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Fig. 1: Robots often fail to do what we want. This can happen for many reasons including mis-specification of goals, failure to anticipate what satisfying
plans will do, and because optimization sometimes fails. We show how language can be used to update the underlying cost of a planner to improve task
performance. Our approach can use language to specify corrections by a) the addition of constraints or b) specifying intermediate sub-goals for the planner .

Abstract—When humans design cost or goal specifications for
robots, they often produce specifications that are ambiguous,
under-specified, or beyond planners’ ability to solve. In these
cases, corrections provide a valuable tool for human-in-the-loop
robot control. Corrections might take the form of new goal spec-
ifications, new constraints (e.g. to avoid specific objects), or hints
for planning algorithms (e.g. to visit specific waypoints). Existing
correction methods (e.g. using a joystick or direct manipulation of
an end effector) require full teleoperation or real-time interaction.
In this paper, we explore natural language as an expressive and
flexible tool for robot correction. We describe how to map from
natural language sentences to transformations of cost functions.
We show that these transformations enable users to correct
goals, update robot motions to accommodate additional user
preferences, and recover from planning errors. These corrections
can be leveraged to get 81% and 93% success rates on tasks
where the original planner failed, with either one or two language
corrections. Our method makes it possible to compose multi-
ple constraints and generalizes to unseen scenes, objects, and
sentences in simulated and real-world environments. Additional
visualizations are available at sites.google.com/view/language-
costs

I. INTRODUCTION

Consider a robot vacuum cleaner. The robot’s goal is to
clean the house, but there may be a need to alter the objec-
tive (“Clean only the living room.”), to introduce constraints
(“Don’t go into the bathrooms!”) or to guide the robot when
it is stuck (“Go to the right end of the wall to enter the
missed room.”). The robot would benefit from the ability to
incorporate such corrective, natural language feedback to alter
aspects of its behavior or modify its goal. How though can the
robot incorporate instructions with rich and varied semantics
into its existing objective?

In this paper, we propose to use natural language instruc-
tions as inputs to directly modify a robot’s planning objective.

This objective function takes the form of a cost function in
an optimization-based planning and control framework for
manipulation. Our use of language contrasts with previous
work where corrective input of robot behavior came from
joystick control [36] [33]], kinesthetic feedback [27, [19} 6], or
spatial labelling of constraints [45} [9]. Kinesthetic and joystick
feedback allows for fine-grained control, but typically requires
prior expertise and undivided attention from the user, reducing
the system autonomy and limiting its applications.

We choose natural language input thanks to its efficiency,
accessibility, ease-of-use, and direct conveyance of the user’s
intent [39]]. This allows for the expression of a broad range of
feedback describing physical variation, time, or other abstrac-
tions. However, language also brings with it ambiguity and
requires a model of symbol grounding and spatio-temporal
reasoning to relate the concepts expressed in language to the
robot’s state and action spaces [17, 25 137, 22 3, 30l 29].
Given such a grounding model, the robot can ground lan-
guage corrections to novel tasks and environments, achieving
powerful generalization. In contrast, learning to generalize
corrections from kinesthetic or joystick data to novel tasks
requires inferring the user’s intent given few underspecified
demonstrations, which is itself a challenging problem [14].

We propose to learn a model that maps visual observations
and a natural language correction to a residual cost func-
tion. Specifically, we model natural-language corrections as a
residual cost function that can be combined with a task cost.
This allows a user to modify the robot’s objective, to clarify
a misspecified objective, or introduce additional constraints
into the motion optimization process at varying levels of
abstraction at any time during execution. In the absence of
a prior task objective, our method can also be used to specify
the task in an instruction-following setting [23l l41]]. Our
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Fig. 2: Setup: The main components of our system are: the motion
planner and language parameterized cost correction module. The
motion planner uses sampling based model predictive control to
minimize the overall specified cost. The cost correction module takes
as input its observation of the environment, the robot’s state, and a
natural language correction to output an updated cost function. The
motion planner uses the updated cost to modify the trajectory of the
robot.

framework seamlessly integrates with commonly used motion
planner costs, such as collision avoidance, joint limits, and
smoothness. It also allows layering costs sequentially or at a
given time, allowing for time-varying corrections. Finally, it
enables composing costs associated with previously learned
tasks or corrections to represent new tasks at a higher level of
abstraction. We train our cost model on a dataset of natural
language descriptions paired with either demonstrations, pre-
specified costs, or both.

