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Abstract—In this paper we present a control barrier function-
based (CBF) resilience controller that provides resilience in a
multi-robot network to adversaries. Previous approaches provide
resilience by virtue of specific linear combinations of multiple
control constraints. These combinations can be difficult to find
and are sensitive to the addition of new constraints. Unlike pre-
vious approaches, the proposed CBF provides network resilience
and is easily amenable to multiple other control constraints, such
as collision and obstacle avoidance. The inclusion of such con-
straints is essential in order to implement a resilience controller
on realistic robot platforms. We demonstrate the viability of the
CBF-based resilience controller on real robotic systems through
case studies on a multi-robot flocking problem in cluttered
environments with the presence of adversarial robots.

I. INTRODUCTION
The problem of consensus, where robots must agree on a

communicated value of interest, is at the heart of many multi-
robot coordination tasks from rendezvous to flocking, and
beyond [2, 8, 23, 24, 28, 31]. Unfortunately, it is well-known
that consensus is vulnerable to failure whenever the robots
are not cooperative, for example due to malfunctioning or
adversarial action by the agents. Thus, the problem of deriving
resilient forms of consensus has recently been the focus of
increased attention in the literature [10, 18, 33]. Many recent
works arrive at enhanced resilience by increasing the network
connectivity and thus establishing redundant paths for the in-
formation to traverse the network [9, 18, 21, 27, 29, 33]. These
controllers improve connectivity by driving the robots closer
together, thereby changing the underlying network topology.
While this actuation of the topology enhances resilience, it
could make difficult the satisfaction of supplementary, possibly
contradictory constraints, such as avoiding obstacles or inter-
robot collisions. A common resolution is to employ a weighted
linear combination of multiple control laws, but this results
in trade-offs that are very sensitive to the choice of weights.
Control barrier functions (CBFs) offer a simple, compact
way to incorporate multiple control objectives and constraints
while preserving certain performance guarantees. Because of
this, CBFs have gained popularity in many robot applications
such as environmental monitoring [22], constrained navigation
[36, 37], biped robots [13], robot swarms [19], as well as
autonomous vehicles [14, 16]. However, the benefits of CBFs
for problems of resilience in multi-robot systems have only
recently been investigated [12, 35] and this constitutes the
objective of the current paper.

In this paper we apply CBFs to achieve high levels of
network connectivity in order to achieve sufficient resilience
to adversaries. Unlike previous works that rely on the careful
linear combinations of control constraints, our CBF inherits the
generality that is typical of CBF-based approaches of simul-
taneously considering any combination of realistic constraints
that can be formulated as an inequality that is controllable
by the input. For example, the authors in [4, 6] implement
collision and obstacle avoidance constraints while the authors
in [11] impose constraints such as coverage, energy, and
battery charging using CBFs. This is done without the need
to tune control weights that trade-off the different constraints,
making our controller more practical to implement in real-
world settings.

An inherent challenge exists, however, both for CBF-based
approaches and general controllers that are resilience-aware, in
that constraints imposed by the environment often put making
progress on the mission at inherent odds with maintaining re-
silience. Unfortunately, these situations come up very often in
practice. The presence of simple obstacles or other structures
such as corridors, will limit the reachable topologies, and thus
the connectivity that is attainable by the multi-robot team. For
example, large obstacles in the space may force the team to
split apart, whereas resilience might require agents to form
more edges in the network by congregating closer together.
Navigation through tight spaces, such as corridors, also often
constrains robot formations to narrow chain-like configurations
which can force limits on the number of connections between
agents. Thus in scenarios such as these, which are commonly
encountered in real-world settings, it becomes increasingly
challenging to satisfy both the resilience constraint and the
primary navigation objective. Understanding what situations
force this trade-off is thus important for controller design and
for understanding fundamental limits on the performance and
resilience attainable by these controllers.

To this end we present two versions of the resilience CBF
controller where i) resilience is treated as a hard constraint or
where ii) resilience is treated as a soft constraint. Whether
resilience should be treated as a hard or soft constraint is
often times determined by the problem scenario. For exam-
ple, treating resilience as a hard constraint would be useful
in safety-critical or military applications where adversarial
intervention could have catastrophic consequences. Treating



resilience as a soft constraint could be useful in search and
rescue or exploration applications where resilience is helpful,
but only when convenient, and should not come at the expense
of navigation. However, in these cases it is still necessary
to understand at what point the environment will necessitate
a tradeoff between team progress and resilience. To address
this, we derive properties of the environment, specifically
the maximum obstacle size, such that agents can provably
navigate and make progress on their primary task without
sacrificing resilience. Secondly, in the soft constraint setting,
we characterize a critical gain value for our controller that
ensures that the primary navigation task is provably prioritized
by the controller even at the expense of briefly sacrificing
resilience. We verify these derived bounds, both in theory and
in an actual multi-robot implementation, in complex settings
with obstacles and narrow corridors. These scenarios represent
real-world settings that a multi-robot team would commonly
encounter.

The main contributions are 1) A CBF-based controller
that can simultaneously consider any general combination
of realistic control objectives and any constraints that can
be expressed as inequalities, while guaranteeing resilience if
the constraint set admits a feasible solution. 2) A CBF that
can trade-off resilience for progress when it is necessary to
prioritize the main mission objective. 3) Theoretical analysis of
difficult scenarios, such as environments with large obstacles
and narrow corridors, with closed form bounds for when
such environments will necessitate trade-offs between mission
progress and resilience. 4) Verification of the CBFs with
aggregate results from 20 trials of a hardware experiment
where robots maintain a resilient formation in order to reach
a resilient heading consensus and satisfy a flocking objective
while simultaneously avoiding collisions with obstacles and
other robots, 2 case studies involving a large obstacle placed
in the environment and a narrow corridor, and 4 simulations
that verify the derived theoretical bounds.

