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Abstract—Robot learning holds the promise of learning policies
that generalize broadly. However, such generalization requires
sufficiently diverse datasets of the task of interest, which can
be prohibitively expensive to collect. In other fields, such as
computer vision, it is common to utilize shared, reusable datasets,
such as ImageNet, to overcome this challenge, but this has proven
difficult in robotics. In this paper, we ask: what would it take
to enable practical data reuse in robotics for end-to-end skill
learning? We hypothesize that the key is to use datasets with
multiple tasks and multiple domains, such that a new user that
wants to train their robot to perform a new task in a new domain
can include this dataset in their training process and benefit
from cross-task and cross-domain generalization. To evaluate
this hypothesis, we collect a large multi-domain and multi-task
dataset, with 7,200 demonstrations constituting 71 tasks across 10
environments, and empirically study how this data can improve
the learning of new tasks in new environments. We find that
jointly training with the proposed dataset and 50 demonstrations
of a never-before-seen task in a new domain on average leads
to a 2x improvement in success rate compared to using target
domain data alone. We also find that data for only a few tasks in
a new domain can bridge the domain gap and make it possible
for a robot to perform a variety of prior tasks that were only
seen in other domains. These results suggest that reusing diverse
multi-task and multi-domain datasets, including our open-source
dataset, may pave the way for broader robot generalization,
eliminating the need to re-collect data for each new robot learning
project.

I. INTRODUCTION

Humans and animals can generalize a learned skill to a wide
variety of contexts without needing to relearn the skill every
time. Endowing robots with the same capability would be a
significant advance toward making robots more applicable to a
range of real-world settings. However, the prevailing paradigm
of robot learning is to repeat data collection and policy training
from scratch for every new task and environment. Learning
policies in isolation not only increases the costs of data
collection, but also limits the policy’s scope of generalization.

In other fields, such as computer vision [14] and natural
language processing (NLP) [3], utilizing large, diverse datasets
has shown considerable success in enabling generalization
to new problems or domains with a small amount of data
(e.g., via pretraining and finetuning). However, in robotics,
datasets are usually collected with a specific robotic platform
and domain in mind, typically by the same researcher who
intends to use that dataset. What would it take to make datasets
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Toy kitchen 1: Flip pot upright

Toy sink 1: Put spoon into pan

Toy sink 2: Put carrot on plate Toy sink 3: Put lid on pot

Toy kitchen 2: Put potato into pot

Toy kitchen 3: Turn faucet to the right

Real Kitchen 1: Wipe plate with sponge

Toy kitchen 4: Put banana in pot

Toy sink 4: Put cup in drying rack Toy sink 5: Put carrot on plate

Fig. 1: Illustration of our bridge dataset. The dataset includes demonstrations in 10
environments (4 toy kitchens and 5 toy sinks and 1 real kitchen), collected using a
WidowX250 robot controlled via an Oculus Quest2 VR device, and consists of 7200
demonstrations. The red arrows indicate the desired movement of the target object.

reusable in robotics in the same way as large supervised
datasets are reused (e.g., ImageNet [2])? Each end-user of
such a dataset might want their robot to learn a different
task, which would be situated in a different domain (e.g.,
a different laboratory, home, etc.). It is currently an open
question whether such reuse is feasible in robotics, and we
posit that any such dataset would need to cover both multiple
different tasks and multiple different domains. To this end, the
aim of our paper is to investigate the degree to which such
a multi-task and multi-domain dataset, which we refer to as
a bridge dataset, can enable a new robot in a new domain
(which was not seen in the bridge data) to more effectively
generalize when learning a new task (which was also not seen
in the bridge data), as well as to transfer tasks from the bridge
data to the target domain. We also propose a new dataset that
enables this goal in the context of kitchen-themed tasks with
a low-cost robotic arm and is intended to be reused by other
researchers.