We conduct experiments both in simulation and on the
physical robot manipulator illustrated in Figure 1. These
experiments show how we can use our method to either specify
or correct robot behavior with natural language commands.
In environments where our local planner fails 6.4% of the
time, humans can use our language interface to correct 81%
of failures with one natural language command and 93% with
a second, bringing the effective success rate from 94% to
99%. Our method generalizes to unseen objects and to out-
of-distribution natural language, and the cost maps it creates
are composable, meaning that commands can be combined
with various cost functions. Finally, we show how our method,
trained in simulation, can be applied to real-robot tasks.

II. PRELIMINARIES

Given an environment £, we study planning problems
formalized as Markov decision processes defined by the tuple
(S, A,9Q,T). Where S is the set of robot states, A is the set
of possible actions, () is the space of external observations,
and T : S x A xS — [0,1] is the stochastic transition
function. In the case of the robot in Figure 2} S is a tu-
ple of all possible positions, velocities and accelerations the
robot can achieve represented as (g, ¢, §). The action space
A = {up,down,left,right}. Its Q is the observed cost of states
k-steps around the robot’s current s. The tuple (s,a,0,7)
describes the robot’s state s € S, action taken a € A,
observations from the environment o € 2 and the task 7T
that the robot needs to complete. For a 7, an associated cost
map represented as C may be specified by a user that wants
a planner to perform 7. Cy is of the form,

CT:S—>R

and is a user specified costmap which can be probed for
different s € S. For example, for reaching a goal, g in
Figure 1 the costmap is a function that at every state on the
map s returns the Euclidean distance /(s — g)2. In addition
to the C7, there is also a base cost CBIH that helps the robot
avoid its limits (collision avoidance, joint limits). Conditioned
on o the robot takes an a sequentially to minimize,

Cr =Cr +Cp. (n

The planning routine P then optimizes the robot’s cumula-
tive cost Cr and outputs an estimate of the best action that can
be taken in the given state s. The robot then takes the action
a and ends up in a new state dictated by the dynamics of the
robot T' and the system and the processes is repeated. It is
via this process that robot unrolls a trajectory, 7, to complete
different tasks. More formally, P is,

T
arg min Z Cr(qe,dt) +Cs(ar, 4r)
7S] (C1 4 E—,
St e = q—1 + Gdt 2)
Gt = qe—1 + Gedt 3)

With increasing complexity of the environment and without
assuming access to a model of the world, it is challenging
to specify a Cr that accurately reflects the task. An optimal
cost function would be one that reflects the intended task,
capturing the true cost-to-go. For example, the cost function
corresponding to navigating to a goal could be approximated
as the euclidean distance to goal. However, in many environ-
ments, as shown in Fig 1, greedily optimizing this objective
will result in only a locally optimal solution that is completely
misaligned with the human’s intent. Misalignment due to mis-
specified goals and insufficient constraints can cause a plan
failure. This problem of misalignment or a difference in the
cost in the mind of the human C and the robot Cr is referred

IDetailed specifications of Cjz can be found in the appendix



to as the value alignment problem [43]. Feedback from the
human can be used to minimize the differences between Cy
and Cr. The human can generate a feedback based on their
observation of the &, represented as o" and other variables of
the £ they have access to.

III. APPROACH

To minimize the gap between Cy and Cr, we propose the
use of feedback from a user in the form of natural language
corrections to update Cr. Below we outline our approach.

A. Our Method

At any given point of time ¢, the user can issue feedback in
the form of a natural language string, denoted as £. We assume
that the user has access to o, s, and information about the
task while generating feedback. We learn a generative model
that generates a costmap over all states associated with £
conditioned on £, s the state of the robot, and o”. This cost
is then composed with Cr (Cj; = Cr + C) to generate an
updated cost for the robot. P then solves the optimization
informed by the updated objective Cj.

We factor the language-based cost C, into functions that
generate a continuous cost map C and a binary mask over the
cost M. We combine them using element-wise multiplication,
C; = C x M. Where the functions have the form,

C:S—R
M:S —[0,1].

