vector, and (ii) optimize
the trajectory corresponding to the new weight vector by using
the current solution as the initial guess. Additionally, to further
expedite SLES, we also develop a variant called Adaptive
SLES (A-SLES) that can adjust the density of sampled weight
vectors based on the ergodic metric between each pair of
info maps to be covered. The numerical results verify the
advantages of SLES and A-SLES over baselines.

This work is a first step to investigate MOES problems.
The current work considers one robot with multiple static
info maps without obstacles. It’s worthwhile to investigate
the MOES problems where the info maps are dynamic (i.e.,
updated in an online manner) or there are multiple robots.
Additionally, one can also consider using different ergodic
search algorithms [4, 15] within the framework of SLES to
explicitly handle obstacle avoidance constraints or to achieve
real-time planning.

8

https://youtu.be/SEkwti-pGjE
https://github.com/wh200720041/warehouse_simulation_toolkit
https://github.com/wh200720041/warehouse_simulation_toolkit
https://github.com/bostoncleek/ergodic_exploration
https://github.com/bostoncleek/ergodic_exploration

Fig. 8: (a) shows the warehouse environment and (b) shows the
information maps visualized as the yellow (probable gas leak-
age locations) and pink (probably survivor locations) markers
on RViz. The current method does not consider obstacle
avoidance during the ergodic planning and our simulation
relies on an additional local planner to avoid obstacles.

REFERENCES

[1] Ian Abraham and Todd D Murphey. Decentralized er-
godic control: distribution-driven sensing and exploration
for multiagent systems. IEEE Robotics and Automation
Letters, 3(4):2987–2994, 2018.

[2] Ian Abraham, Ahalya Prabhakar, and Todd D Murphey.
An ergodic measure for active learning from equilibrium.
IEEE Transactions on Automation Science and Engineer-
ing, 2021.

[3] Ercan U Acar, Howie Choset, Alfred A Rizzi, Prasad N
Atkar, and Douglas Hull. Morse decompositions for
coverage tasks. The international journal of robotics
research, 21(4):331–344, 2002.

[4] Elif Ayvali, Hadi Salman, and Howie Choset. Ergodic
coverage in constrained environments using stochastic
trajectory optimization. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 5204–5210. IEEE, 2017.

[5] J. Blank and K. Deb. pymoo: Multi-objective optimiza-
tion in python. IEEE Access, 8:89497–89509, 2020.

[6] Weizhe Chen and Lantao Liu. Pareto monte carlo tree
search for multi-objective informative planning. In Pro-
ceedings of Robotics: Science and Systems, Freiburgim-
Breisgau, Germany, June 2019. doi: 10.15607/RSS.2019.
XV.072.

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evo-
lutionary computation, 6(2):182–197, 2002.

[8] Matthias Ehrgott. Multicriteria optimization, volume
491. Springer Science & Business Media, 2005.

[9] Michael TM Emmerich and André H Deutz. A tutorial
on multiobjective optimization: fundamentals and evo-
lutionary methods. Natural computing, 17(3):585–609,
2018.

[10] Mario Garzón, João Valente, Juan Jesús Roldán, Lean-

dro Cancar, Antonio Barrientos, and Jaime Del Cerro.
A multirobot system for distributed area coverage and
signal searching in large outdoor scenarios. Journal of
Field Robotics, 33(8):1087–1106, 2016.

[11] Brian J Julian, Michael Angermann, Mac Schwager,
and Daniela Rus. Distributed robotic sensor networks:
An information-theoretic approach. The International
Journal of Robotics Research, 31(10):1134–1154, 2012.

[12] Kooktae Lee, Sonia Martı́nez, Jorge Cortés, Robert H
Chen, and Mark B Milam. Receding-horizon multi-
objective optimization for disaster response. In 2018 An-
nual American Control Conference (ACC), pages 5304–
5309. IEEE, 2018.

[13] Yugang Liu and Goldie Nejat. Robotic urban search and
rescue: A survey from the control perspective. Journal
of Intelligent & Robotic Systems, 72(2):147–165, 2013.