II. PROBLEM FORMULATION

We seek to develop a control law that creates sufficiently
connected multi-robot networks in order to achieve resilient
consensus in the presence of up to F adversaries.

Definition 1 (F -Resilient Consensus). A multi-robot network
achieves F -resilient consensus if the legitimate robots achieve
consensus to a value between the maximum and minimum of
the legitimate robots’ initial values, even in the presence of up
to F adversaries.

An adversary is a robot that chooses to not cooperate with
the group in order to attempt to break or change the team’s
consensus. A legitimate robot is one that is not adversarial.

Consider a team of N robots moving in n-dimensional space
with positions xi ∈ Rn. Define the vector x to be an nN × 1

vector of the stacked robot positions: x =
[
x⊤
1 , . . . ,x

⊤
N

]⊤
.

The robots have dynamics governed by ẋ = f(x) + g(x)u,
where u ∈ U ⊆ Rq is the control input within some admissible
set of inputs U . For this paper, we assume single integrator

dynamics: ẋ = u. The communication between robots is
modeled by an undirected graph G = {V, E} where the set
of vertices, V = {1, 2, . . . , N}, represents the robots in the
system, and the edge set, E ⊆ V×V , represents communication
between robots. We consider a distance-based communication
model where there exist edges ei,j ∈ E and ej,i ∈ E between
robots i and j if they are within a distance R. We define the
neighborhood of a robot i to be the robots that robot i can
communicate with, i.e., Ni = {j ∈ V|ei,j ∈ E}.

The algebraic connectivity of the graph, denoted by λ2(G)
[7], has the property that λ2(G) > 0 when the graph is
connected, and λ2(G) increases as the graph becomes more
connected. The algebraic connectivity is the second smallest
eigenvalue of the Laplacian matrix L = D −A, where D is
the degree matrix and A is the adjacency matrix. We denote
by ai,j the entries of the adjacency matrix, and we assume
that these equal the edge weights of the edges ei,j ∈ E .
The degree matrix is a diagonal matrix whose ith diagonal
element, ψi,i, corresponds to the sum of the ith row of A,
i.e., ψi,i =

∑N
j=1 ai,j . The Laplacian matrix has eigenvalues

0 = λ1 ≤ λ2 ≤ · · · ≤ λN , and corresponding eigenvectors
v1,v2, . . . ,vN . We define a communication function which
corresponds to the elements of A as

ai,j =

{
exp

[
(R2 − d2i,j)

2/σ
]
− 1, if di,j ≤ R,

0, otherwise,
(1)

where di,j = ∥xi − xj∥ is the Euclidean distance between
robot i and robot j, and σ > 0 is a constant to normalize the
edge weights. We choose the communication function used in
[3, 4] because it is continuously differentiable with respect
to the distance between robots, decreases with increasing
distance, and has positive edge weights ai,j ≥ 0 when
di,j ≤ R.

In this paper, we seek to achieve resilient consensus. The
authors in [18] introduced the W-MSR algorithm which can
guarantee a resilient consensus is reached by the legitimate
robots. In the W-MSR algorithm, each robot i forms a list
from its own value, yi[t], and the values yj [t] of its neighbors
j ∈ Ni. Then, each robot sorts the values in ascending order
and discards up to the F highest values that are greater than
its own, and up to the F lowest values that are less than its
own, where F is the maximum number of adversaries that the
network is resilient to. Finally, each robot i updates its value
using those of its neighbors which it did not discard.

The W-MSR algorithm guarantees that a resilient consensus
is reached by the legitimate robots, in the presence of up to F
adversarial robots, when the communication network is (2F +
1)-robust. The r-robustness of a graph is defined below.

Definition 2 (r-reachable). A nonempty vertex set A ∈ V is
r-reachable if there exists a node i ∈ A such that |δAi| ≥ r,
where

δAi = {(i, j) ∈ E : j ∈ V\A}. (2)

Definition 3 (r-robust). A graph is r-robust if for each pair
of disjoint sets A1,A2 ⊂ V at least one is r-reachable.



In other words, a set is r-reachable if there is at least one
node in the set with at least r edges to nodes outside the set.
Then, a graph is r-robust if every pair of disjoint sets contains
an r-reachable set.

The authors in [29] note that determining the r-robustness
of a graph is an NP-Hard problem, and instead propose to use a
lower bound on the r-robustness as a function of the algebraic
connectivity of the graph. Specifically, they determine that

r ≥ ⌈λ2(G)
2

⌉, (3)

where ⌈·⌉ represents the ceiling function.
We desire a CBF that uses the lower bound in (3) to

maintain the sufficient connectivity required for F -resilience.
We seek to express the desired resilience constraint as a
superlevel set of a continuously differentiable function h(x) :
RnN → R. We consider the safe set to be the superlevel set
C = {x ∈ RnN |h(x) ≥ 0}. The goal of the CBF is to render
the set C forward invariant, such that for every x(0) ∈ C we
have that x(t) ∈ C for all time t > 0. In particular, the function
h(x) : D ⊂ RnN → R is a CBF if there exists an extended
class K function α(h(x)) 1 such that [1]

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)), ∀x ∈ D, (4)

where Lfh(x) =
∂h(x)
∂x f(x) and Lgh(x) =

∂h(x)
∂x g(x) are the

Lie derivatives of h(x).
In this paper, we aim to define a CBF such that the system

remains within the forward invariant set C, for all time t ≥ 0
while trying to achieve some other desired control objective,
udes. This can be done by solving a Quadratic Program (QP)
subject to constraints:

u(x) = argmin
u∈U

1

2
∥u− udes(x)∥2

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).
(5)

Problem 1. Given a connected team of N robots, a desired
control input, udes, and a resilience threshold, F , design a
CBF, h(x), to be used in the QP (5) such that the network
remains resilient to up to F adversaries while minimally
deviating from the desired control input, udes.