C for a given £ maps to the cost for every s € S. M maps to a
binary mask that is used over C. In the case of a goal-directed
L, such as go to the left of the bottle, this is a guiding path
to the goal. Whereas in the case of a constraints such as, go
slower, this is a unit mask i.e. no-states are masked. This is
done in-order to use a cue from the mask to help distinguish
between changes in goals versus adding constraints to existing
goals better. In theory, the cost-map itself should be able to
direct a robot to the goal but we see that learning such a
decomposition worked better in practice, specially in long-
horizon tasks as shown in Appendix [C|

C and M are learnt using datasets containing data of one
or both types. Dataset containing trajectories paired with L,
Daemos = { (11, L1,0%,51),...(Tn, L1, 0", 5,)}, and costmaps
paired with £, Demap = {(C1, L1, 0}, 51), ...(Chs L, 0F, 55) }-
Using Dgemos and Depqp We generate a unified final dataset.

1) Generating Ground-truth C and M: The C associated
with trajectories 7 in Dgemos 1S generated by mapping every
s on the trajectory to its distance to the goal measured along
the trajectory and every s outside the trajectory is mapped to a
fixed high cost. This kind of a mapping is representative of the
fact that moving along the trajectory is definitively indicative
of a decrease in cost for the specified L. For tasks where cost
maps are specified, for instance stay away from X, the cost
maps available are used directly. The process of generating
ground truth masks for training is fairly straight forward. For
datapoints in Dgemos, the binary mask is 1 for states along
7 and is zero everywhere else. For datapoints in Depy,p the

mask is /. The final dataset is D = {(Cy, My, L1,0},51),...}
where ¢ and m correspond to the cost map and binary mask
corresponding to the datapoint.

2) Objective: C and M are learnt on the dataset D via
maximum likelihood estimation. We initialize the parameters
for models that learn C and M with parameters ¢ and 7. The
models for C and M condition on £, s, and o”. The probability
of generating the correct C and M can be decomposed as
follows.

p(C | Li,s4,00) = Hp(C(s) | Ci,si,0?> “4)
p(M | L;,54,00) = Hp(./\/l(s) | Aci,Si,O?) &)

To update model parameters the optimization objective is,

n+k
0 = arg max Z Zlogpe (Ci(s) | ((Li,s:,00), 5)) (6)
:Li; sES
7 = arg max Z Zlogp,, (MZ(S) | ((Li, 815 0?)7 5)) (7
n

i=1 se§

For datapoints from Dgemes We only penalize the cost
prediction model for s on the trajectory whereas for datapoints
from Deyap We penalize the model for the entire costmap. This
is because, for demonstrations we are only confident about
costs along the trajectory. This partial supervision used while
training allows the model to extrapolate and make guesses of
the costs everywhere else in the map and as a result the cost
maps generated are smoother. At inference, to obtain the C
and M corresponding to a new £, o" and s,

C = argmax pg(C | Li, s;,0") (®)
c

M= arg max pn(M ‘ Li; Sis O?) (9)
M

3) Interfacing C. with the P: We explore two corrections
types that can be encoded by our C.; constraint addition
and goal specification. In the case of constraint addition, the
constraints are added to the P permanently (e.g., going faster,
slower, staying away from an object). While optimizing, we
keep track of the constraints in a set C,¢ to enable accounting
over multiple constraints. In the case of goal specification,
there are two cases in which a goal may be specified, first,
in the absence of any previous goal and second, as a way to
correct the model by introducing intermediate goals. In the first
case, there is no existing goal cost and C, becomes the only
active goal cost alongside the other constraints. In the second
mode we deactivate the task cost C+ and wait until C. is
within a threshold e before activating the original task cost C
back again. This temporary activation mode is used where £
specifies an intermediate goal directive. The M along with the
presence or absence of an existing Cy is indicative of the mode
of correction. A £ with a M == 1 is always a constraint and
that with a M # 1 is a goal directive. We interface our C, with
an optimization based controller [7] to generate commands for
the robot as shown in Algorithm [I]
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Fig. 3: Architecture: The architecture of the language parametrized cost correction module consists of two streams . The CLIP stream takes
as input the natural language feedback as well as an image of the environment and the U-Net stream encodes the image of the environment.
The output of this model is used to map to the cost associated with the language instruction. This could be learnt using specified costs
corresponding to specific instructions or via estimating the cost from demonstrations. More details in section section m

Algorithm 1: C. interfaced with the P

Initialize C.c = H, Ce=0,Cr =C7+C+Crc

while task not done do

s¢ = get_new_state() // Get current robot state;

if user feedback then

L = get_user_feedback();

C= Do (La St 0?)

