
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Robotic Table Tennis: A Case Study

into a High Speed Learning System

David B. D’Ambrosio∗, Jonathan Abelian†, Saminda Abeyruwan∗, Michael Ahn∗, Alex Bewley∗,

Justin Boyd†, Krzysztof Choromanski∗, Omar Cortes†, Erwin Coumans∗, Tianli Ding∗, Wenbo Gao∗,

Laura Graesser∗, Atil Iscen∗, Navdeep Jaitly∗, Deepali Jain∗, Juhana Kangaspunta∗, Satoshi Kataoka∗,

Gus Kouretas‡, Yuheng Kuang∗, Nevena Lazic∗, Corey Lynch∗, Reza Mahjourian∗, Sherry Q. Moore∗,

Thinh Nguyen†, Ken Oslund∗, Barney J Reed§, Krista Reymann∗, Pannag R. Sanketi∗, Anish Shankar∗,

Pierre Sermanet∗, Vikas Sindhwani∗, Avi Singh∗, Vincent Vanhoucke∗, Grace Vesom∗, and Peng Xu∗

Authors beyond the first are listed alphabetically, with full author contributions in the Appendix.
∗Google DeepMind.

†Work done at Google DeepMind via FS Studio
‡Work done at Google DeepMind via Relentless Adrenaline

§Work done at Google DeepMind via Stickman Skills Center LLC

Fig. 1: The physical robotic table tennis system. Images from left to right show (I) ball thrower, (II) entire system (thrower,

arm, gantry), (III) automatic ball refill, (inlay) simulator, and (IV) robot mid-swing.

Abstract—We present a deep-dive into a real-world robotic
learning system that, in previous work, was shown to be capable
of hundreds of table tennis rallies with a human and has the
ability to precisely return the ball to desired targets. This system
puts together a highly optimized perception subsystem, a high-
speed low-latency robot controller, a simulation paradigm that
can prevent damage in the real world and also train policies for
zero-shot transfer, and automated real world environment resets
that enable autonomous training and evaluation on physical
robots. We complement a complete system description, including
numerous design decisions that are typically not widely dissem-
inated, with a collection of studies that clarify the importance
of mitigating various sources of latency, accounting for training
and deployment distribution shifts, robustness of the perception
system, sensitivity to policy hyper-parameters, and choice of
action space. A video demonstrating the components of the
system and details of experimental results can be found at
https://youtu.be/HbortM1wpAA.1

I. INTRODUCTION

There are some tasks that are infeasible for a robot to

perform unless it moves and reacts quickly. Industrial robots

can execute pre-programmed motions at blindingly fast speeds,

but planning, adapting, and learning while executing a task

1Corresponding emails: {bewley, ddambro, lauragraesser,
psanketi}@google.com.

at high speed can push a robotic system to its limits and

introduce complex safety and coordination challenges that may

not show up in less demanding environments. Yet many vital

tasks, particularly those that involve interacting with humans

in real time, necessitate such an high-speed robotic system.

The goal of this paper is to describe such a system and

the process behind its creation. Building any robotic system

is a complex and multifaceted challenge, but nuanced design

decisions are not often widely disseminated. Our hope is that

this paper can help researchers who are starting out in high-

speed robotic learning and serve as a discussion point for those

already active in the area.

We focus on a robotic table tennis system that has shown

promise in playing with humans (340 hit cooperative rallies)

[2] and targeted ball returns (competitive with amateur hu-

mans) [20]. This platform provides an excellent case study

in system design because it includes multiple trade-offs and

desiderata — e.g. perception latency v.s. accuracy, ease of use

v.s. performance, high speed, human interactivity, support for

multiple learning methods — and is able to produce strong real

world performance. This paper discusses the design decisions

that went into the creation of the system and empirically

validates many of them through analyses of key components.

Physics simulation Real world

Robot
control

Ball
modeling

Ball
vision

Robot
control

Collision
detection

State machine

Rewards

Observation

Data
interpolation

Observation

Safety
sim

collisions

RefereeDone Info

P3 P4

P3

P2

P1

P2

P1 process

real only

sim only

shared

Px

Ball
thrower

P5

Robot Controller

Logger

Custom MPI

ThrowerVision

TF detection and
tracking on GPU

Control Server
PyBullet
(Safety)

egm_server
(driver)

festo_driver
(driver)

Camera reader

Camera
1

Camera
2

Motor 1

Motor 2

Motor 3

Abb Arm Festo
Linear

Referee
Environment

Custom MPI

248Hz ~125Hz100Hz

Python
C++

Actor

pybind11

pybind11

IR
Sensor

Video Encoder

Device

Fig. 2: Overview of the components for running simulated and real environments. The diagram on the left shows how the

various software components fit to form the environment: in simulation, everything runs in a single process, but the real

environment splits the work among several. The diagram on the right shows the components of the real hardware system. A

custom MPI manages communication between the parts and logging of all data.

This work explores all aspects of the system, how they relate

to and inform one another, and highlights several important

contributions including: (1) a highly optimized perception

subsystem capable of running at 125Hz, (2) an example of

high-speed, low latency control with industrial robots, (3) a

simulation paradigm that can prevent damage in the real world

while performing agile tasks and also train policies for zero-

shot transfer using a variety of learning approaches, (4) a

common interface for simulation and real world deployment,

(5) an automatic physical environment reset system for table

tennis that enables training and evaluation for long periods

without human intervention, and (6) a research-friendly modu-

lar design that allows customization and component swapping.

A summary of widely applicable lessons can be found in Sec-

tion V and a video of the system in operation and experimental

results can be found at https://youtu.be/HbortM1wpAA.

II. TABLE TENNIS SYSTEM

Table tennis is easy to pick up for humans, but poses

interesting challenges for a robotic system. Amateurs hit the

ball at up to 9m/s, with professionals tripling that. Thus, the

robot must be able to move, sense, and react quickly just to

make contact, let alone replicate the precise hits needed for

high-level play.

The components of this system are numerous with many

interactions (Figure 2). Therefore, a major design focus was

on modularity to enable testing and swapping. At a high

level, the hardware components (cameras + vision stack, robot,

ball thrower) are controlled through C++ and communicate

state to the environment through a custom message passing

system called Fluxworks. The various components not only

send policy-related information this way (e.g. where the the

ball is, the position of the robot) but also synchronize the state

of the system (e.g. the robot has faulted or a new episode

has started). Note that this process is simplified in simulation

where all state information is centralized. Information from the

components determines the state of the game (in the Referee)

and input to the policy. The policy then produces actions which

feed into the low-level controllers while the game state drives

the system as a whole (e.g. the episode is over). All logging

(Appendix M), including videos, is handled with Fluxworks

which utilizes highly optimized Protobuffer communication.

The rest of this section describes the components in the

system and their dependencies and interactions.

A. Physical Robots

The player in this system consists of two industrial robots

that work together: an ABB 6DOF arm and a Festo 2DOF

linear actuator, creating an 8DOF system (Figure 1). The two

robots complement each other: the gantry is able to cover large

distances quickly, maneuvering the arm into an appropriate

position where it can make fine adjustments and hit the ball

in a controlled manner with the arm. The choice of industrial

robots was deliberate, to focus on the machine learning

challenges of the problem and for high reliability. However

one major limitation of working with off-the-shelf industrial

systems is that they may contain proprietary, “closed-box”

software that must be contended with. For example, the ABB

arm runs an additional safety layer that instantly stops the

robot when it thinks something bad will happen. It took careful

effort to work within these constraints because the robot was

operating near its limits. See Appendix C for details.

For the ABB arms, either an ABB IRB 120T or ABB IRB

1100-4/0.58 are used, the latter being a faster version with a

different joint structure. Both are capable of fast (joints rotate

up to 420 or 600 degrees/s), repeatable (to within 0.01mm)

motions and allow a high control frequency. The arm’s end

effector is an 18.8cm 3D-printed extension attached to a

standard table tennis paddle that has had its handle removed

(Figure 1 right). While the ABB arms are not perfect analogs

to human arms, they can impart significant force and spin on

the ball.

Taking inspiration from professional table tennis where play

can extend well to the side of and away from the table,

the Festo gantries range in size from 2 × 2m to 4 × 2m,

despite the table tennis table being 1.525m wide. This extra

range gives the robot more options for returning the ball. The

gantries can move up to 2 m/s in in both axes. Most other

robotic table tennis systems (discussed in Section IV-B) opt

for a fixed-position arm but the inclusion of a gantry means

the robot is able to reach more of the table space and has

more freedom to adopt general policies. The downside is that

the gantry complicates the system by adding two degrees

of freedom leading to an overdetermined system whilst also

imparting additional lateral forces on the robot arm that must

be accounted for.

B. Communication, Safety, and Control

The ABB robot accepts position and velocity target com-

mands and provides joint feedback at 248Hz via the Externally

Guided Motion (EGM) [1] interface. The Festo gantry is

controlled through a Modbus [90] interface at approximately

125Hz. See Appendix C for full communication details.

Safety is a critical component of controlling robots. While

the robot should be hitting the ball, collision with anything else

in the environment should be avoided. To solve this problem,

commands are filtered through a safety simulator before being

sent to the robot (a simplified version of Section II-C). The

simulator converts a velocity action generated by the control

policy to a position and velocity command required by EGM at

each timestep. Collisions in the simulator generate a repulsive

force that pushes the robot away, resulting in a valid, safe

command for the real robot. Objects in the safety simulator are

dilated for an adequate safety margin and additional obstacles

are added to block off the “danger zones” robot should avoid.

Low-level robot control can be extremely time-sensitive and

is typically implemented in a lower-level language like C++

for performance. Python on the other hand is very useful

for high-level machine learning implementations and rapid

iteration but is not well suited to high speed robot control due

to the Global Interpreter Lock (GIL) which severely hampers

concurrency. This limitation can be mitigated through multiple

Python processes, but is still not optimal for speed. Therefore

this system adopts a hybrid approach where latency sensitive

processes like control and perception are implemented in C++

while others are partitioned into several Python binaries (Fig-

ure 2). Having these components in Python allows researchers

to iterate rapidly and not worry as much about low-level

details. This separation also allows components to be easily

swapped or tested.

C. Simulator

The table tennis environment is simulated to facilitate sim-

to-real training and prototyping for real robot training. PyBul-

let [19] is the physics engine and the environment interface

conforms to the Gym API [12].

Figure 2 (left) gives an overview of the environment struc-

ture in simulation and compares it with the real world environ-

ment (see Section II-E). There are five conceptual components;

(1) the physics simulation and ball dynamics model which

together model the dynamics of the robot and ball, (2) the

StateMachine which uses ball contact information from

the physics simulation and tracks the semantic state of the

game (e.g. the ball just bounced on the opponent’s side of the

table, the player hit the ball), (3) the RewardManager which

loads a configurable set of rewards and outputs the reward per

step, (4) the DoneManager which loads a configurable set of

done conditions (e.g. ball leaves play area, robot collision with

non-ball object) and outputs if the episode is done per step,

and (5) the Observation class which configurably formats

the environment observation per step.

The main advantage of this design is that it isolates compo-

nents so they are easy to build and iterate on. For example, the

StateMachine makes it easy to extend the environment to

more complex tasks. New tasks are defined by implementing a

new state machine in a config file. The StateMachine also

makes it easier to determine the episode termination condition

and some rewards (e.g. for hitting the ball). Note that whilst

related, it is not the same as the transition function of the

MDP; the StateMachine is less granular and changes at a

lower frequency. Another example is the RewardManager.