The notion that multi-task data can speed up learning
or improve generalization has been studied in many prior
works [26, 13]. However, unlike this paper, the focus in these
prior works, as we discuss in Section II, is not on enabling
new users to quickly train generalizable skills in a new setting
or domain, but rather to utilize multi-task learning to lower the
data requirements of acquiring a pre-defined set of tasks. More
closely related to our work, RoboNet [1] contains data from
multiple robots and domains, but this data is collected using
random motions, and does not provide examples of multiple
different tasks that can be used for more complex task-directed
manipulation. We discuss other datasets in Section II; but
in summary, no existing dataset covers both multiple tasks
and multiple domains in a way that is suitable to study our



central hypothesis: can prior data be used to improve the
generalization of new tasks in new domains? We will call
this the bridge data hypothesis. We believe this is a critical
requirement for effective data reuse in robotics, where different
labs and researchers can all bootstrap from the same shared
datasets. To study this, we collected a new multi-domain
manipulation dataset with 7,200 demonstrations of 71 distinct
and semantically meaningful tasks, themed around household
tasks in kitchen environments. The data was collected across
10 distinct “toy” kitchens, as shown in Figure 1. This data
is suitable for imitation learning, which is the focus of our
work, though it could also be repurposed for offline RL and
other algorithms in the future. We present our new dataset,
and then use it to evaluate the bridge data hypothesis that is
stated above, using three types of transfer scenarios: (1) When
the user needs to train an existing task in a new domain, does
the inclusion of bridge data boost performance? This roughly
corresponds to a standard domain adaptation setting. (2) After
the user has collected some data for a few tasks in a new
domain, can their robot then perform other tasks that were not
seen in the new domain, but are only present in the bridge
data (i.e., can it “import” tasks from the bridge data)? (3)
When the user collects some data in a new domain for a task
that was not seen in the bridge data, can the performance and
generalization of this task be boosted by including the bridge
data in training? Scenario (3) directly evaluates our central
hypothesis, while the other scenarios illustrate other potential
uses for bridge data.

The main contributions of our work consist of an empir-
ical evaluation of the bridge data hypothesis and a practical
example of a bridge dataset with 7,200 demonstrations for 71
tasks in 10 environments, which we have released publicly
on the project website1. To the best of our knowledge, our
work is also the first to demonstrate transfer scenarios (2)
and (3) above. This is significant, because (2) provides users
with a low-cost way to “import” all of the skills in the
bridge dataset into their own domain with just a small number
of demonstrations in their domain, while (3) provides for a
way to boost the performance of an entirely new skill with
previously collected reusable bridge data. Our results suggest
that accumulating and reusing diverse multi-task and multi-
domain datasets, at least when all data is collected with the
same type of robot, may make it possible for researchers to
endow robots with generalizable skills using only a modest
amount of in-domain data for their desired task.

II. RELATED WORK

While most prior work on deep visuomotor learning trains a
single task in a single domain [8, 4, 11, 25, 17, 21, 9, 23, 28],
our goal is not to develop better learning methods, but rather
to illustrate how generic multi-domain, multi-task datasets can
be used with existing algorithms to boost the generalization
of new tasks in new domains. Prior work on multi-task
reinforcement learning [13] has shown that data from other

1https://sites.google.com/view/bridgedata

Dataset # Tasks # Trajec. # Domains
suitable

for BC/IL

DAML [25] 3 2.9k 1 ✓
MIME [22] 22 8.2k 1 ✓
RoboNet [1] N/A 162k 7 ✗
RoboTurk [18, 19] 3 2.1k 1 ✓
Vis. Imit. Made [24] 2 2k 50 ✓
Ours 71 7.2k 10 ✓

Fig. 2: Comparison of our dataset and prior works. Our dataset has by far the most tasks,
and is the only dataset with more than 2 tasks that has many domains. This is critical
for evaluating the bridge data hypothesis.

tasks can boost generalization of new tasks, however this study
is carried out in a single domain.