M =p, (L,s:,07) // Run inference; if M == I

then
‘ Crc.append(C * M) // Add to constraints list;
else
‘ Cc=C*xM
Cr=Cr+Cs+Cc+Crc
end

if Cc(s¢) < € then
Ci = C1 + Cp + Crc // Original goal-cost is
‘ active;
at+1 = P(Cx, st) // Optimize with planner;
command_robot(a¢+1) // Send command to robot;
t+=1

end

B. Architecture

C and M are both individually implemented as a neural
network with a two-stream architecture as seen in Fig 3} The
CLIP stream consists of a pre-trained Contrastive Language-
Image Pre-training (CLIP) model with the Vision Trans-
former(ViT) visual module. It takes as input the language
correction £, robot state s and the RGB representation o”.
The state of the robot is encoded using the location of it’s
end effector on a spatial map of the RGB o”. We use the 512
dimensional visual embedding output from ViT along with the
512 dimension language embedding output from the language-
transformer. The image is encoded using a U-Net architecture
with skip connections . It encodes the RGB image o and
robot state s of the robot and generates the output frames
corresponding to the position cost map and velocity cost
map each parametrized as 2D map in RIS | The visual

2|S| denotes the dimension of the S

and language embedding from CLIP are concatenated with
the embedding of the encoder before passing the embedding
through the deconvolution layers to generate the cost map.
The weights of the CLIP language transformer and ViT are
frozen and the training optimizes the weights of the U-Net
only. The model outputs two cost maps: 1) a position map
and 2) a velocity rnapEl

IV. EXPERIMENTAL PROTOCOL

For Dgemos, We generate a dataset containing 100 environ-
ments. Each environment contained two objects from a set of
four YCB objects [I1]: a Cheeze-it box, a bleach bottle, a can
of spam and a bottle of mustard. The position of each object
is sampled uniformly within the bounds of the environment.
We sample object orientation from one of four equally-spaced
options. We render each environment with the NVIDIA Scene
Imaging Interface (NViSII) [26]. Images are top-down and
are of size (2048,2048) pixels. For every environment, we
uniformly sample 10 different collision-free start positions.
We choose goal positions to be 20 pixels offset from the mid-
point of object edges where the offset is away from the object,
and generate corresponding templated language instructions.
This templated language is sampled from diverse referring
expressions and object descriptions, as shown in Fig. [

We use STORM as a planner which minimizes a
Euclidean distance cost to generate trajectories from start to
goal position. However, as this is not a global optimizer, it
can get caught in local minima. Trajectories that successfully
connect these positions are categorized as successful; failed
trajectories are stored separately as a hard set for evaluation.
In our setting, the planner failed 6.4% of the time. More details
on the planner is described in appendix [A] We then divided
the environments with successful trajectories into training,
validation, and test sets, so that a specific object configuration
will only appear in one split.

30ur framework can also be extended to output additional maps for new
quantities such as force and torque by adding additional frames to the output.
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Fig. 4: Dataset: Clockwise starting from top left a) The training data consists of data of the form (input:(instructions, environments,robot
state), output:(cost)). The cost can be either specified by the user directly or come from demonstrations. When learnt from the demonstration,
the trajectory is modified by linearly decreasing the cost from the start location to the end location along the trajectory. b) The sources of
diversity in the dataset comes from the types of objects, randomized positioning of the objects in the environment and from instructions
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include referential expressions, relative clauses and miscellaneous interesting correction types such as avoid the object or costs that modify

non-positional attributes of the robot’s behavior such a velocity.

For Demap, the cost maps are generated in the following way.
For velocity speed-up, slow down, and when no constraints
are given over velocity the velocity costmap outputs 0, 1, or
2 respectively, corresponding to all s € S. For instructions of
avoiding objects the cost map generated is —+/(s — ¢)2 where
c is the location of the centre of the object to be stayed away
from. All cost values are re-scaled between [0, 255].