In the next section, we define CBFs that solve Problem 1.

III. CBFS FOR F -RESILIENCE

In this section we define a CBF that takes F -resilience as a
hard constraint, such that the network must remain resilient to
up to F adversaries at all times. Then, we note limitations
on the maneuverability of the robot team when subject to
this constraint. One specific example is when the team is
tasked with navigating through a narrow corridor. The level
of connectivity needed to maintain resilience cannot always
be achieved when moving through a tight corridor where
the team’s formation is vastly constrained by the walls of

1A continuous function α : R → R is an extended class K function if
α(0) = 0 and α is strictly increasing.

the corridor, especially when robots must maintain a certain
minimum distance from each other. For scenarios such as
this, we propose a nested CBF approach which takes the F -
resilience constraint as a soft constraint that is satisfied when
possible, but can be broken in order to allow the team to
navigate difficult areas such as narrow corridors. This case
is treated in Section III-B.

A. F -Resilience as a Hard Constraint

First, we must determine the sufficient connectivity of a
graph in order for the network to have resilience to up to F
adversaries. If each legitimate robot updates its value based
on the W-MSR algorithm with parameter F , then, resilient
consensus is guaranteed if the graph is (2F + 1)-robust [40,
Theorem 1]. Recall the lower bound on r-robustness in (3)
[29]. Let λ2(x) = 4F + ϵ, where ϵ > 0. Then, we have that
r ≥ ⌈λ2(x)

2 ⌉ = ⌈2F + ϵ
2⌉ ≥ 2F + 1. Therefore, a sufficient

condition for a graph to be (2F +1)-robust is for its algebraic
connectivity to be at least 4F + ϵ.

Observation 1 (Resilience to Adversaries [29]). If a robot
network modeled by a graph G has an algebraic connectivity
λ2(x) > 4F , then the network can achieve resilient consensus
in the presence of up to F adversaries using the W-MSR
algorithm.

The authors in [3] propose the CBF h(x) = λ2(x)− ϵ, for
some ϵ > 0, which guarantees that the network will remain
connected by enforcing λ2(x) > ϵ. Motivated by [3] and
Observation 1, we propose the F -resilience CBF

hres(x) = λ2(x)− 4F − ϵ, (6)

with ϵ > 0.
One characteristic required of (6) to be a valid CBF is

that it is continuously differentiable. This is satisfied when
the Laplacian matrix has simple eigenvalues, i.e., λ1 < λ2 <
· · · < λN (see the proof of [3, Lemma 2]). The Laplacian
matrix must have simple eigenvalues because hres(x) is dis-
continuous in x whenever the multiplicity of λ2(x) changes.
Unfortunately, when we constrain the eigenvalues to be greater
than a potentially high value such as 4F + ϵ, the range of
values that the eigenvalues can take decreases, thus making
changes in multiplicity more prominent. To handle this issue,
the authors in [25, 26] propose a constraint that takes into
account the eigenvectors of the eigenvalues that contribute
to the discontinuities. Define the collection of normalized
eigenvectors

v̂[m](x) = span

 ⋃
2≤p≤m

v̂p

 , (7)

to be the vectors spanned by the eigenvectors associated to the
eigenvalues λp ≤ λm. Furthermore, let

µ[m](x,u) = min
v∈v̂[m](x)

v⊤

 ∑
r∈[nN ]

∂L

∂xr
ur

v, (8)



where r ∈ [nN ] refers to the entries in the whole state x
and u. Here, µ[m](x,u) can be interpreted as the worst-case
rate of change possible among all nontrivial eigenvalues up to
eigenvalue m.

We also wish to include further constraints to satisfy any
objectives necessary for a real system implementation. These
constraints include but are not limited to inter-robot collision
avoidance, where robots must remain a minimum distance
dmin,c from each other, and obstacle avoidance. We denote this
set of constraints by hsys(x) and derive specific constraints for
collision and obstacle avoidance in Section IV. Finally, the QP
in (5) can be written as

u(x) = argmin
u∈U

1

2
∥u− udes(x)∥2

s.t. µ[m](x,u) ≥
− α(λm(x)− 4F − ϵ),∀m ≥ 2,

hsys(x) ≥ 0.

(9)

Theorem 2. Given the CBF in (6) and F < N
4 , if, for each x,

there exists an input u ∈ U that satisfies the constraints in (9),
then the QP in (9) is continuous on C = {x ∈ RnN |λ2(x) ≥
4F + ϵ}, and the input u(x) renders λ2(x) ≥ 4F + ϵ for all
time t ≥ 0.

Proof: The proof follows directly from the proof of [26,
Theorem 5.2] by replacing ϵ with 4F + ϵ.

Since the algebraic connectivity is upper bounded by
λ2(x) ≤ N , there does not exist an input that can render
λ2(x) ≥ 4F + ϵ when F ≥ N

4 . Therefore, the number of
adversaries is limited to F < N

4 .

Note that CBFs for connectivity such as (6) also work as
Control Lyapunov functions (see [3] for details). This means
that if the state is initially less connected than the resilience
threshold requires, then the team will be driven toward the
resilient state.

Adding obstacles to the environment may limit the ability
of the team to maneuver in the space while remaining in
a sufficiently connected formation. For example, robots that
encounter a large obstacle may start to split around the obstacle
to continue forward. If the obstacle is large enough, the team
may not be able to pass around it from opposite sides while
maintaining the resilience threshold. In this case, robots from
one side of the obstacle would choose to backtrack, and join
the robots on the other side to pass around the obstacle
together. This could cause the team to get stuck and not
successfully pass the obstacle. To avoid cases like this, it is
desirable to determine a bound on the obstacle size for which
the robot team can successfully navigate around it without
having to backtrack.