Existing robot learning datasets do not exhibit the right
properties for boosting the generalization of new tasks in new
domains or zero-shot transferring skills from the prior dataset
to a target domain. We provide an overview of the most related
datasets in Figure 2. Most existing robot datasets, such as
MIME [22], DAML [25], RoboTurk [18, 19], and many others
[20, 6, 16, 12, 5, 27, 13] only feature a single domain, making
them difficult to use for boosting the generalization in other
domains. Merging multiple existing datasets into one multi-
domain dataset is difficult due to inconsistencies in data col-
lection protocols, time discretization, robot morphologies, and
sensors. Learning from multiple robots has been studied with
RoboNet [1], which provides a dataset with 7 different robots
in different domains. Here the data is generated with random
motions which do not produce semantically meaningful tasks.
This limits task complexity to pushing and basic grasping, and
makes the data poorly suited for imitation learning.

Some prior works have also used datasets collected by
humans without a robot, across multiple domains. For exam-
ple, Young et al. [24] presents results on data across many
more domains than our bridge data, collected via a hand-held
gripper, but only presents two grasping tasks.

III. BRIDGE DATASETS

In this section, we describe the basic principles behind
bridge datasets and how they can be used to boost general-
ization. Then, we present a description of the specific bridge
dataset that we collected using teleoperation of a low-cost
robotic arm for a range of kitchen-themed manipulation tasks.
We use the term bridge dataset to refer to a large and diverse
dataset of robotic behaviors collected in a range of settings
(e.g., different viewpoints, lighting conditions, objects, and
scenes), for a range of different tasks, so as to make it possible
to “bridge” gaps in the generalization that arise when the user
provides a small to medium amount of data in their specific
target domain. We define the term “target domain” to refer
to the environment where the robot must perform the desired
task. This target domain is distinct from any of the settings
seen in the bridge dataset: the intent is for the same large
bridge dataset to be used by all users for whichever target
domain they require.

A. Boosting Generalization via Bridge Datasets

We consider three types of generalization in our experi-
ments, though other modes may also be feasible:

https://sites.google.com/view/bridgedata
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Fig. 3: Demonstration data collection setup using VR Headset. The scene is captured by
5 cameras simultaneously. While one of the cameras is fixed, the others are mounted on
flexible rods.
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Fig. 4: Scenario (1): transfer with matching behaviors. In this setting, bridge data is
used to improve the performance and generalization of tasks in the target domain for
which the user has collected some amount of data. These tasks must also be present
in the bridge data. In this example, the user demonstrates the “turn lever,” “squash into
pot,” and “flip cup” tasks in the target domain, and these tasks are also present in several
domains in the bridge data. After including the bridge data in training, the performance
and generalization of these tasks in the target is significantly higher.

(1) Transfer with matching behaviors, where the user col-
lects some small amount of data in their target domain for tasks
that are also present in the bridge data (e.g., around 50 demos
per task), and uses the bridge data to boost the performance
and generalization of these tasks. We illustrate this scenario in
Figure 4. This scenario is the most conventional, and resembles
domain adaptation in computer vision, but it is also the most
limiting, since it requires the user’s desired tasks to be present
in the bridge data. However, as we will show, bridge data can
enable very significant performance and generalization boosts
in this setting.
(2) Zero-shot transfer with target support, where the user
utilizes data from a few tasks in their target domain to
“import” other tasks that are present in the bridge data without
additionally collecting new demonstrations for them in the
target domain. For example, the bridge data contains the tasks
of putting a sweet potato into a pot or a pan, the user provides
data in their domain for putting brushes in pans, and the robot
is then able to both put brushes as well as put sweet potatoes
in pans. We illustrate this scenario in Figure 5. This scenario
increases the repertoires of skills that are available in the user’s
target environment, simply by including the bridge data, thus
eliminating the need to recollect data for every task in every
target environment.
(3) Boosting generalization of new tasks, where the user
provides a small amount of data (50 demonstrations in prac-
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Put sweet potato in pot

Put sweet 
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Fig. 5: Scenario (2): zero-shot transfer with target support. In this setting, the goal
is to “import” a task from the bridge data that was not seen in the target domain. The
user provides a few tasks in the target domain that are used to connect to the bridge
data, and then asks the robot to perform a task that they did not provide, but which was
seen in the bridge data. In this case, the “put sweet potato in pot” task is present in
the toy kitchen 1 domain in the bridge data, but is not demonstrated by the user in the
target domain. After training with user-provided data for other tasks, the robot is able to
perform “put sweet potato in pot” in the target domain.