It is common practice in robot learning when training using

the reinforcement learning paradigm to experiment frequently

with the reward function. To facilitate this, reward components

and their weights are specified in a config file taken in

by the RewardManager, which calculates and sums each

component. This makes it straightforward to change rewards

and easy to define new components.

1) Latency modeling: Latency is a major source of the sim-

to-real gap in robotics [91]. To mitigate this issue, and inspired

by Tan et al. [91], latency is modelled in the simulation as

follows. During inference, the history of observations and

corresponding timestamps are stored and linearly interpolated

to produce an observation with a desired latency. In contrast to

[91] which uses a single latency range sampled uniformly for

the whole observation, the latency of five main components —

Ball observation (i.e. latency of the ball perception system),

ABB observation, Festo observation, ABB action, Festo action

Latencies (ms)

Component µ σ

Ball observation 40 8.2

ABB observation 29 8.2

Festo observation 33 9.0

ABB action 71 5.7

Festo action 64.5 11.5

TABLE I: Latency distribution values.

— are modeled as a Gaussian distribution and a distinct dis-

tribution is used for each component. The mean and standard

deviation per component were measured empirically on the

physical system through instrumentation that logs timestamps

throughout the software stack (see Table I). In simulation, at

the beginning of each episode a latency value is sampled per

component and the observation components are interpolated

to those latency values per step. Similarly, action latency is

implemented by storing the raw actions produced by the policy

in a buffer, and linearly interpolating the action sent to the

robot to the desired latency.

2) Ball distributions, observation noise, and domain ran-

domization: A table tennis player must be able to return

balls with many different incoming trajectories and angular

velocities. That is, they experience different ball distributions.

Ball dynamics and distributions are implemented following

[2]. Each episode, initial ball conditions are sampled from a

parameterized distribution which is specified in a config. To

account for real world jitter, random noise is added to the

ball observation. Domain randomization [77, 15, 41, 75] is

also supported for many physical parameters. The paddle and

table restitution coefficients are randomized by default.

For more details on the simulator see Appendix D.

D. Perception System

Table tennis is a highly dynamic sport (an amateur-speed

ball crosses the table in 0.4 seconds), requiring extremely

fast reaction times and precise motor control when hitting the

ball. Therefore a vision system with the desiderata of low

latency and high precision is required. It is also not possible

to instrument (e.g. with LEDs) or paint the ball for active

tracking as they are very sensitive to variation in weight or

texture and so a passive vision system must be employed.

A custom vision pipeline that is fast, accurate and passive

is designed to provide 3D balls positions. It consists of three

main components 1) 2D ball detection across two stereo

cameras, 2) triangulation to recover the 3D ball position

and 3) a sequential decision making process which manages

trajectory creation, filtering, and termination. The remainder

of this section will provide details on the hardware and these

components.

1) Camera Hardware, Synchronization and Setup: For im-

age capture the system employs a pair of Ximea MQ013CG-

ON cameras that have a hardwired synchronization cable

and are connected to the host computer via USB3 active

optical cables. Cameras lenses are firmly locked and focused.

Synchronization timestamps are used to match images down-

stream. Many different cameras were tried, but these had high

frame rates (the cameras can run at 125FPS at a resolution of

1280x1024) and an extremely low latency of 388µs. Other

cameras were capable of higher FPS, at the cost of more

latency which is not acceptable in this high-speed domain.

To achieve the desired performance the camera uses a global

shutter with a short (4ms) exposure time and only returns the

raw, unprocessed Bayer pattern.

1500 1000 500 0 500 1000 1500
y-position (mm)

5

0

5

10

15

bi
as

 (m
m

)

x-same-side
y-same-side
z-same-side
x-opposite-sides
y-opposite-sides
z-opposite-sides

Fig. 3: Quantification of triangulation bias over the length

of playing area (y-position) at a height of 250mm above the

center line. The more orthogonal viewpoints offered by placing

cameras on opposite sides of the tables lead to an order of

magnitude reduction in triangulation bias.

The ball is small and moves fast, so capturing it accurately

is a challenge. Ideally the cameras would be as close to the

action as possible, but in a dual camera setup, each needs

to view the entire play area. Additionally, putting sensitively

calibrated cameras in the path of fast moving balls is not

ideal. Instead, the cameras are mounted roughly 2m above

the play area on each side of the table and are equipped

with Fujinon FE185C086HA-1 “fisheye” lenses that expand

the view to the full play area, including the gantries. While

capturing more of the environment, the fisheye lens distortion

introduces challenges in calibration and additional uncertainty

in triangulation.

The direct linear transform (DLT) method [35] for binocular

stereo vision estimates a 3D position from these image loca-

tions in the table’s coordinate frame. However, the problem of

non-uniform and non-zero mean bias known as triangulation

bias [23] must be considered in optimizing camera placement.

Two stereo camera configurations are considered, two over-

head cameras viewing the scene from: 1) the same side of the

table and 2) opposite sides. Simulation is used to quantify

triangulation bias across these configurations and decouple

triangulation from potential errors in calibration. Quantifying

this bias for common ball positions (see Figure 3) indicates

that positioning the cameras on opposite table sides results

in a significant reduction in the overall triangulation bias.

Furthermore, this configuration also benefits from a larger

baseline between the cameras for reducing estimation variance

[25].

2) Ball Detection: The core of the perception system lies

with ball detection. The system uses a temporal convolutional

architecture to process each camera’s video stream indepen-

dently and provides information about the ball location and

velocity for the downstream triangulation and filtering (see

Figure 4). The system uses raw Bayer images and tempo-

ral convolutions, which allow it to efficiently process each

video stream independently and thus improve the latency

and accuracy of ball detection. The output structure takes

Fig. 4: Ball Detection. These synchronized images (cropped

to approximately 50% normal size) show the temporal con-

volutional network detecting the ball (detected ball center in

pixels) independently from cameras on both sides of the table.

These detections are triangulated and used for 3D tracking.

inspiration from CenterNet [99, 100] by producing per location

predictions that include: a ball score indicating corresponding

to the likelihood of the ball center at that location, a 2D local

offset to accommodate sub-pixel resolution, and a 2D estimate

of the ball velocity in pixels.

a) Direct Processing of Bayer Images: The detection

network takes the raw Bayer pattern image [7] as input directly

from the high speed camera after cropping to the play area

at a resolution of 512 × 1024. By skipping Bayer to RGB

conversion, 1ms (or 15% of the time between images) of

conversion induced latency per camera is avoided and data

transferred from camera to host to accelerator is reduced

by 2
3 , further reducing latency. In contrast to other models

utilizing Bayer images [14], no loss in performance was found

using the raw format, largely due to special attention given to

structure of the 2 × 2 Bayer pattern and ensuring the first

convolution layer is also set to have a stride of 2 × 2. This

alignment means that the individual weights of the first layer

are only responsible for a single color across all positions of

the convolution operation. The immediate striding also benefits

wall-clock time by down-sampling the input to a quarter of

the original size. The alignment with the Bayer pattern is also

extended to any crop operations during training as discussed

later in this section.

b) Detector Backbone with Buffered Temporal Convolu-

tions: A custom deep-learning based ball detector is used

to learn the right combination of color, shape and motion

for identifying the ball in play. Its architecture falls in the

category of a convolutional neural network (CNN) with a

compact size of only 27k parameters spread over five spatial

convolutional layers and two temporal convolutions to capture

motion features. Compared to related architectures such as

ConvLSTM [85], this fully convolutional approach restricts

the temporal influence of the predictions to a finite temporal

window allowing for greater interpretability and fault diagno-

sis. Full details of the architecture are provided in Appendix

E.

Temporal convolutional operations are employed to capture

motion as a visual cue for detecting the ball in play and the

direction of motion. In contrast to the typical implementation

that requires a window of frames to be presented at each

timestep, the implementation in this system only requires a

single frame to be presented to the CNN for each timestep

during inference. This change minimises data transfer from

the host device to the accelerator running the CNN operations,

a critical throughput bottleneck. This temporal layer creates a

buffer to store the input feature for the next timestep as in

Khandelwal et al. [49].

c) Training the Detector Model: To train the detection

model, a dataset of 2.3M small temporal patches were selected

to match the receptive field of the architecture (64×64 pixels

and n frames). The patches are selected from frames with a

labeled ball position where a single positive patch is defined

as being centered on the ball position in the current frame with

the temporal dimension filled with the same spatial position

but spanning [t − n + 1, t]. Similarly a negative patch can

be selected from the same frame at a random location which

does not overlap with the positive patch. Examples of positive

and negative patches are provided in the Appendix. Special

consideration is taken to align the patch selection with the

Bayer pattern by rounding the patch location to the nearest

even number. This local patch based training has several

benefits; it 1) reduces the training time by 50×2, 2) helps

generalization across different parts of the image as the model

is unable to rely on global statistics of ball positions, 3) offers

a more fine-grained selection of training data for non-trivial

cases e.g. when another ball is still moving in the scene, and

similarly 4) allows for hard negative mining [89] on sequences

where it is known for no ball to exist in play.

For each patch the separate outputs each have a correspond-

ing loss. First, the ball score is optimized using the standard bi-

nary cross-entropy loss for both positive and negative patches.

For positive patches only, the local offset is optimized using

the mean-squared error loss using the relative position between

the corresponding pixel coordinate and the ball center in the

current frame. The velocity prediction is similarly optimized,

instead using the relative position of the ball in next frame to

the current frame as the regression target.

3) 3D Tracking: To have a consistent representation that is

invariant to camera viewpoint, the ball is represented in 3D

in the table’s coordinate frame. If the maximum score in both

images are above a learnt threshold, their current and next

image positions using the local offset and velocity predictions

are triangulated using DLT [35]. This corresponds to the 3D

position and 3D velocity of the ball in the table frame. Finally

these observations are provided to a recursive Kalman filter

[46] to refine the estimated ball state before its 3D position is

sent to the robot policy.

E. Running on the Real Robot

As an analog to the simulated environment (Section II-C)

there is an equivalent Gym environment for the real hardware.

This environment must contend with an additional set of

challenges that are either nonexistent or trivial in simulation:

1) continuous raw sensor observation at different frequencies

that is subjected to jitter and real world noise, 2) determining

the start of an episode, 3) monitoring environment state, 4)

environment resets.

2Two 64 × 64 × n patches are required per frame as opposed to the full
512× 1024× n frames.

1) Observation generation: In the simulator, the state of

every object is known and can be queried at fixed intervals.

In contrast, the real environment receives sensor readings

from different modalities at different frequencies (e.g. the ball,

ABB, Festo) that may be inaccurate or arrive irregularly. To

generate policy observations, the sensor observations, along

with their timestamps are buffered and interpolated or extrap-

olated to the environment step timestamp. To address noise

and jitter a bandpass filter is applied to the observation buffer

before interpolation (see Appendix F). These observations

are afterwards converted according to the policy observation

specification.

2) Episode Starts: Simulators provide a direct function to

reset the environment to a start state instantly. In the real

world, the robot must be physically moved to a start state with

controllers based on standard S-curve trajectory planning at the

end of the episode or just after a paddle hit. The latter was

shown to be beneficial in [2], so that a human and robot could

interact as fast as possible. An episode starts when a valid

ball is thrown towards the robot. The real world must rely on

vision to detect this event and can be subject to spurious false

positives, balls rolling on the table, bad ball throws, etc., which

need to be taken into consideration. Therefore an episode is

started only if a ball is detected incoming toward a robot from

a predefined region of space.