Evaluation and metrics. We consider a trial a success when
the robot reaches within 20 pixels of the goal position. We
evaluate our method on two platforms: 1) using the planner
on the test set in simulation and 2) using the planner on a
real Franka Panda robot in cluttered environments that also
contains unseen objects to study generalization.

V. RESULTS

We will first discuss the effect of the different components
in our model, followed by the performance of our method
in Section. [V-Al We will then discuss the effectiveness of
different types of feedback in Sec. and our generalization
experiments in Sec. We also show failures in Sec.

A. Goal Reaching with Language

First, we test how our method can be leveraged to reach
positions given directly as (x,y) to the planner, when the robot

is stuck in a local minimum. We evaluate on the test dataset
where the planner was 100% successful and also on the hard
set where the planner had 0% success. Visualizations of some
of these hard environments can be found in appendix [B] With
just a single language correction (Single-correction) we can
improve success rate from 0% to 81% in the hard-set of
problems, which also brings our success rate to 98% on the full
test set. With another language correction (Two-corrections,
we get our success rate to 93% and 99% in the hard and test
sets respectively. In this way, we see that minimal human input
can bring the overall reliability of the system to an impressive
level.

We additionally tested our network’s ability to understand
language by starting the robot at the initial position and
specifying the goal solely via the language string (Goal-
as-Language). In this setting, we do not give the planner
access to the desired (x,y) position and as such the success
rate drops to 65% on the full set. However, we see that
in problems where the original planner failed to reach with
access to (x,y) (hard set), we see that our network is able
to succeed in 29% of the set without requiring access to
(x,y). Through the results in Table. [ we can see that the
Cr. model pulls the robot in most situations with one or two



corrections. A full list of environments, corrections provided,
cost maps produced and trajectories can be found on the
website sites.google.com/view/language-costs.

Success Rate

Model
Hard  Solvable + Hard
Planner 0% 94%
Single-correction 81% 98%
Two-corrections 93% 99%
Goal-as-Language  29% 65%

TABLE I: Performance on Goal Reaching

B. Ablation Experiments

To evaluate the effect of different components of our model,
we run our method in simulation with our solvable test set
of situations (independent and identically distributed with the
training data). Again, we specify the goal only as a language
instruction but do not give the planner the (z,y) position of
the goal. This enables us to quantify the performance of the
mapping from language string to planner success without any
bias from a goal cost.

We first disable the language module so that our network
doesn’t take any language input (No-Language). This is an
under-specified system as the network does not know what
the user feedback is and hence the success rate is only 4% as
seen in table. [l This ablation shows that our dataset is not
biased and it indeed requires language input for success.

We then removed the vision input to the network (No-
Vision), so both CLIP ViT and the U-Net encoder do not get
the environment image or the location of the robot. This is
done to test if simply given a language instruction, how well
does exhibiting an average behavior do and the success rate
is only at 33%. This success rate includes only very basic
commands, like “go left”, “go down”, “speed up”, et cetera;
without vision, the system cannot accomplish any task that
refers to an object. When we remove our U-Net encoder (No-
U-Net-Encoder) and only use input to CLIP, the network does
not do any better than (No-Vision), implying that the 512 vision
embedding from CLIP is not sufficient to encode our task
specific environments.

Finally, we remove only the trajectory mask M, and only
use C as cost in No-Mask. We see that this brings up the
success rate to 58% but adding the trajectory mask get our
method to 69% on the test dataset.

C. Performance by Instruction Type

In this section, we analyze our model’s performance when
given specific types of instruction. We trained on five spatial
object dependent tasks-[Above, Below, Left of, Right of, Stay
Away], two spatial robot object dependent tasks-[Behind, In
front of], 4 directional spatial robot dependent tasks and 2
velocity tasks (fast, slow). Table shows a performance
breakdown on each of these tasks. We evaluate on the solvable
set of successful examples and split the trajectories by the
total length of the ground-truth trajectory to analyze whether

Category Success on Solvable  Object Reference
No-Language 4% 0%
No-Vision 33% 0%
No-U-Net-Encoder 33% 0%
Ours(No-Mask) 58% 37%
Cost and Mask (Ours) 69 % 52%

TABLE II: Effect of various model ablations on performance, when
given a goal language instruction and no Euclidean distance cost. We
see that our proposed method which predicts both a cost and valid-
area mask outperforms the alternatives. Figure [I3] in the appendix
shows the rate convergence to the goal. It can be seen that the
difference between performance of the No-mask and our model is
on the medium and long trajectories.

performance is dependant on the trajectory length. Specifically,
paths of planning time steps < 40 were short, 40 —60 medium,
and > 60 were long. There were 304 short examples, 131
medium examples, and 108 long examples. When running
these evaluations, we do not give access of (z,y) goal posi-
tions to the planner and only give a language string specifying
where the robot needs to go. The overall success rate was 69%;
we see that specifically very local corrections such as “go
faster” were always successful. Fig. [5] shows the interaction
between environment, cost prediction, and mask prediction for
various goal instructions.