Bridge-Data

Improved Generalization for “Put Brush in Pan” Task

Target Task (not in Bridge Data)

Joint 
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Fig. 6: Scenario (3): boosting generalization of new tasks. The user provides some
data for a new task that was not seen in the bridge data, and the bridge data is included
in training to boost performance and generalization for this new task.

tice) for a new task that is not present in the bridge data,
and then utilizes the bridge data to boost generalization and
performance of this task. This scenario, illustrated in Figure 6,
most directly reflects our primary goals, since it uses the bridge
data without requiring either the domains or tasks to match,
leveraging the diversity of the data and structural similarity to
boost performance and generalization of entirely new tasks.

To enable this kind of generalization boosting, we con-
jecture that the key features that bridge datasets must have
are: (i) a sufficient variety of settings, so as to provide
for good generalization; (ii) shared structure between bridge
data domains and target domains (i.e., it is unreasonable to
expect generalization for a construction robot using bridge
data of kitchen tasks); (iii) a sufficient range of tasks that
breaks unwanted correlations between tasks and domains.
Analogously to how the ImageNet dataset [2] provides broad
coverage that makes it possible to boost generalization for a
range of computer vision tasks, the broader a bridge dataset
is, the more likely target tasks receive a generalization boost
in a particular target domain.

B. A Bridge Dataset of Large-Scale Kitchen Tasks

We instantiate a bridge dataset based on the principles above
as follows:
Robotic system overview. Since our dataset is likely the
most useful for users with the same or similar type of robot,
we chose to use a low-cost and widely available robot, a
6-dof WidowX250s (US$2900), which many other users of
our dataset are likely to be able to obtain. The total cost of
the setup is less than US$3600 (excluding the computer). To
collect demonstrations, we use an Oculus Quest headset, where



we put the headset on a table as illustrated in Figure 3 next
to the robot and track the user’s handset while applying the
user’s motions to the robot end-effector via inverse kinematics.
We capture images from 3 to 5 cameras concurrently, using
standard webcams as well as Intel RealSense depth cameras.
Data collection protocol. Our proposed bridge dataset, illus-
trated in Figure 1 consists of a total of 7200 demonstrations
for 71 different tasks, collected in 10 different environments,
focusing on the theme of household kitchen tasks. Each task
has between 50 and 300 demonstrations. We opted to use
kitchen and sink ”play sets” for children, since they are smaller
than real-world kitchens and therefore ideal for small-scale
robots, and they are comparatively robust and low-cost, while
still providing settings that resemble typical household scenes.
During data collection we randomize the kitchen position
(translations of 0-20cm) and the camera positions (translations
of 0-10cm and rotations of 0-30 degrees) for all cameras on
flexible rods every 25 trajectories. The positions of distractor
objects (i.e. objects not needed for a task) are randomized at
least every 5 trajectories. All environments except toy sink 4,
toy sink 5, and kitchen 3 were collected at Institution 1 and use
Logitech C920 webcams, the three remaining environments
were collected at Institution 2 and use Intel RealSense RGB-D
cameras. The trajectories collected at Institution 2 randomize
all camera positions once every 50 trajectories. Instructions
for how users can reproduce our setup and collect data in new
environments can be found on the project website.2