3) Referee: To interface with the GymAPI a process

called Referee generates the reward, done, and info using the

StateMachine, RewardManager, and DoneManager

as defined in Section II-C. It receives raw sensor observations

at different frequencies and updates a PyBullet instance.

The observations are filtered (see Appendix F) and used to

update the PyBullet state (only the position). It calculates

different ball contact events (see Appendix D), compensates

for false positives, and uses simple heuristics and closest point

thresholds to determine high confidence ball contact detections

to generate the events used by the previously mentioned

components.

4) Automatic system reset — continuously introducing

balls: An important aspect of a real world robotic system

is environment reset. If each episode requires a lengthy reset

process or human intervention, then progress will be slow.

Human table tennis players also face this problem and so-

called “table tennis robots” are commercially available to

shoot balls continuously and even in a variety of programmed

ways. Almost all of these machines accomplish this task

with a hopper of balls that introduces a ball to two or more

rotating wheels forcing it out at a desired speed and spin (see

Figure 1 left). Unfortunately, while many of these devices are

“programmable”, none provide true APIs and instead rely on

physical interfaces. Therefore, an off-the-shelf thrower was

customized with a Pololu motor controller and an infrared

sensor for detecting throws, allowing it to be controlled over

USB. This setup allows balls to be introduced purely through

software control.

However, the ball thrower is still limited by the hopper

capacity. A system to automate the refill process was designed

that exploits the light weight of table tennis balls by blowing

air to return them to the hopper. A ceiling-mounted fan blows

down to remove balls stuck on the table, which is surrounded

by foamcore to direct the balls into carpeted pathways. At each

corner of the path is a blower fan (typically meant for drying

out carpet) that directs air across the floor. The balls circulate

around the table until they reach a ramp that directs them to a

tube that also uses air to transport them back into the hopper.

When the thrower detects it hasn’t shot a ball for a while, the

fans turn on for 40 seconds, refilling the hopper so training

or evaluation can continue indefinitely. See Appendix F for a

diagram and the video at https://youtu.be/HbortM1wpAA for

a demonstration.

One demonstration of the utility of this system is through

the experiments in this paper. For example, the simulator

parameter ablation studies (Section III-A) involved evaluat-

ing over 150 policies in 450+ independent evaluations on

a physical robot with 22.5k+ balls thrown. All evaluations

were conducted remotely and required onsite intervention just

once3.

F. Design of Robot Policies

Policies have been trained for this system using a variety

of approaches. This section details the basic structure of these

policies and any customization needed for specific methods.

1) Policies: The policy input consists of a history of the

past eight robot joint and ball states, and it outputs the desired

robot state, typically a velocity for each of the eight joints

(joint space policies). Many robot control frequencies ranging

from from 20Hz - 100Hz have been explored, but 100Hz is

used for most experiments. Most policies are compact, repre-

sented as a three layer, 1D, fully convolutional gated dilated

CNN with ≈1k parameters introduced in [26]. However, it is

also possible to deploy larger policies. For example, a 13m

parameter policy consisting of two LSTM layers with a fully

connected output layer has successfully controlled the robot

at 60Hz [20].

2) Robot Policies in Task Space: Joint space policies lack

the relation between joint movement and the task at hand. A

more compact task space — the pose of the robot end effector

— is especially beneficial in in robotics, showing significant

improvements in learning of locomotion and manipulation

tasks [21, 60, 95, 57].

Standard task space control uses the Jacobian Matrix to

calculate joint torques or velocities given target pose, target

end effector velocities, joint angles and joint velocities. This

system employs a reduced (pitch invariant) version with 5

dimensions. Instead of commanding the full pose of the end

effector, it commands the position in 3 dimensions and the

surface normal of the paddle in 2 dimensions (roll and yaw). In

contrast to the default joint space policies, which use velocity

control, task space policies are position controlled, which have

the added benefit of easily defining a bounding cube that the

paddle should operate in. The robot state component of the

3Some tape became unstuck and the balls escaped.

observation space is also represented in task space, making

policies independent of a robot’s form factor and enabling

transfer of learned policies across different robots (see Section

III-D).

G. Blackbox Gradient Sensing (BGS)

The design of the system allows for interaction with many

different learning approaches, as long as they conform to

the given APIs. The system supports training using a variety

of methods including BGS [2] (evolutionary strategies), PPO

[83] and SAC [33] (reinforcement learning), and GoalsEye

(behavior cloning). The rest of the section describes BGS,

since it is used as the training algorithm in all the system

studies in this paper (see Section III).

BGS is an ES algorithm. This class of algorithm maximize

a smoothed version of expected episode return, R, given by:

Rσ(θ) = Eδ∼N (0,Id)[R(θ + σδ)] (1)

where σ > 0 controls the precision of the smoothing, and δ is a

random normal perturbation vector with the same dimension as

the policy parameters θ. θ is perturbed by adding or subtracting

N Gaussian perturbations δRi
and calculating episode return,

R+
i and R−

i for each direction. Assuming the perturbations,

δRi
, are rank ordered with δR1

being the top performing

direction, then the policy update can be expressed as:

θ
′

= θ + α
1

σR

k
∑

i=1

[

((1

m

m
∑

j=1

R+
i,j

)

−
(1

m

m
∑

j=1

R−
i,j

))

δRi

]

(2)

where α is the step size, σR is the standard deviation of

each distinct reward (positive and negative direction), N is

the number of directions sampled per parameter update, and

k(< N) is the number of top directions (elites). m is the

number of repeats per direction to reduce variance for reward

estimation. R+
i,j is the reward corresponding to the j-th repeat

of i-th in the positive direction. R−
i,j is the same but in the

negative direction.

BGS is an improvement upon a popular ES algorithm

ARS [59], with two major changes.

1) Reward differential elite-choice.: In ARS, rewards are

ranked yielding an ordering of directions based on the absolute

rewards of either the positive or negative directions. BGS

takes the absolute difference in rewards between the positive

and negative directions and rank the differences to yield an

ordering over directions. ARS can be interpreted as ranking

directions in absolute reward space, whereas BGS ranks di-

rections according to reward curvature:

ARS: Sort δRi
by max{R+

i , R
−
i }. (3)

BGS: Sort δRi
by |R+

i −R−
i |. (4)

2) Orthogonal sampling: Orthogonal ensembles of per-

turbations δRi
[18] relies on constructing perturbations δRi

in blocks, where each block consists of pairwise orthogonal

samples. Those samples are still of Gaussian marginal distri-

butions, matching those of the regular non-orthogonal variant.

The feasibility of such a construction comes from the isotropic

property of the Gaussian distribution (see: [18] for details).

BGS policies are trained in simulation and transferred zero-

shot to the physical hardware. An important note is that

the BGS framework can also fine tune policies on hardware

through the real Gym API (Section II-E). Hyperparameters

must be adjusted in this case to account for there only being

one “worker” to gather samples.

III. SYSTEM STUDIES

This section describes several experiments that explore and

evaluate the importance of the various components of the

system.

Except where noted, the experiments use a ball return task

for training and testing. A ball is launched towards the robot

such that it bounces on the robot’s side of the table (a standard

rule in table tennis). The robot must then hit the ball back over

the net so it lands on the opposite side of the table. Although

other work has applied this system to more complex tasks

(e.g. cooperative human rallies [2]), a simpler task isolates

the variables we are interested in from complications like

variability and repeatability of humans.

For real robot evaluations, making contact with the ball is

worth one point and landing on the opposing side is worth

another point, for a maximum episode return of 2.0. A single

evaluation is the average return over 50 episodes. Simulated

training runs typically have additional reward shaping applied

that change the maximum episode return to 4.0 (see Appendix

D).

A. Effect of Simulation Parameters on Zero-Shot Transfer

Our goal in this section is to assess the sensitivity of policy

performance to environment parameters. We focus on the zero-

shot sim-to-real performance of trained policies and hope that

this analysis (presented in Figure 5) sheds some light on which

aspects of similar systems need to be faithfully aligned with

the real world and where error can be tolerated. For the effects

on training quality see Appendix H.

1) Evaluation methodology: For each test in this section,

10 models were trained in simulation using BGS described

in Section II-G for 10,000 training iterations (equivalent to

60m environment episodes, or roughly 6B environment steps).

In order to assess how different simulated training settings

affect transfer independent of how they affect training quality,

we only evaluate models that trained well in simulation (i.e.,

achieved more than 97.5% of the maximum possible return).

The resulting set of policies were evaluated on the real setup

for 3 × 50 episodes.

2) Modeling latency is crucial for good performance:

The latency study presented in Figure 5 (top left) show that

policies are sensitive to latency. The baseline model (i.e. the

model that uses latency values as measured on hardware) had

a significantly higher zero-shot transfer than any of the other

latency values tested. The next best model had 50% of the

baseline latency, achieving an average zero-shot transfer of

1.33 compared with 1.83 for the baseline. Zero-shot transfer

100%
(baseline)

0% 20% 50% 150%0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd
Latency

thrower
(baseline)

medium wide thrower 2 tiny velocity
offset

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd

Ball Distributions

[-4,4]
cm (baseline)

0cm [-8,8]
cm

[-16,16]
cm

[0,8]
cm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd

Observation Noise

tuned
(baseline)

table: no R
randomize

2%
ball R

8%
table R

measured0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Re

wa
rd

Physical Parameters

Fig. 5: Effect of simulator parameters on zero-shot sim-to-

real transfer. Policies are sensitive to latency and physical

parameter values, yet surprisingly robust to ball observation

noise and changes in the ball distribution. Charts show the

mean (with 95% CIs) zero-shot sim-to-real transfer. 2.0 is a

perfect score with a policy returning all balls. R = restitution

coefficient.

scores for the other latency levels tested (0%, 20% and 150%)

had very poor performance. Interestingly, some policies are

lucky and transfer relatively well — for example one policy

with 0% latency had an average score of 1.54. However,

performance is highly inconsistent when simulated latency is

different from measured parameters.

3) Anchoring ball distributions to the real world matters,

but precision is not essential: The ball distribution study

shown in Figure 5 (top right) indicate that policies are robust to

variations in ball distributions provided the real world distribu-

tion (thrower) is contained within the training distribution. The

medium and wide distributions were derived from the baseline

distribution but are 25% and 100% larger respectively (see

Appendix H). The distribution derived from a different ball

thrower (thrower 2) is also larger than the baseline thrower

distribution but effectively contains it. In contrast, very small

training distributions (tiny) or distributions which are disjoint

from the baseline distribution in one or more components

(velocity offset — disjoint in y velocity) result in performance

degradation.

4) Policies are robust to observation noise provided it

has zero mean: The observation noise study in Figure 5

(bottom left) revealed that policies have a high tolerance for

zero-mean observation noise. Doubling the noise to +/- 8cm

(4 ball diameters in total) or removing it altogether had a

minor impact on performance. However, if noise is biased

125 FPS
(baseline)

100 FPS 75 FPS 50 FPS0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd

FPS

~6.5ms
(baseline)

12ms 50ms 150ms 250ms0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd

Latency

0cm
(baseline)

[-4, 4]
cm

[-1, 7]
cm

[-8, 8]
cm

[-16, 16]
cm

[-2, 14]
cm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd

Noise

Fig. 6: Perception resilience studies. Reducing FPS and in-

creasing latency have threshold points where performance of

the system is stable until they reach a point where the robot can

no longer react the to ball in them. Additional noise causes

graceful degradation in performance, increased by non-zero

mean distributions (common in vision triangulation).

performance suffers substantially. Adding a 4cm (one ball

diameter) bias to the default noise results in a 36% drop in

reward (approximately 80% drop in return rate).