[14] George Mathew and Igor Mezić. Metrics for ergod-
icity and design of ergodic dynamics for multi-agent
systems. Physica D: Nonlinear Phenomena, 240(4):432–
442, 2011.

[15] Anastasia Mavrommati, Emmanouil Tzorakoleftherakis,
Ian Abraham, and Todd D Murphey. Real-time area
coverage and target localization using receding-horizon
ergodic exploration. IEEE Transactions on Robotics, 34
(1):62–80, 2017.

[16] Lauren M Miller and Todd D Murphey. Trajectory
optimization for continuous ergodic exploration. In 2013
American Control Conference, pages 4196–4201. IEEE,
2013.

[17] Lauren M Miller, Yonatan Silverman, Malcolm A
MacIver, and Todd D Murphey. Ergodic exploration of
distributed information. IEEE Transactions on Robotics,
32(1):36–52, 2015.

[18] Lauren M. Miller, Yonatan Silverman, Malcolm A.
MacIver, and Todd D. Murphey. Ergodic exploration of
distributed information. IEEE Transactions on Robotics,
32(1):36–52, 2016. doi: 10.1109/TRO.2015.2500441.

[19] Luigi Nardi, David Koeplinger, and Kunle Olukotun.
Practical design space exploration. In 2019 IEEE 27th
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 347–358. IEEE, 2019.

[20] Luciano CA Pimenta, Mac Schwager, Quentin Lindsey,
Vijay Kumar, Daniela Rus, Renato C Mesquita, and
Guilherme AS Pereira. Simultaneous coverage and
tracking (scat) of moving targets with robot networks.
In Algorithmic foundation of robotics VIII, pages 85–99.
Springer, 2009.

[21] Zhongqiang Ren, Sivakumar Rathinam, and Howie
Choset. Multi-objective conflict-based search for multi-
agent path finding. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 8786–
8791. IEEE, 2021.

[22] Zhongqiang Ren, Sivakumar Rathinam, and Howie
Choset. Subdimensional expansion for multi-objective
multi-agent path finding. IEEE Robotics and Automation

9

Letters, 6(4):7153–7160, 2021. doi: 10.1109/LRA.2021.
3096744.

[23] Zhongqiang Ren, Sivakumar Rathinam, Maxim
Likhachev, and Howie Choset. Multi-objective
path-based D* lite. IEEE Robotics and Automation
Letters, 7(2):3318–3325, 2022.

[24] Diederik M Roijers, Peter Vamplew, Shimon Whiteson,
and Richard Dazeley. A survey of multi-objective se-
quential decision-making. Journal of Artificial Intelli-
gence Research, 48:67–113, 2013.

[25] Hadi Salman, Elif Ayvali, and Howie Choset. Multi-
agent ergodic coverage with obstacle avoidance. In
Twenty-Seventh International Conference on Automated
Planning and Scheduling, 2017.

[26] Marı́a Santos, Yancy Diaz-Mercado, and Magnus Egerst-
edt. Coverage control for multirobot teams with het-
erogeneous sensing capabilities. IEEE Robotics and
Automation Letters, 3(2):919–925, 2018.

[27] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine.
Decentralized, adaptive coverage control for networked
robots. The International Journal of Robotics Research,
28(3):357–375, 2009.

[28] Qingfu Zhang and Hui Li. Moea/d: A multiobjective
evolutionary algorithm based on decomposition. IEEE
Transactions on evolutionary computation, 11(6):712–
731, 2007.

10

	Introduction
	Related Work
	Preliminaries
	Ergodic Metric
	Ergodic Vector and Pareto-Optimality

	Method
	Basic Concepts and Overview
	Sequential Local Ergodic Search (SLES)
	Ergodic Search Procedure
	Basic Version of Neighbor Sampling
	Adaptive Neighbor Sampling
	Discussion
	Earlier Termination
	Weight Space Coverage

	Numerical Results
	Baseline Methods and Implementation
	Comparison with NSGA-II
	Comparison with Naive Scalarization
	Different Sampling Step Sizes
	Three Objectives
	Robot Simulation

	Conclusion and Future Work