Lemma 1. Given a resilience threshold 4F+ϵ, communication
range R, and team of N robots that split into two groups Aleft

and Aright, forming sub-graphs Gl and Gr, respectively, to
move around a convex obstacle, if the obstacle has a diameter

of

do,max ≤

√
R2 −

(
σ log

[
4F + ϵ

N
+ 1

])1/2

, (10)

then there exists a formation where the robot team can
continue around the obstacle while maintaining an algebraic
connectivity of at least 4F + ϵ without having to backtrack.

Proof: Consider the network shown in Fig. 1 where
N − i robots form a sub-graph (Gr) to one side of a large
obstacle of diameter do,max and i robots form a sub-graph
(Gl) to the other side of the obstacle, maintaining edges to
the N − i robots in Gr with weight amin. This represents
any possible combination of robots choosing the left and right
sides, from (|Aleft| = 1, |Aright| = N − 1) to any general
(|Aleft| = i, |Aright| = N − i). We lower bound these sets of
graphs by considering complete sub-graphs Gl and Gr where
each edge weight is amin, forming a fully complete graph,
KN (amin), with edge weights amin. From [30], we know that
the algebraic connectivity of the complete graph with edge
weights of 1 is λ2(KN (1)) = N , and when we scale all
the edges to amin this becomes λ2(KN (amin)) = Namin.
The algebraic connectivity of any general graph in Fig. 1
can be lower bound by λ2(x) ≥ Namin as long as the
algebraic connectivity of each sub-graph is at least that of their
complete sub-graph counterparts with edge weights amin, i.e.,
λ2(Gl) ≥ iamin, λ2(Gr) ≥ (N − i)amin. This holds for most
general graphs Gl and Gr.

Let

amin = exp
[
(R2 − d2o,max)

2/σ
]
− 1, (11)

be the communication function when that robot is a distance
do,max < R from the complete sub-graph. Given the resilience
condition λ2(x) ≥ 4F + ϵ, we can see that a sufficient
condition for resilience to be maintained is that

λ2(x) ≥ Namin ≥ 4F + ϵ. (12)

Substituting (11) for amin into (12), we have

N
(
exp

[
(R2 − d2o,max)

2/σ
]
− 1

)
≥ 4F + ϵ. (13)

Rearranging and solving for do,max gives us

do,max ≤

√
R2 −

(
σ log

[
4F + ϵ

N
+ 1

])1/2

. (14)

Lemma 1 provides the possibility of a given robot team
to split around obstacles. If larger obstacles are to be en-
countered, the robot team may get stuck trying to navigate
around them. From (10), it can be seen that improving the
communication range of the robots, or increasing the number
of robots in the team can help increase the size of the obstacle
that the controller can handle.



Fig. 1. Two sub-graphs Gl with i nodes and Gr with N − i nodes split
around a convex obstacle with diameter do,max and maintain edges between
each other of weight amin.

B. F -Resilience as a Soft Constraint

Another example of obstacles in the environment limiting
the ability of the team to maneuver the space while remaining
in a sufficiently connected formation is the narrow corridor
example. In this example, robots tasked with passing through
a narrow corridor may need to break formation and form a line
in order to fit through, thus making it impossible to maneuver
through the corridor while maintaining a high connectivity.
Motivated by this, we propose a nested CBF that considers the
F -resilience requirement as a soft constraint that can be broken
if necessary to achieve an otherwise impossible objective:

u(x) = argmin
u∈U

1

2
∥u− ũdes(x)∥2

s.t. µ[m](x,u) ≥ −α(λm(x)− ϵ),∀m ≥ 2,

hsys(x) ≥ 0,

ũdes(x) = ũ(x),
(15)

where ũ(x) is the solution to a nested CBF:

ũ(x) = argmin
ũ∈U

1

2
∥ũ− γudes(x)∥2

s.t. µ[m](x, ũ) ≥
− α(λm(x)− 4F − ϵ),∀m ≥ 2,

(16)

with a gain γ ≥ 1 assigned to the desired input. The intuition
here is that the nested CBF determines a control input that
satisfies the F -resilience constraint while minimally deviating
from the desired control input. Then, the solution of that
CBF is set as the desired input for the external CBF that
satisfies the hard constraints (system constraints and minimum
connectivity λ2 ≥ ϵ). In this way, the CBF will achieve all
constraints if possible, but will deviate from the desired control
input, which includes achieving resilience, if needed in order
to satisfy the system constraints such as obstacle avoidance.
The gain γ on udes(x) acts as a trade-off to determine how
much the resilience can be sacrificed in order to satisfy a
contradictory objective. A low gain (γ ≈ 1) may cause the

controller to refuse to compromise the resilience enough for
robots to navigate through difficult environments, such as
narrow corridors. Therefore, we derive an upper bound for
which the gain will always allow the CBF to compromise
resilience in order to navigate the tightest corridors, without
causing the robots to get stuck and stall in the corridor.

First, we need to present a few results that we will use in
the analysis.