5) Policies are sensitive to physical parameters, which can

have complex interactions with each other: The physical

parameter ablations in Figure 5 (bottom right) reveal how

sensitive policies are to all parameter values tested. Removing

randomization from the table restitution coefficient (table: no

R randomize) degrades performance by 14%. Increasing the

ball restitution coefficient by just 2% reduces performance by

25%, whilst increasing the table restitution coefficient by 8%

reduces performance by 36%.

This study also highlights a current limitation of the system.

Setting key parameters in the simulator such as the table and

paddle restitution coefficients, or the paddle mass to values

estimated following the process described in Appendix D led

to worse performance than tuned values (see measured v.s.

tuned and also Appendix H for all parameter values). We

hypothesize this is because ball spin is not correctly modelled

in the simulator and that the tuned values compensate for this

for the particular ball distributions used in the real world.

One challenge of a complex system with many interacting

components is that multiple errors can compensate for each

other, making them difficult to notice if performance does

not suffer dramatically. It was only through conducting these

studies that we became aware of the drop in performance from

using measured values. In future work we plan to model spin

and investigate if this resolves the performance degradation

from using measured values. For further discussion on this

topic, see Appendix I.

B. Perception Resilience Studies

In this section we explore important factors in the perception

system and how they affect end-to-end performance of the

entire system. Latency and accuracy are two major factors and

typically there is a tradeoff between them. A more accurate

model may take longer to process but for fast moving objects

(like a table tennis ball) it may be better to have a less accurate

result more quickly. Framerate also plays a role. If processing

takes longer than frames are arriving, latency will increase

over time and eventually require dropping frames to catch up.

For these experiments we select three high performing

models from the baseline simulator parameter studies and test

them on the real robot while modulating vision performance in

the following ways: (1) reduce the framerate of the cameras

, (2) increase latency by queuing observations and sending

them to the policy at fixed intervals, and (3) reduce accuracy

by injecting zero mean and non-zero mean noise to the ball

position (over and above inherent noise in the system).

The results from these experiments can be seen in Figure 6.

For both framerate and latency, the performance stays con-

sistent with the baseline until there is a heavy dropoff at 50

FPS and 150ms respectively, at which point the robot likely

no longer has sufficient time to react to the ball and swings

too late, almost universally resulting in balls that hit the net

instead of going over. There is a gentle decline in performance

as noise increases, but the impact is much greater for non-zero

mean noise: going from zero mean ([-4, 4] cm) noise to non-

zero mean ([-1, 7] cm) is equivalent to doubling the zero mean

noise ([-8, 8] cm). The interpolation of observations described

in Section II-E likely serves as a buffer against low levels of

zero mean noise. Qualitatively, the robot’s behavior was jittery

and unstable when moderate noise was introduced. Overall,

the stable performance over moderate framerate and latency

declines implies that designing around accuracy would be ideal

for this task, although as trajectories become more varied and

nuanced higher framerates may be necessary to capture their

detailed behavior.

C. ES Training Studies

BGS has been a consistent and reliable method for learning

table tennis tasks on this system in simulation and fine-

tuning in the real world. In this section we ablate the main

components of BGS and compare it with a closely related

method, ARS.

Figure 7 (top) presents a comparison of BGS and ARS on

the default ball return task against a narrow ball distribution.

For both methods we set number of perturbations to 200,

σ to 0.025, and the proportion of perturbations selected as

elites to 30%. We roll out each perturbation for 15 episodes

and average the reward to reduce reward variance due to

stochasticity in the environment. We also apply the common

0 2000 4000 6000 8000 10000
ES Iterations

2

3

4

Re
wa

rd

ARS
BGS

0 2000 4000 6000 8000 10000 12000
ES Iterations

0.0

0.5

1.0

Re
wa

rd

ARS (step 1e-4)
ARS (step 1e-3)
ARS (step 4e-3)
ARS (step 1e-2)
ARS (step 1e-1)

0 2000 4000 6000 8000 10000 12000
ES Iterations

0.0

0.5

1.0

Re
wa

rd

ARS
ARS-ortho
ARS-diff
BGS

Fig. 7: BGS ablation studies. (top) BGS and ARS perform

comparably on the ball return task with a narrow ball dis-

tribution. (bottom) A harder environment, ball targeting with

a larger ball distribution. (left) Step-size alpha has a very

significant effect on training success. (right) Improvements

with reward differential elite-choice technique, orthogonal

perturbation sampling and their combination (BGS).

approach of state normalization [82, 71]. Under these settings,

the methods are comparable.

Next we consider a harder ball targeting task where the

objective for the policy is to return the ball to a precise

(randomized per episode) location on the opponent’s side of

the table [20]. We further increase the difficulty by increasing

the range of incoming balls, i.e. using a wider ball distribution,

and by decreasing the number of perturbations to 50. Tuning

the step size α was crucial for successful policy training with

ARS (Figure 7 bottom left). An un-tuned step-size may lead

to extremely slow training or fast training with sub-optimal

asymptotic performance.

Figure 7 (bottom right) shows the enhancements in training

made by the BGS techniques independently and collectively

compared to baseline ARS. Reward differential elite-choice

and orthogonal sampling leads to faster convergence. As a

result, BGS is the default ES algorithm for policy training.

D. Acting and Observing in Task Space

The previous results use joint space for observations and

actions. In this section we explore policies that operate in “task

space” (see Section II-F2). Task space has several benefits:

it is compact, interpretable, provides a bounding cube for

the end effector as a safety mechanism, and aligns the robot

action and the observation spaces with ball observations. In

our experiments we show that task spaces policies train faster

and, more importantly, can be transferred to different robot

morphologies.

Figure 8 (top left) compares training speed between joint

space (JS), task space for actions — TS(Act), and full task

space policies (actions and observations) — TS(Act&Obs).

Both task spaces policies train faster than JS policies. We also

0 2000 4000 6000 8000
ES Iterations

2.0

2.5

3.0

3.5

4.0
Re

wa
rd

Joint Space
TS(Act)
TS(Act&Obs)

0 2000 4000 6000 8000
ES Iterations

2.0

2.5

3.0

3.5

4.0

Re
wa

rd

Joint Space
TS(Act)
TS(Act&Obs)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Reward

ABB 120T (Same as training)

ABB 120T & Modified Default Pose (MDP)

ABB 120T & MDP & 2 Frozen Joints

ABB 1100-4 & New Ball Distribution

ABB 1100-4 & New Ball Dist & Manual Offset

Zero-shot transfer of a TS(Obs & Act) Policy Trained in Damped Env

Fig. 8: Training policies in task space in the baseline environ-

ment (top-left) and a harder damped environment (top-right).

Training converges faster in task-space for both scenarios.

(bottom) A task space policy trained in the damped environ-

ment is successfully transferred to different morphologies and

a new robot.

assess task space policies on a harder (damped) environment4.

Now the robot needs to learn to swing and hit the ball harder.

Figure 8 (top right) shows that task space policies learn to

solve the task (albeit not perfectly) while joint space policies

gets stuck in a local maxima. For transfer performance of these

policies see Appendix K.

One crucial benefit of operating in task space is the robust-

ness to different robots or morphologies. To demonstrate this,

we first take the TS(Act&Obs) model trained in the damped

environment and transfer it to the real robot (Figure 8 bottom).

Performance is almost perfect with a score of 1.9. Next we

change the initial pose of the robot and freeze two of the arm

joints. Policy performance is maintained under a pose change

(ABB 120T & Modified Default Pose (MDP)) and only drops

slightly when some joints are also frozen (ABB 120T & MDP

+ 2 Frozen Joints). We then evaluate the policy on a robot

with a different morphology and ball distribution and see that

performance drops substantially. However, a task space policy

is easily adaptable to new settings without retraining by adding

a residual to actions to shift the paddle position. This is not

possible when operating in joint space. Observing the robot

showed that it was swinging too low and slightly off-angle and

so adding a residual of 7cm above the table and 0.2 radians

of roll causes the original policy performance to be nearly

recovered (ABB 1100-4 & New Ball Dist & Manual Offset).

E. Applying to a New Task: Catching

While the system described above was designed for table

tennis, it is general enough to be applied to other agile tasks.

In this section, we apply it to a new task of catching a thrown

ball and assess the effect of latency modelling, similar to the

latency experiment from Section III-A.

4Created by lowering the restitution coefficient of the paddle and ball, and
increasing the linear damping of the ball.

We used a similar system setup with minor modifications:

a single horizontal linear rail (instead of two) and a lacrosse

head as the end effector. The software stack and agents are

similar with small differences: simplified RewardManager

and DoneManager, soft body modelling of the net in sim-

ulation, trajectory prediction inputs for agents, and handling

occlusions when the ball is close to the net. The BGS agents

are similarly trained in a simulator before being transferred to

the real hardware, where they are fine-tuned. Agents achieve

a final catching success rate of 85 ∼ 90%. For full details on

the task see related work [84].

This task has a much larger variance in sim-to-real transfer

due to difficulty in accurately modelling net & ball capture

dynamics. As in the table tennis study, agents were trained in

simulation with latencies of 100%, 0%, 20%, 50%, and 150%
of baseline latency. Experiments with lower latency (0%, 20%,

and 50%) all transferred poorly, between 0 ∼ 10% catch

rate. Curiously, baseline latency and 150% latency performed

similarly, with one 150% run achieving the best zero-shot

transfer ever: a score equaling policies fine-tuned on the real

robot. This finding contradicts the results in the table tennis

task, which prompted further investigation and revealed that

the latency for this task was set incorrectly in the configuration

file; the real value was much closer to the 150% value.

This revelation dovetails with the 50% latency table tennis

results: a close latency can still give decent performance,

but accurate values are better. As such, it may be useful

to generally run ablation studies such as these to challenge

assumptions about the system and potentially find bugs.

IV. RELATED WORK

A. Agile Robotic Learning

The space of agile robotic learning systems is varied. It

includes autonomous vehicles such as cars [76, 79, 70, 9, 10],

legged locomotion [73, 91, 32, 78, 86, 87, 4], as well as

dynamic throwing [3, 52, 29, 98], catching [84], and hitting

— which is where table tennis fits.

Many of these systems face similar challenges — envi-

ronment resets, latency, safety, sim-to-real, perception, and

system running speed as exemplified in strict inference and

environment step time requirements.

The benefits of automatic resets have been demonstrated

in quadrupedal systems [86, 87] and throwing [98]. To our

knowledge, this system is the first table tennis learning system

with automatic resets, enabling autonomous training and eval-

uation in the real world for hours without human intervention.

Latency is a well known problem in physical learning

systems [91]. The system contributes to this area by extend-

ing [91], modeling multiple latencies in simulation, and by

validating its importance through extensive experiments. Or-

thogonally, the system also includes observation interpolation

on the physical system as a useful technique for increasing the

robustness of deployed policies to latency variation (e.g. from

jitter). We demonstrated empirically the robustness of policies

to substantial injections of latency and hypothesize that the

observation interpolation plays a crucial role in this.

Safety is another crucial element that becomes very im-

portant with fast moving robots. Trajectory planners [54] can

avoid static obstacles, neural networks can check for collisions

[48], safe RL can be used to restrict state spaces [97], or

a system can learn from safe demonstrations [67, 68, 40].

In contrast, this system runs a parallel simulation during

deployment as a safety layer. Doing so is beneficial because

the robot policy runs at a high frequency and there are several

physical environments and robots and it enables (1) definition

of undesirable states and (2) preventing a physical robot from

reaching them. To the best of our knowledge this is also a

novel component of the system.