Type of Success Rate on Solvable Set

Feedback All  Short Medium Long
Above 77% 86% 83%  40%
Below 66% 70% 7%  46%
Left of 45% 82% 33% 12%
Right of 49% 92% 47% 17%
Behind 20% 17% 26% 18%
In front of 76% 83% 50% -
Positional(J+») 100%  100% - -
Velocity 100% - - -
Stay Away 95% - - -

TABLE III: How effective is the language cost prediction module at
navigating to various types of goals? We look at problems of varying
levels of difficulty. The types are partitioned by horizontal lines based
on categories described in Sec [V-C]

D. Generalization Experiments

The CLIP embeddings used in our model provide a strong
basis for language generalization, as seen in previous work [40}
35]]. We performed additional set of experiments to show how
our models preserve this generalization ability, making them
more broadly useful despite the small amount of training data
on only four objects. We evaluate on the real robot for these
results, where the environment also contains unseen objects in
clutter. The results of these generalization experiments are in
Table which shows how our approach can scale to a wide
range of problems.

To study generalization to unseen language instructions,
we referred to the objects with non-templated phrases and
synonymous object names that were not part of the training
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vocabulary, in 20 different setups and found that our method
was able to successfully complete the task in 17 of them. Fig.[9]
shows some examples of diverse natural-language sentences
used to control the robot. We also tested our method with
language instructions referring to 10 unseen objects and our
method worked on cups(red, orange), plate, fork, ketchup
bottle and failed on screwdriver, candle, book, banana, pepper
can, pen. When any of the unseen objects were in the back-
ground (clutter) and language instructions were in reference
to seen objects, our method succeeded always even when the
objects were placed in orientations that were not seen during
training as shown in Fig. [f] Our training data only contained
scenes with two of four objects in poses chosen from a fixed
set of 4 orientations while the evaluations we did on the real
robot contained many objects and seen objects in different
orientations.

Generalization type Task Success

New language instructions 1720
Reference to unseen objects 4/10
New objects in background; clutter 15/15
Unseen poses for known objects 14/15

TABLE IV: Performance on generalization experiments. Our ap-
proach can generalize to new objects, language instructions, and to
clutter that was not present in the training data set.

E. Failures

Most failures of the correction policy are either due to a
discontinuity in the trajectory mask generated or due to some
few-off pixels in the cost map along the trajectory. Examples
of these can be seen in Fig The figure also describes other
curious scenarios. First, in the absence of an observable path
Cr tries to find a path from the edges of the frame. In the
case of environments with two instances of the same object
the model generates two distinct paths to both the objects. This

Go under the white
and red mug.

Stay away from
the yellow bottle.

Go to the left of
the white bottle.

a) Objects ¢) Object poses

b) Number of objects

Fig. 6: Visual Generalization: Visually the model generalized to
unseen objects in the scene, to a different number of objects in the
scene (as compared to 2 at training time) and to new poses of objects.

is also true in cases when there are two objects and there is
ambiguity in the instruction as seen in Fig [I0]

F. Discussion

In addition to generalization, our approach has the ad-
vantages of compositionality over other means of providing
feedback to improve robot behavior. We can specify multiple
constraints at execution time and combine them in the C,
term. These can either be provided at once or at different
times through the trial. We provide demonstrations showing a
robot’s behavior at combining velocity cost with goal reaching
costs and with stay away cost while the robot is trying to reach
a goal on our website sites.google.com/view/language-costs

Issuing commands at different times is also a powerful and
intuitive way to control the robot. For example, in Fig.


https://sites.google.com/view/language-costs

Go to the bottom of ___ Go to the left of the __
the meat can. can.