IV. USING BRIDGE DATA IN IMITATION LEARNING

As a proof-of-concept to illustrate the utility of bridge
datasets for boosting generalization in robot learning, we will
present experimental results for an imitation-based approach
that utilizes this data, although the data could also be used
with a variety of other robotic learning algorithms such as
offline RL and model-based planning.
Incorporating bridge data. While a variety of transfer learn-
ing methods have been proposed in the literature for combining
datasets from distinct domains, we found that a simple joint
training approach is effective for deriving considerable benefit
from bridge data. For each of the scenarios outlined in
Section III-A, we take the user-provided demonstrations in
the target domain and combine them with the entire bridge
dataset for training. Since the sizes of these datasets are
significantly different, we rebalance the datasets by weighting
each datapoint, as discussed at the end of this section. Imitation
learning then proceeds normally, simply training the policy
with supervised learning on the combined dataset using the
architecture described in the following paragraph. It is also
possible to incorporate bridge data in other ways, for example
by pretraining and finetuning. We found pretraining to be sig-
nificantly less effective than joint training in our experiments,
a finding that is consistent with prior works [16], but we
emphasize that bridge datasets can be combined with target
domain data in a variety of ways. Policy architecture. We use

2https://sites.google.com/view/bridgedata

task-conditioned behavioral cloning (BC) with an additional
task-id input to the policy, which is used to distinguish tasks
during training and testing. In some cases, a task cannot
be uniquely determined by only observing the input image,
and a one-hot vector representing the task will solve this
issue. The images are first fed into a 34-layer ResNet [10]
and the resulting feature maps are passed through a spatial
softmax [7, 15], which extracts a set of spatial positions of
the relevant features. The spatial features are then concatenated
with the one-hot task-id vector, and are fed into 3 layers of
fully-connected networks by which the final action prediction
is produced. During training, for a batch of training data
containing tuples of task ids, images, and ground-truth actions,
the network is trained by minimizing the standard ℓ2-error
between the ground-truth actions and the predicted actions
given by the policy provided the task id and the image
observation as the input.

Training details. Since the amount of target domain data is
usually significantly less than the amount of bridge data, we
rebalance the two datasets during training. In the matching
behaviors and zero-shot transfer with target support scenarios,
the ratio between the number of trajectories in the bridge
and target data is roughly 10:1, and we rebalance the data
such that 70% of the dataset is bridge data and 30% is target
domain data. In the “boosting generalization of new tasks"
scenario the imbalance is more severe, roughly 60:1, and so we
rebalance such that 90% of the dataset is bridge data and 10%
is target domain data. Lower rebalancing ratios of bridge data
and target domain data tend to produce overfitting when the
amount of target domain data is as low as 50 demonstrations.

V. EXPERIMENTAL RESULTS

Our experimental evaluation aims to study how well bridge
data can facilitate generalization in scenarios (1), (2), and (3),
as outlined in Section III-A. We utilize the bridge dataset
described in Section III-B. We evaluate generalization on a set
of new target domains with limited target domain data for each
of the generalization scenarios, and compare the performance
of learned policies with and without bridge data. Videos of
the experiments are included in the supplementary materials
and on the project webpage, which we encourage the reader
to view to get a clearer sense for the diversity of the tasks:
https://sites.google.com/view/bridgedata
Quantitative metrics. All quantitative evaluations use 10 trials
per task,varying object positions and distractors on every trial
and varying the position of the robot relative to the environ-
ment every 5 trials. This ensures that all test configurations
are unique and different from any condition seen in training,
providing a measurement of generalization performance for
the policy. When the experiments in toy kitchen 1-3 and toy
sink 1-3 were conducted, the bridge dataset only comprised
4700 trajectories. Other experiments use the full dataset with
7200 trajectories total.
Scenario (1): transfer with matching behaviors. Figure 7
(left) shows results for the transfer learning with matching
behaviors scenario, where the user provides some data for a

https://sites.google.com/view/bridgedata
https://sites.google.com/view/bridgedata
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Fig. 7: Comparisons of joint training with bridge data (blue) and other approaches for each type of scenario. The black vertical lines on the average success rate bar denote the
standard error of the mean across different tasks for that scenario. Left: Performing joint training on bridge and target data leads to improved performance, here the task is included
both in the bridge and target dataset. Middle: Using target domain data from other tasks helps transferring tasks from the bridge dataset to the target domain. Right: Joint training
with the bridge data and a target task that is not contained in the bridge dataset enables significant generalization improvement compared to only training on the target task alone.
Tasks with an asterisk (*) uses objects that are not part of the bridge dataset.