Learning controllers from scratch in the real world can be

challenging for an agile robot due to sample inefficiency and

dangers in policy exploration. Training first in a simulator and

then deploying to the real robot [56, 75, 91] (i.e. sim-to-

real) is an effective way to mitigate both issues, but persistent

differences between simulated and real world environments

can be difficult to overcome [42, 72].

Perception is crucial in helping robots adapt to changes

in the environment [4, 96] and interact with relevant objects

[98, 52]. When objects need to be tracked at high speed such

as in catching or hitting, it is typical to utilize methods such

as motion-capture systems [65] however for table tennis, the

ball needs to adhere to strict standards that prevent instru-

mentation or altering of the ball properties. Passive vision

approaches for detecting the location within a video frame

of a bright colored ball from a stationary camera may seem

trivial, however, applying image processing techniques [92]

such as color thresholding, shape fitting [37], and background

subtraction are problematic. When considering the typical

video captured from the cameras several factors in the scene

render such approaches brittle. For example, the color of

the natural light changes through out the day. Even under

fixed lighting, the video stream is captured at 125Hz which

is above the Nyquist frequency of the electricity powering

fluorescent lights, resulting in images that flicker between

frames. Additionally, there are typically several leftover balls

from previous episodes around the scene which share the same

color and shape as the ball in play. These distractors make

data association more of a challenge for down stream tracking.

Finally, extracting things that move is also a challenge when

other basic visual cues are unreliable because there is always

a robot and or a human moving in the scene. The perception

component of the system in this paper uniquely combined all

these visual cues by learning to detect the ball in an end-to-

end fashion that is robust to visual ambiguities and provides

both precise ball locations and velocity estimates.

Finally, prior work in robot learning varies by how much

it focuses on the system compared with the problem being

tackled. [22, 45, 47, 87, 66, 92, 56] are examples of works

which dedicate substantial attention to the system. They pro-

vide valuable details and know-how about what mattered for

a system to work in practice. This work is spiritually similar.

B. Robotic Table Tennis

Robotic table tennis is a challenging, dynamic task [13]

that has been a test bed for robotics research since the

1980s [8, 51, 34, 36, 66]. The current exemplar is the Omron

robot [55]. Until recently, most methods tackled the problem

by identifying a virtual hitting point for the racket [63, 64,

6, 69, 101, 39, 88, 58]. These methods depend on being

able to predict the ball state at time t either from a ball

dynamics model which may be parameterized [63, 64, 61, 62]

or by learning to predict it [66, 69, 101]. Various methods

can then generate robot joint trajectories given these target

states [66, 63, 64, 61, 62, 67, 68, 40, 53, 92, 27]. More

recently, Tebbe et al. [93] learned to predict the paddle target

using reinforcement learning (RL).

Such approaches can be limited by their ability to predict

and generate trajectories. An alternative line of research seeks

to do away with hitting points and ball prediction models,

instead focusing on high frequency control of a robot’s joints

using either RL [13, 101, 26] or learning from demonstra-

tions [68, 17, 16]. Of these, Büchler et al. [13] is the most

similar to the system in this paper. Similar to Büchler et al.

[13], this system trains RL policies to control robot joints at

high frequencies given ball and robot states as policy inputs.

However Büchler et al. [13] uses hybrid sim and real training

as well as a robot arm driven by pneumatic artificial muscles

(PAMs), whilst this system uses a motor-driven arm. Motor-

driven arms are a common choice and used by [17, 92, 93, 67].

V. TAKEAWAYS AND LESSONS LEARNED

Here we summarize lessons learned from the system that

we hope are widely applicable to high-speed learning robotic

systems beyond table tennis.

Choosing the right robots is important. The system started

with a scaled down version of the current setup as a proof of

concept and then graduated to full-scale, industrial robots (Ap-

pendix B). Industrial robots have many benefits such as low

latency and high repeatability, but they can come with “closed-

box” issues that must be worked through (Section II-B).

A safety simulator is a dynamic and customizable solution

to constraining operations with high frequency control com-

pared to high-level trajectory planners (Section II-B).

A configurable, modular, and multi-language (e.g. C++ and

Python) system improves research and development velocity

by making experimentation and testing easy for the researcher

(Section II-B).

Latency modeling is critical for real world transfer per-

formance as indicated by our experimental results. Other

environmental factors may have varying effects that change

based on the task (Section III-A). For example, ball spin is not

accurately modeled in the ball return task, but can be critical

when more nuanced actions are required.

Accurate environmental perception is also a key factor in

transfer performance. In this system’s case many factors were

non-obvious to non-vision experts: camera placement, special

calibration techniques, lens locks, etc. all resulted in better

detection (Section II-D).

GPU data buffering, raw Bayer pattern detection, and patch

based training substantially increase the performance of high

frequency perception (Section II-D). Rather than using an off-

the-shelf perception module, a purpose-built version allows

levels of customization that may be required for high-speed

tasks.

Interpolating and smoothing inputs (Section II-E) solves the

problem of different devices running at different frequencies.

It also guards against zero-mean noise and system latency

variability, but is less effective against other types of noise.

Automatic resets and remote control increase system uti-

lization and research velocity (Section II-E). The system orig-

inally required a human to manually collect balls and control

the thrower. Now that the system can be run remotely and

“indefinitely”, significantly more data collection and training

can occur.

ES algorithms like BGS (Section II-G) are a good starting

point to explore the capabilities of a system, but they may

also be a good option in general. BGS is still the most

successful and reliable method applied in this system. Despite

poor sample efficiency, ES methods are simple to implement,

scalable, and robust optimizers that can even fine-tune real

world performance.

Humans are highly variable and don’t always follow instruc-

tions (on purpose or not) and require significant accommoda-

tions to address these issues and also to alleviate frustrations

(e.g. time to reset) and ensure valuable human time is not

wasted.

A. Limitations and Future Work

A guiding principal of the system has been not to solve

everything at once. Starting with a simple task (e.g. hitting the

ball) and then scaling up to more complex tasks (e.g. playing

with a human) provides a path to progress naturally prioritizes

inefficiencies to be addressed. For example, a long but clean

environment reset was sufficient for learning ball return tasks,

but needed optimization to be sufficiently responsive to a

human.

The current system struggles with a few key features. More

complex play requires understanding the spin of the ball and

the system currently has no way to directly read spin and it is

not even included in simulation training. While it is possible

to determine spin optically (i.e. by tracking the motion of the

logo on the ball), it would require significantly higher frame

rates and resolutions than what is currently employed. Other

approaches more suited to our setup include analyzing the

trajectory of the ball (which the robot may be doing implicitly)

or including the paddle/thrower pose into the observation;

analogous to how many humans detect spin. Additionally

learning a model of the opponent if the opponent attempts

to be deliberately deceptive, concealing of adding confusion

to their hits.

The robot’s range of motion is significant thanks to the

inclusion of the gantry, but is still limited in a few key ways.

Firstly, the safety simulator does not allow the paddle to

go below the height of the table, preventing the robot from

“scooping” low balls. This restriction prevents the robot from

catching the arm between the table and gantry, which the safety

sim was unable to prevent in testing. The robot is limited in

side-to-side motion as well as how far forward over the table

it can reach, so there may be balls that it physically cannot

return. Finally, so far the robot has not made significant use

of motion away from the table. We hope that training on more

complex ball distributions will require the robot to make full

use of the play space as professional humans do.

The sensitivity of policies also increases as the task becomes

more complex. For example, slight jitter or latency in inference

may be imperceptible for simple ball return tasks, but more

complex tasks that require higher precision quickly revealed

these gaps requiring performance optimizations. Sim-to-real

gaps are also an issue; hitting a ball can be done without

taking spin into account, but controlling spin is essential

for high-level rallying. Environmental parameters and ball

spin both become more important and incorporating domain

randomization is a promising path forward to integrating them

in a robust manner. Additionally, when human opponents come

into play, modeling them directly or indirectly make it possible

for the robot to move beyond purely reactive play and to start

incorporating strategic planning into the game.

VI. CONCLUSION

In this paper we have explored the components of a suc-

cessful, real-world robotic table tennis system. We discussed

the building blocks, trade-offs, and other design decisions that

went into the system and justify them with several case studies.

While we do not believe the system in this paper is the perfect

solution to building a learning, high-speed robotic system, we

hope that this deep-dive can serve as a reference to those who

face similar problems and as a discussion point to those who

have found alternative approaches.

ACKNOWLEDGMENTS

We would like to thank Arnab Bose, Laura Downs, and

Morgan Worthington for their work on improving the vision

calibration system and Barry Benight for their help with

video storage and encoding. We would also like to thank Yi-

Hua Edward Yang and Khem Holden for improvements to

the ball thrower control stack. We also are very grateful to

Chris Harris and Razvan Surdulescu for their overall guidance

and supervision of supporting teams such as logging and

visualization. Additional thanks go to Tomas Jackson for video

and photography and Andy Zeng for a thorough review of the

inital draft of this paper. And finally we want to thank Huong

Phan who was the lab manager for the early stages of the

project and got the project headed in the right direction.

REFERENCES

[1] ABB. Application manual Externally Guided Motion.

Thorlabs, 2022.

[2] Saminda Abeyruwan, Laura Graesser, David B

D’Ambrosio, Avi Singh, Anish Shankar, Alex Bewley,

Deepali Jain, Krzysztof Choromanski, and Pannag R

Sanketi. i-Sim2Real: Reinforcement learning of

robotic policies in tight human-robot interaction loops.

Conference on Robot Learning (CoRL), 2022.

[3] E.W. Aboaf, C.G. Atkeson, and D.J. Reinkensmeyer.

Task-level robot learning. In Proceedings. 1988 IEEE

International Conference on Robotics and Automation,

pages 1309–1310 vol.2, 1988. doi: 10.1109/ROBOT.

1988.12245.

[4] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and

Deepak Pathak. Legged locomotion in challeng-

ing terrains using egocentric vision. arXiv preprint

arXiv:2211.07638, 2022.

[5] A. C. Aitken. Numerical Methods of Curve Fitting.

Proceedings of the Edinburgh Mathematical Society, 12

(4):218–218, 1961. doi: 10.1017/S0013091500025487.

[6] Russell Anderson. A Robot Ping-Pong Player: Exper-

iments in Real-Time Intelligent Control. MIT Press,

1988.

[7] Bryce E Bayer. Color imaging array, July 20 1976. US

Patent 3,971,065.

[8] John Billingsley. Robot ping pong. Practical Comput-

ing, 1983.

[9] Mariusz Bojarski, Davide Del Testa, Daniel

Dworakowski, Bernhard Firner, Beat Flepp, Prasoon

Goyal, Lawrence D Jackel, Mathew Monfort, Urs

Muller, Jiakai Zhang, et al. End to end learning for

self-driving cars. arXiv preprint arXiv:1604.07316,

2016.

[10] Mariusz Bojarski, Philip Yeres, Anna Choromanska,

Krzysztof Choromanski, Bernhard Firner, Lawrence

Jackel, and Urs Muller. Explaining how a deep neural

network trained with end-to-end learning steers a car.

arXiv preprint arXiv:1704.07911, 2017.

[11] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal

of Software Tools, 2000.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson,

Jonas Schneider, John Schulman, Jie Tang, and Wo-

jciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[13] Dieter Büchler, Simon Guist, Roberto Calandra, Vincent

Berenz, Bernhard Schölkopf, and Jan Peters. Learning

to Play Table Tennis From Scratch using Muscular

Robots. CoRR, abs/2006.05935, 2020.