Lemma 2 (Path Graph [30]). Let Gp = (V, Ep) where Ep =
{(i, i+1) : 1 ≤ i < n}. The Laplacian, L(Gp), has eigenvalue
λ2(Gp) = 2(1 − cos ( π

N )), and corresponding eigenvector,
v2,p =

[
v2,p(1) v2,p(2) . . . v2,p(N)

]⊤
, where

v2,p(i) = cos

(
iπ

N
− π

2N

)
. (17)

Lemma 3. Given a team of N robots, communication func-
tion ai,j defined in (1), and a minimum safe collision dis-
tance dmin,c. Let x = xp be the state of the robot team
when they are in a straight line forming a path graph
at a distance dmin,c from each other. Then, ∂λ2(xp)

∂xp
=[

∂λ2(xp)
∂xp,1

∂λ2(xp)
∂xp,2

. . .
∂λ2(xp)
∂xp,N

]
, with

∂λ2(xp)

∂xp,i
=


4
∂ai,i+1

∂xp,i
sin2 ( iπN ) sin2 ( π

2N ), if i = 1,

4
∂ai,i−1

∂xp,i
sin2 ( (i−1)π

N ) sin2 ( π
2N ), if i = N,

4
∂ai,i+1

∂xp,i
sin2 ( π

2N )·(
sin2 ( iπN )− sin2 ( (i−1)π

N )
)
, otherwise.

(18)

Proof: The authors in [38] show that

∂λ2(xp)

∂xp,i
=

∑
j∈Ni

∂ai,j
∂xp,i

(v2,p(i)− v2,p(j))
2. (19)

From Lemma 2, we have that v2,p(i) = cos
(
iπ
N − π

2N

)
.

For a path graph, note that N1 = {2},NN = {N − 1},
and Ni = {i − 1, i + 1} for all i ̸= {1, N}. Therefore,
using (19), Lemma 2, and the trig identity cosA − cosB =
−2 sin (A+B

2 ) sin (A−B
2 ), we can write ∂λ2(xp)

∂xp,i
as

∂λ2(xp)

∂xp,i
=


4
∂ai,i+1

∂xp,i
sin2 ( iπN ) sin2 ( π

2N ), if i = 1,

4
∂ai,i−1

∂xp,i
sin2 ( (i−1)π

N ) sin2 ( π
2N ), if i = N,

4
∂ai,i+1

∂xp,i
sin2 ( π

2N )·(
sin2 ( iπN )− sin2 ( (i−1)π

N )
)
, otherwise.

(20)
where we use the fact that ∂ai,i+1

∂xp,i
= −∂ai,i−1

∂xp,i
to simplify the

terms ∂λ2(xp)
∂xp,i

for i ̸= {1, N}.
As the algebraic connectivity deviates farther from the

resilience threshold, the desire of the CBF in (16) to violate
the desired input, udes, in order to improve the connectivity
also increases. Therefore, if the team reaches a point where
the CBF in (16) chooses an input with a desire to improve



connectivity that outweighs the team’s desire to continue
through the corridor, then the team will stall.

Lemma 4. Given a team of N robots, desired control udes,
resilience threshold 4F + ϵ, desired safe collision distance
dmin,c, communication function ai,j defined in (1), and a
corridor extending in the direction θc. If the team uses the
nested CBFs in (15) and (16), and

γ > γmax =
maxi

{
−
[

∂λ2(xp)

∂xp,i

]
θc

}
(4F+ϵ−λ2(xp))∥∥∥ ∂λ2(xp)

∂xp

∥∥∥2
mini{[udes,i]θc}+

∂λ2(xp)

∂xp
udes maxi

{
−
[

∂λ2(xp)

∂xp,i

]
θc

} ,
(21)

where xp is a state describing the robots when forming a path
graph inside a narrow corridor, and [·]θc is the component of a
vector along the θc direction. Then, the robot team will always
break the soft resilience constraint to pass through any narrow
corridor without stalling.

Proof: Consider a corridor that is narrow enough such
that one robot perfectly fits the width of the corridor. Assume
that the desired input udes tries to drive the robots through the
corridor, i.e., [udes,i]θc > 0. The solution to the nested CBF
in (16) for each robot i will be [34]

ũi(x) = γudes,i + µ

(
∂λ2(x)

∂xi

)⊤

, (22)

where

µ =


0, if − ∂λ2(x)

∂x γudes

−λ2(x) + 4F + ϵ ≤ 0,
− ∂λ2(x)

∂x γudes−λ2(x)+4F+ϵ∥∥∥ ∂λ2(x)
∂x

∥∥∥2 , otherwise.

(23)
The robot team will continue moving through the corridor as
long as

γ [udes,i]θc > −µ
[
∂λ2(x)

∂xi

]
θc

, (24)

for all i ∈ {1, 2, . . . , N}, and all x ∈ RnN . This is achieved
if

γmin
i

{
[udes,i]θc

}
> max

x

{
µmax

i

{
−
[
∂λ2(x)

∂xi

]
θc

}}
.

(25)
Since the desire to improve connectivity increases as the
overall algebraic connectivity decreases, the maximum of

µmaxi

{
−
[
∂λ2(x)
∂xi

]
θc

}
over the states x ∈ RnN is achieved

at the minimum possible algebraic connectivity. The minimum
algebraic connectivity will occur when the team is forced
to form a line, following one behind another at a distance
dmin,c, in order to pass through the corridor. Without loss of
generality, label the robots in the line with indices 1, 2, . . . , N
from left to right. This configuration can be lower bounded by
that of a path graph when dmin,c < R < dmin,c/2. We denote
the path graph configuration by the state xp. Therefore, it is
sufficient to show that if

γmin
i

{
[udes,i]θc

}
> µmax

i

{
−
[
∂λ2(xp)

∂xp,i

]
θc

}
, (26)

then the robot team will never stall. Plugging µ in (23) into
(26) and solving for γ yields the expression in (21), where
from Lemma 2 we have that λ2(xp) = 2(1 − cos ( π

N )), and
∂λ2(xp)

∂xp
is derived in Lemma 3 (18).