Fig. 8: Examples of successful trajectories performed by the policy jointly trained with prior data and target domain data. Left: put pot in sink (scenario 1); middle: put carrot on
plate (scenario 2); Right: wipe plate with sponge (scenario 3).

set of tasks in the target domain (which are also present in the
bridge data), and we evaluate whether including bridge data
during training improves performance and generalization. For
comparison, we include the performance of the policy when
trained only on the target domain data, without bridge data
(Target Domain Only), a baseline that uses only the bridge
data without any target domain data (Direct Transfer), as well
as baseline that trains a single-task policy on data in the target
domain only (Single Task). The Toy Kitchen 2 (tk2) target
domain has 6 tasks, and Toy Sink 3 (ts3) has 10 tasks, each
with 50 demonstrations.

As can be seen in the results, jointly training with the bridge
data leads to significant gains in performance (66% success
averaged over tasks) compared to the direct transfer (14%
success), target domain only (28% success) and the single
task (18% success) baseline. This is not surprising, since this
scenario directly augments the training set with additional data
of the same tasks, but it still provides a validation of the value
of including bridge data in training (for a qualitative example
see Figure 8, left).
Scenario (2): zero-shot transfer with target support. In
the next experiment, we evaluate tasks in the target domain
for which the user did not provide any data. Instead, the
user only collected data for other tasks in the target domain.
This experiment evaluates whether bridge data can be used to
“import” tasks into the target domain. We provide a qualitative
example for this scenario in Figure 8 middle, which shows an
experiment where we transfer the “put carrot on plate" task
into the Toy Sink 1 target domain using the bridge data and
target domain data consisting of 10 other tasks. Due to space

constraints, We provide a visualization of these other tasks on
the project webpage.

Since there is no target domain data for these tasks, we
cannot compare to a baseline that does not use bridge data at
all, since such a baseline would have no data for these tasks.
However, we do include the “direct transfer” baseline, which
utilizes a policy trained only on the bridge data. Note that this
comparison is non-trivial: it is not at all clear a priori that target
domain data for other tasks should boost transfer performance
of tasks that are only present in the bridge data. The results,
shown in Figure 7 (middle), indicate that the jointly trained
policy which obtains 44% success averaged over tasks indeed
attains a very significant increase in performance over direct
transfer (30% success), suggesting that the zero-shot transfer
with target support scenario offers a viable way for users to
“import” tasks from the bridge dataset into their domain.
Scenario (3): boosting generalization of new tasks. The
last generalization scenario, which most directly evaluates
the bridge data hypothesis, aims to study how well bridge
data can boost the generalization of entirely new tasks in
the target domain, which are not present in the bridge data.
To study this question, we collected data for 10 different
unique tasks in 4 different environments and excluded them
from the bridge data to simulate a user collecting their own
unique task in their new target environment. Figure 8 right
illustrates one of these scenarios, where we collected 50
demonstrations for the “wipe place with sponge" task in the
the real kitchen 1 target domain. Neither data from the target
domain nor this task or this object are present in the bridge
data. After jointly training with both bridge and target data