Go to the top of the _
spam.

Go to the right of __
the meat.

Go to the bottom 0f
the white bottle.

Go to the right of
the bleach.

(' 0 to the top of the
soft scrub.

___, Gotothe top of the
bleach.

Fig. 7: Compositionality in time. Our approach allows the user to specify multiple different cost functions at different points in time, letting

them guide the robot around an intended trajectory with language.

Before Z Feedback

1
DR -

Fig. 8: An example using our framework to tell a robot to avoid a set of fragile, glass objects while performing a pick and place task.

Before, the robot moves dangerously close to the glass containers; after “go through the bottom of spam”

safe distance.

Dataset Template: Go to the top of the X.
Examples of

some Non- For Bleach, X= * Bleach
templated cleanser
Instructions * Cleaner « Bleach
« White Bottle
¢ Cleanser

\

Hey robot! could

you go to the top of  Could you go to
ookageri Lo t{w op f)f the white bottle the top of the Soft
the bleach. the cleaning fluid. ..

containing the Scrub.

cleaning liquid.

Fig. 9: The language correction module is trained with templated
language instructions. For example, to teach the robot to go over an
object, we use the template “Go to the top of the X,” where X is the
name of an object that can be referred to in several ways. However, in
spite of this, our model can generalize to a wide variety of different
types of instructions, as shown above.

we see the robot being asked to go to different locations
around objects sequentially. Chaining corrections makes pos-
sible specifying procedures, and correcting trajectories that
require more than a single correction to be corrected. It might
also provide a way to generate data to learn more complex
behaviors.

One useful feature of our approach is the ability to correct

, it avoids them and maintains a

Go behind the
mustard bottle.

Go to the right of
the yellow bottle.

Go to the bottom of Go below
the box and can. spam.

&

¢) Multiple objects of
same type

a) No path
to goal

b) Mask
discontinuity

¢) Two goals in
a sentence

Fig. 10: Some failures of our approach is shown here. Our method
can produce masks that go outside the bounds of the image (left)
or discontinuous masks in some instances. Our method also cannot
distinguish between two objects of the same type as shown in the
right.

behaviors across multiple environments at once. Take the
example in Fig. [[T} “go to the left of the bleach.” This
correction can be applied in every environment, even if the
robot is moving to different goals, with no additional effort
on the part of the user. To make such a correction with other
means such as a joystick or kinesthetic feedback would require
considerable time and effort.

Importantly, corrections do not always need to be provided
only in the case of a planner failure, but can be used by the
user to modify the plan based on their preference. In Figure [§]



we see a human providing a correction to steer the robot away
from fragile objects. This correction is applied to the task of
placing an object in the mug.

Go to the left of the Bleach.

\Lt‘

Start Location

Fig. 11: Providing a single language command in multiple environ-
ments. One significant advantage of using language for correcting
robot behaviors is how it allows us to issue the same correction in
many environments at once.

VI. RELATED WORK

This work builds upon multiple threads of related work.

1) Natural Language for Robot Behavior Correction:
Correcting robot behavior using language has been studied
for robots that ask for help [38]], understand language cor-
rections [10, 2], and use language to disambiguate joy-
stick corrections [21]. Broad et al. [I0] use a grounding
model based on a Distributed Correspondence Graph [18]
to ground corrections, which limits grounding language to a
hand-engineered set of optimization constraints. In contrast,
we directly learn to predict cost maps using a neural net-
work, side-stepping the potentially laborious constraint design
process. Co-Reyes et al. learn a policy that accepts
corrections in addition to an instruction, however it requires
training with corrections at training time which makes it
sample inefficient as number of tasks scale. Further, it does
not permit decoupling the notions of a goal and a trajectory to
said goal when issuing a correction. Karamcheti et al. use
language to disambiguate underspecified joystick corrections
by learning a mapping to robot joint space. This suffers from
the same limitations as language-free joystick [36] or
kinesthetic [6] corrections, requiring undivided user attention.
Furthermore, their language grounding model is based on a
nearest-neighbour lookup, which does not generalize to new
environments and tasks.