Note that the bound on γ applies to the most restrictive
connectivity situations, where the robots must form a path
graph in order to pass. This corresponds to scenarios where the
corridor is tight enough that only one robot can fit through it
at a time, causing them to form a line, and the communication
radius R < 2dmin,c such that robots can only communicate to
robots directly adjacent to them in the line. In scenarios where
the connectivity is less restricted, the team has to compromise
resilience much less in order to navigate through, and thus
choosing a gain γ ≈ 1 will likely suffice. The bound in (21)
serves as a worst-case, such that the robots can navigate the
environment under even the most restrictive circumstances.

IV. DEFINING SYSTEM CONSTRAINTS

We wish to implement the controller in (9) on realistic
robot platforms with more complicated dynamics, such as a
differential drive robot, and demonstrate the effectiveness of
our CBF through multiple case studies. We apply our methods
to a resilient flocking problem where a team of robots must
agree upon a desired heading direction, and then move in that
direction together as a flock. The team must achieve a resilient
heading consensus in the presence of up to F adversaries.
Along with maintaining the network connectivity constraints
necessary for F -resilience, the robots must avoid collisions
with each other as well as other obstacles that are laid out
throughout the environment.

One of the benefits of CBF-based approaches is the sim-
plicity for which additional constraints can be added to the
QP without sacrificing much performance. In order to employ
collision or obstacle avoidance, different CBFs can be used.
The CBF used in [4, 6] can be used for collision avoidance:

hcoll(xi,xj) = d2i,j − d2min,c, (27)

where dmin,c > 0 is the minimum distance robots are allowed
to have between each other. Upon assigning a minimum
safe distance, a good choice for σ in (1) could be σ =
(R2 − d2min,c)

2/ log (2), so that ai,j = 1 when di,j = dmin,c.
Similarly, the CBF used in [11] can be used for obstacle
avoidance:

hobs(xi,xo) = d2i,o − d2min,o, (28)

where dmin,o > 0 is the minimum distance robots are allowed
to have between themselves and the obstacle o, modeled
as a point mass, with position xo. More details about the
composition of multiple CBFs are provided in [6, 11].

It is important to note that the addition of collision avoid-
ance can limit the level of network connectivity that the team
can achieve. For example, in environments with n = 2 or
n = 3 dimensions it becomes difficult to arrange more than a
few robots in a formation such that each robot can be close
to a distance dmin,c from all others. This limitation is most
prevalent when the connectivity of the network approaches



a complete graph, and can be minimized with smaller safe
distances, dmin,c, or larger communication ranges, R.

To handle robots with different dynamics, the authors in [4]
propose a distance heuristic, denoted by ∆i,j . This distance
heuristic considers worst-case distances between robots corre-
sponding to how much the distance could have changed over a
small interval of time. For example, the distance heuristic for
connectivity, which involves computing the eigenvalues and
eigenvectors, would look at a worst-case scenario where any
two robots have moved away from each other at maximum
velocity over the small time interval. This is computed by

∆conn
i,j = di,j + 2umax(κ+ τ), (29)

where umax is the maximum velocity of the robots. The
parameter κ > 0 is a correction factor to take into account the
real robot’s kinematics as well as additional disturbing factors.
The parameter τ > 0 takes into account communication
delays. Similarly, the distance heuristics for collision and
obstacle avoidance are computed by

∆coll
i,j = di,j − 2umax(κ+ τ), (30)

and
∆obs

i,o = di,o − umax(κ+ τ), (31)

respectively.
With the collision and obstacle avoidance constraints pre-

sented, we define the system constraints for the CBFs in (9)
and (15) as follows:

hsys(x) =

[
hcoll(xi,xj) = (∆coll

i,j )2 − d2min,c

hobs(xi,xo) = (∆obs
i,o )

2 − d2min,o

]
≥

[
0
0

]
.

(32)
In a decentralized implementation the robots need to com-

pute their components distributedly. The CBFs for collision
avoidance and obstacle avoidance are inherently determined
locally since the boundary of the safe sets occurs when a robot
i is close to dmin,c or dmin,o with a robot j or obstacle o. Due
to the distance-based communication function in (1), a robot j
that is close to dmin,c with a robot i will be its neighbor, i.e., if
di,j ≈ dmin,c, then j ∈ Ni. The CBF for connectivity requires
each robot i to determine the eigenvalues of the Laplacian
as well as the components of the eigenvectors corresponding
to robot i and robots j ∈ Ni. More information on how
the eigenvalues and eigenvector components can be computed
distributedly can be found in [5, 15, 17, 20, 32, 38, 39].

V. RESULTS

A. Experimental Setup

We demonstrate the proposed CBFs (9), (15)-(16) in hard-
ware experiments where local information is used to compute
each robot’s control. The robots used in the hardware exper-
iments were GoPiGo 3 differential drive robots designed by
Dexter Industries equipped with Raspberry Pi 3 B+ computers
and OptiTrack tracking orbs. The robots shared information
and were controlled using the Robot Operating System (ROS).
The control inputs from the CBFs were handled by the
robots as waypoints, where they then used waypoint control

to drive to their next desired location, necessitating a nonzero
correction factor κ in (29)-(31) that was experimentally chosen
to be κ = 0.5.

An OptiTrack motion capture system tracks the position and
orientation of each robot, however, each robot is only given ac-
cess to its own position and orientation, as well as the position
and desired heading of robots within its communication range
R at each time-step. The OptiTrack system also provides the
robots with the positions of upcoming obstacles. In the follow-
ing experiments, the communication range was manually set to
R = 3 meters within a 4×8 meter testbed and we used ϵ = 0.1,
α(hres(x)) = hres(x), α(hcoll(xi,xj)) = 1000h3coll(xi,xj),
and α(hobs(xi,xo)) = 1000h3obs(xi,xo).