[14] Mahesh Chandra and Brejesh Lall. A Novel Method

for CNN Training Using Existing Color Datasets for

Classifying Hand Postures in Bayer Images. SN

Computer Science, 2, 04 2021. doi: 10.1007/

s42979-021-00450-w.

[15] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,

Miles Macklin, Jan Issac, Nathan D. Ratliff, and Dieter

Fox. Closing the Sim-to-Real Loop: Adapting Simu-

lation Randomization with Real World Experience. In

International Conference on Robotics and Automation,

ICRA 2019, Montreal, QC, Canada, May 20-24, 2019,

pages 8973–8979. IEEE, 2019.

[16] Letian Chen, Rohan R. Paleja, Muyleng Ghuy, and

Matthew C. Gombolay. Joint Goal and Strategy Infer-

ence across Heterogeneous Demonstrators via Reward

Network Distillation. CoRR, abs/2001.00503, 2020.

[17] Letian Chen, Rohan R. Paleja, and Matthew C. Gom-

bolay. Learning from Suboptimal Demonstration via

Self-Supervised Reward Regression. CoRL, 2020.

[18] Krzysztof Choromanski, Mark Rowland, Vikas Sind-

hwani, Richard E. Turner, and Adrian Weller. Struc-

tured Evolution with Compact Architectures for Scal-

able Policy Optimization. In Proceedings of the 35th

International Conference on Machine Learning, pages

969–977. PMLR, 2018.

[19] Erwin Coumans and Yunfei Bai. PyBullet, a Python

module for physics simulation for games, robotics and

machine learning. http://pybullet.org, 2016–2021.

[20] Tianli Ding, Laura Graesser, Saminda Abeyruwan,

David B D’Ambrosio, Anish Shankar, Pierre Sermanet,

Pannag R Sanketi, and Corey Lynch. GoalsEye: Learn-

ing High Speed Precision Table Tennis on a Physical

Robot. In 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 10780–

10787. IEEE, 2022.

[21] Helei Duan, Jeremy Dao, Kevin Green, Taylor Apgar,

Alan Fern, and Jonathan Hurst. Learning Task Space

Actions for Bipedal Locomotion. In 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pages 1276–1282, 2021. doi: 10.1109/ICRA48506.

2021.9561705.

[22] Clemens Eppner, Sebastian Höfer, Rico Jonschkowski,

Roberto Martı́n-Martı́n, Arne Sieverling, Vincent Wall,

and Oliver Brock. Lessons from the Amazon Picking

Challenge: Four Aspects of Building Robotic Systems.

In Proceedings of Robotics: Science and Systems, An-

nArbor, Michigan, June 2016. doi: 10.15607/RSS.2016.

XII.036.

[23] Charles Freundlich, Michael Zavlanos, and Philippos

Mordohai. Exact bias correction and covariance esti-

mation for stereo vision. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion, pages 3296–3304, 2015.

[24] Kunihiko Fukushima. Visual Feature Extraction by a

Multilayered Network of Analog Threshold Elements.

IEEE Transactions on Systems Science and Cybernetics,

5(4):322–333, 1969. doi: 10.1109/TSSC.1969.300225.

[25] David Gallup, Jan-Michael Frahm, Philippos Mordohai,

and Marc Pollefeys. Variable baseline/resolution stereo.

In 2008 IEEE conference on computer vision and pat-

tern recognition, pages 1–8. IEEE, 2008.

[26] Wenbo Gao, Laura Graesser, Krzysztof Choromanski,

Xingyou Song, Nevena Lazic, Pannag Sanketi, Vikas

Sindhwani, and Navdeep Jaitly. Robotic Table Tennis

with Model-Free Reinforcement Learning. IROS, 2020.

[27] Yapeng Gao, Jonas Tebbe, Julian Krismer, and Andreas

Zell. Markerless Racket Pose Detection and Stroke

Classification Based on Stereo Vision for Table Tennis

Robots. IEEE Robotic Computing, 2019.

[28] Yapeng Gao, Jonas Tebbe, and Andreas Zell. Optimal

Stroke Learning with Policy Gradient Approach for

Robotic Table Tennis. CoRR, abs/2109.03100, 2021.

[29] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and

Mårten Björkman. Deep predictive policy training using

reinforcement learning. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

pages 2351–2358. IEEE, 2017.

[30] Xavier Glorot, Antoine Bordes, and Yoshua Bengio.

Deep Sparse Rectifier Neural Networks. In Geoffrey

Gordon, David Dunson, and Miroslav Dudı́k, editors,

Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, volume 15 of

Proceedings of Machine Learning Research, pages 315–

323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.

PMLR.

[31] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez,

Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang,

Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano

Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent, Chris

Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-

Agents: A library for Reinforcement Learning in Ten-

sorFlow, 2018.

[32] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan,

George Tucker, and Sergey Levine. Learning to

walk via deep reinforcement learning. arXiv preprint

arXiv:1812.11103, 2018.

[33] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and

Sergey Levine. Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic

actor. In Proceedings of the 35th International Confer-

ence on Machine Learning, pages 1861–1870. PMLR,

2018.

[34] J. Hartley. Toshiba progress towards sensory control

in real time. The Industrial Robot 14-1, pages 50–52,

1983.

[35] Richard Hartley and Andrew Zisserman. Multiple view

geometry in computer vision. Cambridge university

press, 2003.

[36] Hideaki Hashimoto, Fumio Ozaki, and Kuniji Osuka.

Development of Ping-Pong Robot System Using 7

Degree of Freedom Direct Drive Robots. In Industrial

Applications of Robotics and Machine Vision, 1987.

[37] Kasun Gayashan Hettihewa and Manukid Parnichkun.

Development of a Vision Based Ball Catching Robot. In

2021 Second International Symposium on Instrumenta-

tion, Control, Artificial Intelligence, and Robotics (ICA-

SYMP), pages 1–5. IEEE, 2021.

[38] Matt Hoffman, Bobak Shahriari, John Aslanides,

Gabriel Barth-Maron, Feryal M. P. Behbahani, Tamara

Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang,

Kate Baumli, Sarah Henderson, Alexander Novikov,

Sergio Gómez Colmenarejo, Serkan Cabi, Çaglar

Gülçehre, Tom Le Paine, Andrew Cowie, Ziyu Wang,

Bilal Piot, and Nando de Freitas. acme: A research

framework for distributed reinforcement learning.

[39] Yanlong Huang, Bernhard Schölkopf, and Jan Peters.

Learning optimal striking points for a ping-pong playing

robot. IROS, 2015.

[40] Yanlong Huang, Dieter Buchler, Okan Koç, Bernhard

Schölkopf, and Jan Peters. Jointly learning trajectory

generation and hitting point prediction in robot table

tennis. IEEE-RAS Humanoids, 2016.

[41] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy,

Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and

Marco Hutter. Learning agile and dynamic motor skills

for legged robots. Sci. Robotics, 4(26), 2019.

[42] Sebastian Höfer, Kostas Bekris, Ankur Handa,

Juan Camilo Gamboa, Melissa Mozifian, Florian

Golemo, Chris Atkeson, Dieter Fox, Ken Goldberg,

John Leonard, C. Karen Liu, Jan Peters, Shuran

Song, Peter Welinder, and Martha White. Sim2Real

in Robotics and Automation: Applications and

Challenges. IEEE Transactions on Automation

Science and Engineering, 18(2):398–400, 2021. doi:

10.1109/TASE.2021.3064065.

[43] Sergey Ioffe and Christian Szegedy. Batch normaliza-

tion: Accelerating deep network training by reducing

internal covariate shift. In International conference on

machine learning, pages 448–456. PMLR, 2015.

[44] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan.

pybind11 – Seamless operability between C++11 and

Python, 2017. https://github.com/pybind/pybind11.

[45] Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas

Kress-Gazit. An End-To-End System for Accomplish-

ing Tasks with Modular Robots. In Proceedings of

Robotics: Science and Systems, AnnArbor, Michigan,

June 2016. doi: 10.15607/RSS.2016.XII.025.

[46] R.E. Kalman. A new approach to linear filtering and

prediction problems. Journal of Basic Engineering, 82

(1):35–45, 1960.

[47] Peter Karkus, Xiao Ma, David Hsu, Leslie Kaelbling,

Wee Sun Lee, and Tomas Lozano-Perez. Differ-

entiable Algorithm Networks for Composable Robot

Learning. In Proceedings of Robotics: Science and

Systems, FreiburgimBreisgau, Germany, June 2019. doi:

10.15607/RSS.2019.XV.039.

[48] Chase Kew, Brian Andrew Ichter, Maryam Bandari,

Edward Lee, and Aleksandra Faust. Neural Collision

Clearance Estimator for Batched Motion Planning. In

The 14th International Workshop on the Algorithmic

Foundations of Robotics (WAFR), 2020.

[49] Piyush Khandelwal, James MacGlashan, Peter Wurman,

and Peter Stone. Efficient Real-Time Inference in Tem-

poral Convolution Networks. In 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pages 13489–13495, 2021. doi: 10.1109/ICRA48506.

2021.9560784.

[50] Diederik P. Kingma and Prafulla Dhariwal. Glow: Gen-

erative Flow with Invertible 1x1 Convolutions, 2018.

[51] John Knight and David Lowery. Pingpong-playing robot

controlled by a microcomputer. Microprocessors and

Microsystems - Embedded Hardware Design, 1986.

[52] J. Kober, E. Oztop, and J. Peters. Reinforcement

Learning to adjust Robot Movements to New Situa-

tions. In Proceedings of Robotics: Science and Systems,

Zaragoza, Spain, June 2010. doi: 10.15607/RSS.2010.

VI.005.

[53] Okan Koç, Guilherme Maeda, and Jan Peters. Online

optimal trajectory generation for robot table tennis.

Robotics & Autonomous Systems, 2018.

[54] Torsten Kröger. Opening the door to new sensor-based

robot applications—The Reflexxes Motion Libraries. In

2011 IEEE International Conference on Robotics and

Automation, pages 1–4. IEEE, 2011.

[55] Asai Kyohei, Nakayama Masamune, and Yase Satoshi.

The Ping Pong Robot to Return a Ball Precisely. 2020.

[56] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,

Vladlen Koltun, and Marco Hutter. Learning

Quadrupedal Locomotion over Challenging Terrain.

CoRR, 2020.

[57] Jianlan Luo, Eugen Solowjow, Chengtao Wen,

Juan Aparicio Ojea, Alice M. Agogino, Aviv Tamar,

and Pieter Abbeel. Reinforcement Learning on

Variable Impedance Controller for High-Precision

Robotic Assembly. In 2019 International Conference

on Robotics and Automation (ICRA), pages 3080–3087,

2019. doi: 10.1109/ICRA.2019.8793506.

[58] Reza Mahjourian, Risto Miikkulainen, Nevena Lazic,

Sergey Levine, and Navdeep Jaitly. Hierarchical Policy

Design for Sample-Efficient Learning of Robot Table

Tennis Through Self-Play. arXiv:1811.12927, 2018.

[59] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple

random search provides a competitive approach to rein-

forcement learning. arXiv preprint arXiv:1803.07055,

2018.

[60] Roberto Martı́n-Martı́n, Michelle Lee, Rachel Gardner,

Silvio Savarese, Jeannette Bohg, and Animesh Garg.

Variable Impedance Control in End-Effector Space. An

Action Space for Reinforcement Learning in Contact

Rich Tasks. In Proceedings of the International Con-

ference of Intelligent Robots and Systems (IROS), 2019.