2) Language for Robot Task Specification: Natural lan-
guage has been extensively studied as a means for task
specification or instruction following in robotics [37,
28l [8 [42]]. Mapping language to symbolic
plans 22| 241 [4], has enabled following instructions by
invoking a set of pre-specified skills or motion primitives.
Recently, instruction following has been studied in robotics

by mapping instructions and raw visual observations to ac-
tions using end-to-end representation learning and sim-to-
real transfer [8] 2| B3]. All of these works, however, treat
language instructions as goals that are fixed during execution.
In contrast, by framing language grounding as cost prediction,
we enable the use of language to refine robot behavior over
time, while still allowing instruction-following as a special
use-case.

3) Inferring costs from demonstrations: Our correction
model is trained to map observations and language to cost
maps, on data consisting of demonstrations or ground-truth
cost maps. This is related to Inverse Reinforcement Learning
(IRL) [1]] that learns to recover reward functions from demon-
strations, and has been successfully applied to infer objectives
for manipulation motion planners [20]. In contrast, our cost
model is conditioned on language and visual observations,
which enables re-using the same model with diverse language
corrections in a variety of tasks.

4) Value alignment problem: Our method presents an inter-
active solution to the value alignment problem [43]], whereby
the cost function provided to the robot is not reflective of the
true task that the user has in mind. Our language corrections
enable interactively updating the cost to better reflect the task.
This problem has been also addressed by learning to predict
true rewards given observed rewards across environments and
tasks [[16], and by learning from physical interactions with
humans [J3]].

VII. CONCLUSION

In conclusion, we proposed a framework to integrate human
provided feedback in natural language to update a robot’s
planning cost applied to situations when the planner fails.
This is done by modelling cost associated with the language
instruction C. conditioned on the language feedback L. The
Cr can be used in conjunction with the motion planner’s
existing costs. We train our model on data generated via
simulation and evaluate the performance of the model in
various out of distribution settings in the real world involving
non-templated natural user commands, cluttered scenes, new
poses and types of objects.
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APPENDIX

A. Planner

We use STORM [7] as the planner which computes an
action leveraging sampling based optimization to optimize
over costs. The base cost Cz for the 2D simulation robot
contains the following terms:

Hst - SminHZ if St < Smin

Cjoint(st) = Hsm,ar - stHQ else if St > Smax

0 otherwise
Ccollision (qt) = CO”(Qt, Oh)

where Coll(-) checks for collisions between the robot position
and the image o” using a binary mask.

When using the planner on the Franka Panda robot, we use
the cost terms described in [7] with the following changes:

1) We only check for environment collisions with the table.
We don’t check for collisions with objects and rely
on C, to ensure the ensure that the trajectory taken by
the robot is not in collision.

2) We add a cost to constrain the position along z-axis
and 3D orientation of the gripper during execution to a
default value that’s close to the table.

Across all instances of the planner, we use 500 particles and
a horizon of 30 timesteps.

B. Hard environments

Some examples of environments where the planner fails can
be seen in Figure An MPC model minimizing the C from
the start location to goal gets stuck in hard to escape local-
minima solutions. The robot is required to take several steps
along a trajectory of increasing C in order to reach a point
starting where the robot can resume minimizing the specified
Ct to reach the true goal. It is these inflection points that the
natural language feedback, £, helps point the robot to.

Fig. 12: Hard Environments: Examples of some of the environments
in the hard dataset. The White dot is the start location of the robot
and the green dot is the goal location. The planner takes paths that
lead it down to bad-local minima in these environments.

C. Convergence to Goal : Analysis

A natural question to ask is what can one do when the
correction module itself fails and afterall, it is also a model not
immune to failures. Here we understand when the correction
module fails. We group trajectories into easy medium and
hard based on the length of the trajectories. It can be seen
that corrections with longer trajectories are much worse than
corrections with shorter trajectories. The main insight is that
despite having a limited correcting ability one can still use it
to make simple modifications at once or sequentially to correct
behaviors.

Rate of convergence Operational Curves: Easy, Medium, Hard
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Fig. 13: Convergence to Goal Analysis: a) As discussed in the
results section the planner does better at short-horizon tasks as
compared to long horizon tasks. The interesting aspect of the model
is that even for long-horizon tasks, the first part of the trajectory does
move in a direction where the goal is minimised for several steps.
Even a model for C, with varying performance across short and long
horizon corrections can still do well on introducing corrections that
improve planner performance b) The advantage of generating a mask
M over the cost is most evident for medium to long trajectories.
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