we obtain a significant generalization boost when running the
policy in the target domain, compared to a policy trained
on only the single-task target domain data. Direct transfer is
impossible here, because the bridge data does not contain this
task. The results are presented in Figure 7 (right), and show
that training jointly with the bridge data leads to significant
improvement on 6 out of 10 tasks across three evaluation
environments, leading to 50% success averaged over tasks,
whereas single task policies attain around 22% success – a 2×
improvement in overall performance (the asterisks denote in
which experiments the objects are not contained in the bridge
data). The significant improvements obtained from including
the bridge data suggest that bridge datasets can be a powerful
vehicle for boosting generalization of new skills, and that a
single shared bridge dataset can be utilized across a range
of domains and applications. Of course, structural similarity
between environments and tasks is important, and all of these
evaluations use other toy kitchen or sink setups. We expect the
applicability of a bridge dataset to increase as the breadth of
domains and tasks in the dataset increases. When does bridge
data help? In Figure 9 we provide a list of example scenarios
where the bridge data helps and where it does not (the first
7 rows). More qualitative results, including videos of these
tasks and additional discussion, are provided on the project
website due to space constraints. Qualitatively, we observed
that the tasks that most consistently benefit from the inclusion
of bridge data contain objects that visually resemble those seen
in the bridge data (e.g., there are gains for ‘put pear in bowl,’
where the pear resembles the vegetables in the bridge data,
but no gains in ‘flip orange pot upright,’ since the orange pot
looks very different from any container in the bridge data),
contain behavior that physically is related to behavior seen
in the bridge data (e.g., in ‘put detergent in dry rack,’ the
bridge data helps since the motion resembles the pick-and-
place motions in the prior data, whereas in ‘open box flaps’
bridge data does not help since the type of pushing motions
involved in this task are very rare in the bridge data), and take
place in domains that are visually and structurally related to
those in the bridge data (e.g., the bridge data helps with ‘wipe
plate with sponge’ in Figure 8 in a real kitchen, but does
not help with ‘pick screwdriver from tool chest task,’ since
the scene does not resemble the toy kitchens in the bridge
data). Unfortunately, it is difficult to provide a more precise
and formal treatment of when transfer learning succeeds in
general, though we expect this would be an exciting direction
for future research.

VI. CONCLUSION

We show how a large, diverse bridge dataset can be
leveraged to improve generalization in robotic learning. Our
experiments demonstrate that including bridge data when
training skills in a new domain can improve performance
across a range of scenarios, both for tasks that are present
in the bridge data and, perhaps surprisingly, entirely new
tasks. This means that bridge data may provide a generic
tool to improve generalization in a user’s target domain. In

addition, we showed that bridge data can also function as a
tool to import tasks from the prior dataset to a target domain,
thus increasing the repertoires of skills a user has at their
disposal in a particular target domain. This suggests that a
large, shared bridge dataset, like the one we have released,
could be used by different robotics researchers to boost the
generalization capabilities and the number of available skills
of their imitation-trained policies.

Both our experimental evaluation and our technical ap-
proach do have a number of limitations. While we carefully
set up our experiments to reflect a likely real-world usage
scenario, where the target domain is distinct from the bridge
data (i.e., to reflect what would happen if someone else were
to use our bridge data for their robot in their lab), we still
only evaluate in a few distinct settings, namely in 5 different
environments at Institution 1.

However, our imitation learning results do illustrate the
benefits of diverse bridge data, and we hope that by releasing
our dataset to the community, we can take a step toward
generalizing robotic learning and make it possible for anyone
to train robotic policies that readily generalize to varied en-
vironments without repeatedly collecting large and exhaustive
datasets.

Task

Tar.

Env

Joint

Train

Single

Task

Potential reason for

no gain with bridge data

turn faucet lever (1) tk2 0% 0% The faucet in tk2 has very different
appearance from the other faucets

Pickup pan from stove (2) ts1 0% N/A Not enough target domain data and prior data for this task
Put spoon into pot (2) tk2 0% N/A Not enough target domain data and prior data for this task
flip orange pot upright (3) tk2 50% 60% There is no orange pot in prior dataset,

only metal pots in prior dataset
open box flaps (3) tk2 10% 10% Boxes and pushing motions do not occur in prior data
take lid off pot (3) ts3 60% 60% Only 100 demos involving lids in prior dataset.
pick up screw driver (3) toolchest 0% 0% The toolchest and screwdrivers are

visually very different from prior data
put pot or pan in sink (1) tk2 90% 50%
put carrot on plate (2) ts1 40% N/A
Wipe plate w/ sponge (3) k1 70% N/A
put pear in bowl (3) tk2 50% 10%
put brush in pot (3) ts3 90% 0%
put detergent dry rack (3) ts3 80% 10%
lift bowl (3) tk2 70% 50%

Fig. 9: Comparison of scenarios where usage of the bridge data helps performance and
where it does not. Scenarios where usage of bridge data does not help are marked in
red font. The type of transfer setting is denoted by the number in brackets after the task
description.
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