[61] Michiya Matsushima, Takaaki Hashimoto, and Fumio

Miyazaki. Learning to the robot table tennis task-ball

control and rally with a human. IEEE International

Conference on Systems, Man and Cybernetics, 2003.

[62] Michiya Matsushima, Takaaki Hashimoto, Masahiro

Takeuchi, and Fumio Miyazaki. A learning approach

to robotic table tennis. IEEE Transactions on Robotics,

2005.

[63] Fumio Miyazaki, Masahiro Takeuchi, Michiya Mat-

sushima, Takamichi Kusano, and Takaaki Hashimoto.

Realization of the table tennis task based on virtual

targets. ICRA, 2002.

[64] Fumio Miyazaki et al. Learning to Dynamically Manip-

ulate: A Table Tennis Robot Controls a Ball and Rallies

with a Human Being. In Advances in Robot Control,

2006.

[65] Shotaro Mori, Kazutoshi Tanaka, Satoshi Nishikawa,

Ryuma Niiyama, and Yasuo Kuniyoshi. High-speed

humanoid robot arm for badminton using pneumatic-

electric hybrid actuators. IEEE Robotics and Automa-

tion Letters, 4(4):3601–3608, 2019.

[66] Katharina Muelling, Jens Kober, and Jan Peters. A

biomimetic approach to robot table tennis. Adaptive

Behavior, 2010.

[67] Katharina Muelling, Jens Kober, and Jan Peters. Learn-

ing table tennis with a Mixture of Motor Primitives.

IEEE-RAS Humanoids, 2010.

[68] Katharina Muelling, Jens Kober, Oliver Kroemer, and

Jan Peters. Learning to select and generalize striking

movements in robot table tennis. The International

Journal of Robotics Research, 2012.

[69] Katharina Muelling et al. Simulating Human Table

Tennis with a Biomimetic Robot Setup. In Simulation

of Adaptive Behavior, 2010.

[70] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann

Cun. Off-Road Obstacle Avoidance through End-to-

End Learning. In Y. Weiss, B. Schölkopf, and J. Platt,

editors, Advances in Neural Information Processing

Systems, volume 18. MIT Press, 2005.

[71] Anusha Nagabandi et al. Neural Network Dynamics

for Model-Based Deep Reinforcement Learning with

Model-Free Fine-Tuning. In ICRA, 2018.

[72] Michael Neunert, Thiago Boaventura, and Jonas Buchli.

Why off-the-shelf physics simulators fail in evaluating

feedback controller performance - a case study for

quadrupedal robots. 2016.

[73] Quan Nguyen, Ayush Agrawal, Xingye Da, William

Martin, Hartmut Geyer, Jessy Grizzle, and Koushil

Sreenath. Dynamic Walking on Randomly-Varying

Discrete Terrain with One-step Preview. In Proceedings

of Robotics: Science and Systems, Cambridge, Mas-

sachusetts, July 2017. doi: 10.15607/RSS.2017.XIII.

072.

[74] Edwin Olson. AprilTag: A robust and flexible visual

fiducial system. In 2011 IEEE International Conference

on Robotics and Automation, pages 3400–3407, 2011.

doi: 10.1109/ICRA.2011.5979561.

[75] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek

Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,

Alex Paino, Matthias Plappert, Glenn Powell, Raphael

Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,

Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech

Zaremba, and Lei Zhang. Solving Rubik’s Cube with a

Robot Hand. 2019.

[76] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keun-

taek Lee, Xinyan Yan, Evangelos Theodorou, and Byron

Boots. Agile Autonomous Driving using End-to-End

Deep Imitation Learning. In Proceedings of Robotics:

Science and Systems, Pittsburgh, Pennsylvania, June

2018. doi: 10.15607/RSS.2018.XIV.056.

[77] Xue Bin Peng, Marcin Andrychowicz, Wojciech

Zaremba, and Pieter Abbeel. Sim-to-Real Transfer of

Robotic Control with Dynamics Randomization. In

2018 IEEE International Conference on Robotics and

Automation, ICRA 2018, Brisbane, Australia, May 21-

25, 2018, pages 1–8. IEEE, 2018.

[78] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-

Wei Lee, Jie Tan, and Sergey Levine. Learning agile

robotic locomotion skills by imitating animals. arXiv

preprint arXiv:2004.00784, 2020.

[79] Dean A. Pomerleau. ALVINN: An Autonomous Land

Vehicle in a Neural Network. In D. Touretzky, editor,

Advances in Neural Information Processing Systems,

volume 1. Morgan-Kaufmann, 1988.

[80] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh

Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and

Andrew Y. Ng. Ros: an open-source robot operating

system. In ICRA Workshop on Open Source Software,

2009.

[81] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi

Kanervisto, Maximilian Ernestus, and Noah Dormann.

Stable-Baselines3: Reliable Reinforcement Learning

Implementations. Journal of Machine Learning Re-

search, 2021.

[82] Tim Salimans, Jonathan Ho, Xi Chen, Szymon

Sidor, and Ilya Sutskever. Evolution Strategies as

a Scalable Alternative to Reinforcement Learning.

arXiv:1703.03864, 2017.

[83] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, and Oleg Klimov. Proximal policy optimiza-

tion algorithms. CoRR, abs/1707.06347, 2017.

[84] Anish Shankar, Stephen Tu, Deepali Jain, Sumeet

Singh, Krzysztof Marcin Choromanski, Saminda Wish-

wajith Abeyruwan, Alex Bewley, David B D’Ambrosio,

Jean-Jacques Slotine, Pannag R Sanketi, and Vikas

Sindhwani. Agile Catching with Whole-Body MPC and

Blackbox Policy Learning. In CoRL 2022 workshop on

Learning for Agile Robotics, 2022.

[85] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan

Yeung, Wai-Kin Wong, and Wang-chun Woo. Convo-

lutional LSTM network: A machine learning approach

for precipitation nowcasting. Advances in neural infor-

mation processing systems, 28, 2015.

[86] Laura Smith, J Chase Kew, Xue Bin Peng, Sehoon Ha,

Jie Tan, and Sergey Levine. Legged robots that keep

on learning: Fine-tuning locomotion policies in the real

world. In 2022 International Conference on Robotics

and Automation (ICRA), pages 1593–1599. IEEE, 2022.

[87] Laura Smith, Ilya Kostrikov, and Sergey Levine. A

walk in the park: Learning to walk in 20 minutes

with model-free reinforcement learning. arXiv preprint

arXiv:2208.07860, 2022.

[88] Yichao Sun, Rong Xiong, Qiuguo Zhu, Jingjing Wu,

and Jian Chu. Balance motion generation for a hu-

manoid robot playing table tennis. IEEE-RAS Hu-

manoids, 2011.

[89] Kah-Kay Sung. Learning and example selection for

object and pattern detection. 1996.

[90] Andy Swales et al. Open modbus/tcp specification.

Schneider Electric, 29:3–19, 1999.

[91] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,

Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent

Vanhoucke. Sim-to-Real: Learning Agile Locomotion

For Quadruped Robots. CoRR, abs/1804.10332, 2018.

[92] Jonas Tebbe, Yapeng Gao, Marc Sastre-Rienietz, and

Andreas Zell. A Table Tennis Robot System Using an

Industrial KUKA Robot Arm. GCPR, 2018.

[93] Jonas Tebbe, Lukas Krauch, Yapeng Gao, and An-

dreas Zell. Sample-efficient Reinforcement Learning in

Robotic Table Tennis. ICRA, 2021.

[94] Jack Valmadre, Alex Bewley, Jonathan Huang, Chen

Sun, Cristian Sminchisescu, and Cordelia Schmid. Lo-

cal metrics for multi-object tracking. arXiv preprint

arXiv:2104.02631, 2021.

[95] Patrick Varin, Lev Grossman, and Scott Kuindersma. A

Comparison of Action Spaces for Learning Manipula-

tion Tasks. In 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 6015–

6021, 2019. doi: 10.1109/IROS40897.2019.8967946.

[96] Yilei Wang and Ling Wang. Machine Vision-Based

Ping Pong Ball Rotation Trajectory Tracking Algorithm.

Computational Intelligence and Neuroscience, 2022,

2022.

[97] Tsung-Yen Yang, Tingnan Zhang, Linda Luu, Sehoon

Ha, Jie Tan, and Wenhao Yu. Safe reinforcement

learning for legged locomotion. In 2022 IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems (IROS), pages 2454–2461. IEEE, 2022.

[98] Andy Zeng, Shuran Song, Johnny Lee, Alberto Ro-

driguez, and Thomas Funkhouser. Tossingbot: Learning

to throw arbitrary objects with residual physics. IEEE

Transactions on Robotics, 36(4):1307–1319, 2020.

[99] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl.

Objects as points. arXiv preprint arXiv:1904.07850,

2019.

[100] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.

Tracking objects as points. In European Conference on

Computer Vision, pages 474–490. Springer, 2020.

[101] Yifeng Zhu, Yongsheng Zhao, Lisen Jin, Jingjing Wu,

and Rong Xiong. Towards High Level Skill Learning:

Learn to Return Table Tennis Ball Using Monte-Carlo

Based Policy Gradient Method. IEEE International

Conference on Real-time Computing and Robotics,

2018.

APPENDIX

A. Author Contributions

1) By Type: Names are listed alphabetically.

• Designed or implemented the vision system: Michael

Ahn, Alex Bewley, David D’Ambrosio, Navdeep Jaitly,

Grace Vesom

• Designed or implemented the vision policy training in-

frastructure: Alex Bewley, David D’Ambrosio, Navdeep

Jaitly, Juhana Kangaspunta

• Designed or implemented the vision policy: Alex

Bewley, David D’Ambrosio, Navdeep Jaitly

• Designed or implemented the robot control stack:

Saminda Abeyruwan, Michael Ahn, David D’Ambrosio,

Laura Graesser, Atil Iscen, Navdeep Jaitly, Satoshi

Kataoka, Sherry Moore, Ken Oslund, Pannag Sanketi,

Anish Shankar, Peng Xu

• Designed or implemented the real world gym en-

vironment: Saminda Abeyruwan, David D’Ambrosio,

Laura Graesser, Satoshi Kataoka, Pannag Sanketi, Anish

Shankar

• Designed or implemented the simulator: Saminda

Abeyruwan, Erwin Coumans, David D’Ambrosio,

Laura Graesser, Navdeep Jaitly, Nevena Lazic, Reza

Mahjourian, Pannag Sanketi, Anish Shankar, Avi Singh

• Designed or implemented the visualization: Yuheng

Kuang, Anish Shankar

• Designed or implemented the nightly monitoring:

Saminda Abeyruwan, Omar Cortes, David D’Ambrosio,

Laura Graesser, Pannag Sanketi, Anish Shankar

• Robot operations and mechanical engineering: Jon

Abelian, Justin Boyd, Omar Cortes, Gus Kouretas, Thinh

Nguyen, Krista Reymann

• Designed or implemented learning infrastructure

and algorithms: Krzysztof Choromanski, Tianli Ding,

Wenbo Gao, Laura Graesser, Deepali Jain, Navdeep

Jaitly, Nevena Lazic, Corey Lynch, Avi Singh, Saminda

Abeyruwan, Anish Shankar

• Designed or implemented control policy architectures:

Tianli Ding, Laura Graesser, Navdeep Jaitly

• Ran experiments for the paper: Alex Bewley, David

D’Ambrosio, Laura Graesser, Atil Iscen, Deepali Jain,

Anish Shankar

• Wrote the paper: Saminda Abeyruwan, Alex Bewley,

David D’Ambrosio, Laura Graesser, Atil Iscen, Deepali

Jain, Ken Oslund, Anish Shankar, Avi Singh, Grace

Vesom, Peng Xu

• Core team: Saminda Abeyruwan, Alex Bewley, David

D’Ambrosio, Laura Graesser, Navdeep Jaitly, Krista Rey-

mann, Pannag Sanketi, Avi Singh, Anish Shankar, Peng

Xu

• Managed or advised on the project: Navdeep Jaitly,

Pannag Sanketi, Pierre Sermanet, Vikas Sindhwani, Vin-

cent Vanhoucke

• Table tennis coach: Barney Reed

2) By Person: Names are listed alphabetically.