B. Experimental Results

1) Case Study - Resilient Flocking: The first set of ex-
periments demonstrate the ability of the proposed controller
(9) to provide F -resilience in a flocking application. In these
experiments, robots were randomly placed on the left side
of the testbed, in a connected, but not necessarily resilient
formation. The robots were not required to start in a re-
silient formation since the controller in (9) can drive non-
resilient robot teams to resilient formations. The robots used
the controller in (9) to drive to a resilient configuration
while avoiding collisions with each other and the obstacles
placed in the testbed. The desired input for each robot was
given as udes,i = umax

[
cos (θi) sin (θi)

]⊤
, where θi is the

desired heading of robot i. The desired headings of the robots
were initially evenly distributed between (−π/2, π/2), and
remained as such until the robots used W-MSR to achieve
a resilient consensus on a heading, and therefore achieved
resilient flocking. The robots used the W-MSR update rule:

yi[t+ 1] = wi,i[t]yi[t] +
∑

j∈Ri[t]

wi,j [t]yj [t], (33)

where wi,j > 0 are weights assigned to each value, Ri[t] is the
set of sorted neighboring values not discarded by robot i, and∑

j∈Ri[t]
wi,j [t] = 1. During the experiments, an attack was

staged by F = 1 randomly chosen adversary. The adversary
chooses a desired heading of π/2 and refused to update its
heading with the consensus rule in (33) in order to try to
drive the team to its value. The adversary still chose to move
in the direction of the team since changing its input could
reveal its identity as an adversary. A snapshot from one of the
experiments can be seen in Fig. 2.

A total of 20 experiments were run using this setup, and
aggregate results for the algebraic connectivity as well as
the collision and obstacle avoidance constraints are plotted
in Fig. 3. The plotted lines represent the mean of the 20
experiments, while the shaded area represents the standard de-
viation. In the left plot, the true algebraic connectivity, plotted
in green, is based on the ground truth data from OptiTrack,
while the algebraic connectivity plotted in blue was computed
by the robots using the distance heuristic in (29). While the
computed heuristic algebraic connectivity drops below the



Fig. 2. A snapshot from during one of the resilient flocking experiments.
The adversary in this example is highlighted in red, and two obstacles were
present in the testbed. The experiments used a communication range of R = 3
meters, with safe collision distances of dmin,c = dmin,o = 0.3048 meters.

Fig. 3. Aggregate plots of the algebraic connectivity and the collision
and obstacle avoidance constraints through 20 resilient flocking experiments.
Mean data is shown by lines while the standard deviations are shaded.

4F + ϵ resilience threshold, the true algebraic connectivity
does not. The collision avoidance CBF and obstacle avoidance
CBF remain greater than 0 in the right plot, showing that
obstacle and inter-robot collisions were successfully avoided.
For reference, one sample experiment is shown in Fig. 4.
The left plot shows the trajectories of the robots throughout
the experiment, with initial positions marked by ×’s, final
positions marked by triangles, and obstacles marked by circles.
The heading consensus using W-MSR is plotted in the right
plot. In both plots the adversary is shown with red. Fig. 4
shows that the team is able to reach a resilient heading
consensus, despite the adversary, and the team moves together
across the testbed as desired.

For comparison, an experiment was also conducted using
the CBF proposed in [3] with h(x) = λ2(x) − ϵ. The

Fig. 4. Trajectory and heading consensus plots from one sample resilient
flocking experiment. Initial positions are depicted by ×’s on the trajectory
plot, while final positions are depicted by triangles, and obstacles are depicted
by circles. The robots agree on a heading despite the adversary, and move
together across the testbed while avoiding obstacle and inter-robot collisions.

trajectory and heading consensus plots for this experiment are
shown in Fig. 5. The CBF proposed in [3] guarantees that
the team remains connected, but does not guarantee sufficient
connectivity for adversarial resilience. In this experiment, the
blue and yellow robots circled in the trajectory plot venture
far enough from the rest of the team that their connectivity is
insufficient for W-MSR. After discarding outlying information
using W-MSR they are only left with their own heading value,
and therefore are unable to reach consensus with the rest of
the team.

2) Case Study - Large Obstacle: In this experiment, N = 6
robots were randomly placed on the left side of the testbed
and tasked with moving to the right side of the testbed, while
maintaining the sufficient 4F + ϵ algebraic connectivity for
F -resilience using the controller in (9). However, an obstacle
is placed in the middle of the testbed that is too large for the
team to split apart and drive around without violating the F -
resilience condition, i.e., the width is greater than do,max. Plots
of the robot trajectories and the network algebraic connectivity
during this experiment are shown in Fig. 6. The trajectory plot
shows that initially the robots were driven to opposite sides
of the obstacle. However, a splitting did not occur because
it would violate the F -resilience threshold. This caused the
robots on the left side of the obstacle to turn around and pass

Fig. 5. Trajectory and heading consensus plots from a flocking experiment
where the F -resilience controller in (9) is not used. Initial positions are
depicted by ×’s on the trajectory plot, while final positions are depicted by
triangles, and obstacles are depicted by circles. The robots do not agree on
one heading due to the insufficient connectivity of the network when W-MSR
is run. The circled blue and yellow robots venture far from the team and are
unable to achieve consensus with the others.

Fig. 6. Trajectory and algebraic connectivity plots from a scenario where
the robot team must navigate around a large obstacle while maintaining an
algebraic connectivity of λ2(x) ≥ 4F+ϵ. The team initially attempts to split
around the obstacle, but eventually maneuvers around the obstacle from one
side in order to maintain sufficient connectivity. Initial positions are depicted
by ×’s, final positions by triangles, and obstacles by circles in the trajectory
plot.



the obstacle from the right side with the others in order to
maintain sufficient connectivity. This example demonstrates
the ability of the proposed controller in (9) to guarantee that
sufficient connectivity is maintained.

3) Case Study - Narrow Corridor: As mentioned in Sec-
tion IV, the addition of collision and obstacle avoidance may
limit the ability of the team to navigate in tight environments
while maintaining the sufficient connectivity required for F -
resilience. Next, we test the ability of the nested CBFs in
(15) and (16) to overcome this pitfall. In this experiment,
N = 6 robots were placed on the left side of the testbed
and tasked with moving to the right side of the testbed, while
passing through a narrow corridor. The corridor is sufficiently
narrow such that two robots cannot pass through it side-by-
side, thus forcing the team into a linear formation in order
to navigate through it. The gain γ was set to γmax = 3.7
for this experiment. Fig. 7 shows the robot trajectories as
well as the F -resilience, collision, and obstacle avoidance
CBF constraints throughout the experiment. The trajectory
plot shows that the team was able to successfully navigate
through the narrow corridor using the nested CBFs. The
right plot shows that the collision and obstacle avoidance
constraints were not violated during the experiment. Due to the
construction of the nested CBFs, the F -resilience constraint is
viewed as a soft constraint, and can be broken if necessary in
order to continue satisfying a desired trajectory. This is evident
by the yellow line dropping below 0. The team still remains
connected (λ2(x) > 0) due to the strict connectivity constraint
in (15).

C. Simulations Verifying Lemma 1 and Lemma 4

We run simulations to verify the bounds in Lemma 1 for the
size of a large obstacle that allows splitting, do,max, and the
gain, γmax, in Lemma 4 that guarantees the robots can pass
through environments with obstacles and narrow corridors.
The results are shown in Fig. 8. Both simulations used ϵ = 0.1.

In the large obstacle simulation, the communication range
was set to R = 2 meters, with a safe inter-robot collision
distance of dmin,c = 0.1 meters, N = 10 robots, and resilience
to F = 2 adversaries. This corresponds to a maximum obstacle
width of do,max = 0.54 meters. When the obstacle width is set

Fig. 7. Trajectory and CBF constraint plots from a scenario where the robot
team must navigate through a narrow corridor. The nested CBFs in (15) and
(16) allow the F -resilience to be viewed as a soft constraint that can be broken
if necessary. Initial positions are depicted by ×’s, final positions by triangles,
and the corridor by black lines in the trajectory plot.

Fig. 8. Trajectory plots for the large obstacle and narrow corridor simulations
with ϵ = 0.1. The critical bound for do,max that determines whether the team
splits or stays together was do,max = 0.54 meters. The bottom plots exhibit
the existence of a γcrit, where γ < γcrit would cause the team to stall,
but γ > γcrit would allow the team to progress forward. The robot team
formation provided resilience to F = 2 adversaries during the large obstacle
simulations, and F = 1 adversary during the narrow corridor simulations.

to greater than do,max the robots need to backtrack in order
to satisfy the resilience threshold, and may stall in certain
situations as shown by the top left plot. When the obstacle
width in simulation is set to do,max the team is capable of
splitting around the obstacle while maintaining resilience.

In the narrow corridor simulation, the communication range
was set to R = 0.8 meters, with a safe inter-robot collision
distance of dmin,c = 0.6 meters, and resilience to F = 1
adversary. The team consisted of N = 8 robots, and the
robots have a desired velocity in the direction of the corridor
with speed 1 m/s. We study the critical gain value, γcrit,
in simulation, where the behavior of the team switches from
stalling in the corridor to progressing forward. The critical gain
was found to be γcrit = 1.3. The upper bound was computed
to be γmax = 2.6 by (21). We note that the theoretical upper
bound of 2.6 is higher because it is conservative and considers
the worst possible configuration, and also does not consider
the effects of collision avoidance in the external CBF in (15).
Robots to the far right in the line formation will be ‘pushed’
to the right in order to maintain a safe distance from robots to
their left, further helping the team pass through the corridor
even when the desired input from the nested CBF, ũdes in (16),
may make them stall. The critical gain found in simulation
was determined by trying different gains and observing the
behavior of the team, to see when they switched from stalling
in the corridor to passing through it.

VI. CONCLUSION

In this paper we construct a CBF that can maintain suf-
ficiently high network connectivity for F -resilience while
considering additional control objectives. Previous approaches



use linear combinations of various control objectives, and are
therefore sensitive to changes or additions to the objectives.
Conversely, our CBF approach is trivially adaptable to dif-
ferent control objectives while maintaining guarantees on the
satisfaction of each desired control constraint. The adaptability
of our approach enables the addition of practical constraints
such as collision and obstacle avoidance that are necessary
for implementing the controller on real multi-robot systems in
cluttered environments. We demonstrate the ability of our ap-
proach to simultaneously provide F -resilience to adversaries,
collision avoidance, and obstacle avoidance, on distributed
robot platforms while achieving a flocking objective. We also
test our approach in a case study with large obstacles that try to
split apart the team. Finally, we propose an alternative nested
CBF that takes the F -resilience condition as a soft constraint,
and we test its effectiveness with an experiment where robots
need to navigate through a narrow corridor that forces the team
to break formation.

While the CBFs and results presented in this paper focus on
providing F -resilience to adversaries, it is worth mentioning
that they can be applied to fault resilience as well. If a robot
drops communication with the rest of the network, whether it
is an adversary purposely cutting off connection, or a robot
experiencing a communication failure, similar CBFs can be
applied to safeguard from such scenarios. In these scenarios,
the network must be sufficiently connected in order to remain
connected after the removal of any F robots from the network.
This corresponds to a network with a vertex connectivity of
F + 1.
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