Jonathan Abelian: Day to day operations and thrower

maintenance.

Saminda Abeyruwan: Worked on multiple components

including: real gym environment, optimizing runtime for

high frequency control, simulator, system identification, ball

distribution protocol. Wrote parts of paper related to ball

distribution mapping and real environment design.

Michael Ahn: Built an earlier version of the vision infras-

tructure; built the low-level ABB/Festo control infrastructure.

Alex Bewley: Led the design and implementation for the

vision system. Built components for data infrastructure and

model training. Performed noise and bias analysis for different

camera configurations. Assisted with experimentation. Collab-

orated on paper writing and editing.

Justin Boyd: Designed fixtures, tuned and calibrated vision

system, robot bring-up and integration.

Krzysztof Choromanski: Built the ES distributed opti-

mization engine for all ES experiments with Deepali Jain.

Co-author of the BGS algorithm with Deepali Jain. Led the

research on distributed ES optimization for the project. Ran

several ES experiments throughout the project.

Omar Cortes: Assisted with experiments and fine-tuning

and maintained the systems’ integrity through nightly test

monitoring.

Erwin Coumans: Helped set up the simulation environ-

ment using PyBullet and provided simulation support. Also

developed early prototypes for exploring the system.

David D’Ambrosio: Worked on the system across multi-

ple parts including: vision, robot control, gym environment,

simulation, and monitoring. Coordinated paper writing, wrote

and edited many sections and edited the video. Ran several

ablation studies. Coordinated with operations.

Tianli Ding: Implemented Goal’sEye learning infrastruc-

ture, conducted extensive experiments to train goal-targeting

policies.

Wenbo Gao: Experimentation with ES methods and devel-

oping curriculum learning for multi-modal playstyles.

Laura Graesser: Worked on multiple parts of the system

including: simulation, policy learning, real gym environment,

robot control. Shaped paper narrative, wrote in many sections,

and edited throughout. Designed and ran simulation parame-

ters system studies.

Atil Iscen: Added the task space controller and observation

space. Trained and deployed policies in task space. Compiled

experimental results and contributed to writing for these sec-

tions.

Navdeep Jaitly: Conceived, designed, and led the initial

stages of the project, built and sourced multiple prototypes,

laid the foundation for the design of major systems like

control and vision. Created initial vision inference pipeline

and supervised algorithm development.

Deepali Jain: Built the ES distributed optimization en-

gine used for all policy training experiments with Krzysztof

Choromanskii. Co-author of the BGS algorithm with Krzysztof

Choromanski. Ran several ES experiments throughout the

project. Conducted ablation study comparing ARS and BGS

techniques for the paper.

Juhana Kangaspunta: Built an early version of the com-

puter vision system used in the robot and created a labeling

pipeline.

Satoshi Kataoka: Developed and maintained the cus-

tom MPI system. Initial consultation on cameras and other

infrastructure-related components.

Gus Kouretas: Work cell assembly and day to day opera-

tion.

Yuheng Kuang: Technical lead for data infrastructure and

provided visualization tools.

Nevena Lazic: Built an initial version of the simulator,

implemented and ran initial ES experiments.

Corey Lynch: Implemented GoalsEye learning infrastruc-

ture and advised on goal-targeting experiments.

Reza Mahjourian: Built an initial version of the simulator,

developed early RL agent control, and defined the land ball

task.

Sherry Q. Moore: Control, sensing and ball-thrower in-

frastructure decisions. Designed and implemented the first

working version of C++ control stack.

Thinh Nguyen: Thrower mechanical design, linear axis

design and maintenance, ball return system design, and day-

to-day operations.

Ken Oslund: Designed and implemented the C++ client

and controller backend along with the bindings which make

them interoperable with Python. Also directly wrote several

paragraphs in the final paper.

Barney J Reed: Expert table tennis advisor, coaching

engineers, human data collection.

Krista Reymann: Operations project manager, overseeing

operations team, sourcing parts and resources, coordinating

with vendors and managing repairs.

Pannag R Sanketi: Overall lead on the project. Guided

the algorithm and system design, wrote parts of the system,

advised on the research direction, managed the team, project

scoping and planning.

Anish Shankar: Core team member working on the sys-

tem across multiple parts including: performance, hardware,

control, tooling, experiments.

Pierre Sermanet: Advised on the GoalsEye research.

Vikas Sindhwani: Initiated and developed ES research

agenda for table tennis and catching. Supported and advised

on an ongoing basis. Edited the paper.

Avi Singh: Worked on multiple parts of the system, focusing

on simulation and learning algorithms. Helped write the paper.

Vincent Vanhoucke: Infrastructure decisions, project scop-

ing and research milestones.

Grace Vesom: Built the camera driver and an early version

of the ball detection pipeline. Built camera calibration software

and hardened camera hardware stability.

Peng Xu: Worked on early versions of many parts of the

system including: vision, robot control, and designing the

automatic ball collection. Wrote part of the paper.

3) Contact Authors: {bewley, ddambro,

lauragraesser, psanketi}@google.com

B. Hardware Details

1) Host Machines: The entire system is run on a single

Linux host machine with an AMD Ryzen Threadripper 3960X

and multiple NVIDIA RTX A5000 accelerators. One accel-

erator handles perception inference and another encodes the

images from the cameras with nvenc for storage (see Appendix

M). Policy inference runs on CPU. The standard robot policies

are so small that the time to transfer the input data from CPU

to accelerator exceeds any savings in running inference on the

accelerator.

Previous iterations of this system used a dual Intel Xeon E5-

2690s, two Nvidia Titan V accelerators, and a Quadro M2000.

The Quadro handled video encoding and the two Titans

each handled a single camera stream in an older iteration

of the perception system that could not maintain framerates

without splitting the load across multiple GPUs. The current

system was a substantial upgrade in terms of performance; by

switching machines perception inference latency halved.

2) Robots: The configuration of arm and gantry was ini-

tially prototyped with a Widow-X arm kit and one-dimensional

Zaber linear stage. The Widow-X was comprised of several

hobbyist Dynamixel servos. The gripper the arm came with

was made to hold a table tennis paddle. This prototype was

nowhere near as capable as the current set of arms used in

the system (see Figure 9) but it was able to regularly return

simple balls, enabling testing of many initial ideas. Ultimately

a small-scale system like this was not meant to survive long

term frequent use: the repeated hitting motions and impact

of the balls would strip the delicate internal gears of the

servos, which was a major factor in pursing industrial robots

for reliability and robustness.

3) Ball Thrower: Existing consumer table tennis ball

throwers offer a high level of customization and capability

but require some sort of manual input to operate. However,

the construction of the devices are not easy to replicate.

Therefore all iterations of ball throwers in this system took

some form of off-the-shelf device and made it more auto-

mated and robust. Initially, reverse engineering, breadboards,

and a programmable microcontroller were used to simulate

the manual inputs through a USB interface. Ultimately, a

more robust system was required and a simpler thrower was

obtained and almost all the electronic components of were

replaced. Aside from being more repairable and reliable, the

customized thrower has higher quality parts including motors

with encoders that can provide feedback to the system to alert

if there is a failure or reduction in performance. A ”throw

detection” sensor has also been added in the form of two

infrared sensors in the nozzle. This sensor reports back when

a ball has been thrown as well as an approximation of the

speed, based on the time between when the two sensors were

triggered.

Although the current thrower is more reliable, it is not built

to the specifications of the industrial robots in the rest of the

Fig. 9: Two ABB arms — ABB-IRB120T (left), ABB IRB 1100-4/0.58 (center) — and their end effector (right). Most

experiments in the paper use the 120, but the task space experiments in Section III-D were able to transfer to the 1100 with

minimal modifications despite the different joint layout.

system. The two wheels that launch the balls make physical

contact with them degrade over time and get dirty, requiring

cleaning.

C. Control Details

1) Additional Communication Protocols: As discussed in

Section II-B, ABB arms are controlled through the Externally

Guided Motion (EGM) interface [1]. However, the robot

requires an additional interface Robot Web Services (RWS)

provided by ABB to control basic functions. RWS is a

RESTful interface to the robot that allows access to various

variables and subroutines on the robot with simple POST and

GET requests. The main usage of RWS is to reset the robot

at the beginning of an experiment or when there is a problem,

and to start the onboard EGM server.

2) Python to C++ Interface: The interface between Python

and C++ is implemented with Pybind11 [44]. This library

provides a convenient and compact syntax for calling C++

functions from Python and passing values in both directions

between the languages. However, just wrapping function calls

in the low-level driver with Pybind11 is insufficient because

those functions would still execute in the Python thread,

subjecting them to all the same performance constraints as

regular Python threads. Releasing the GIL while executing

the C++ function is possible but would not help due to the

overhead of switching thread contexts.

Instead, a pure-C++ thread is started to handle low-level

control for each of the Festo and ABB robots. These threads

do not access any Python data directly, so they do not require

the GIL and can execute in parallel to each other and the

Python thread. Communication with these threads is done

asynchronously via circular C++ buffers. C++ mutexes protect

access to these buffers and ensure thread-safety, but they only

have to be held briefly for read and write operations, not for

an entire control cycle. This low-level controller can be used

independently from Python (ie, in a pure-C++ program), but

in this system, the circular buffers are accessed from Python

via Pybind11-wrapped C++ function calls.

Each loop iteration of the low-level controller checks for

a new command sent from Python. If none is available, it

executes the remainder of the loop iteration with the previously

sent command. Since the mutex protecting communication

with the Python thread is only held briefly, this helps isolate

the low-level controller from timing variation in the Python

thread, thereby increasing robustness. Minimizing latency

variation contributed more to improving performance than

minimizing the absolute latency because the policies could

learn to account for that latency in simulation.

3) Robot Lockups and System Identification: The ABB

arms are primarily operated using the EGM interface. A se-

quence of commands are transmitted at 248Hz which includes

a position and speed reference parameter per joint. The arms

are sensitive to the commands and can lockup by tripping a

hardware safety stop in several situations including:

1) Physical collisions are detected

2) Joints are predicted to exceed ranges

3) Joints are being commanded to move too fast and have

hit internal torque limits.

These safety stops are controlled by an ABB proprietary

hardware controller whose predictions are not accessible in

advance so as to pro-actively avoid them. Safety lockups freeze

the robot. At best they interrupt experiments, and at worst

cause joints to physically go out of range requiring manual re-

calibration. It was therefore important to implement mitigation

in the control stack to prevent sending commands that would

cause the robot to lockup. In addition, the actual movement of

the arm in response to a position + speed reference command

is internally processed by the hardware controller using a low

pass filter + speed/position gain parameters. For the above

reasons a system identification of the arms was performed to

infer such parameters and uses them to both bring parity with

simulation and prevent safety stops.

The agents produce velocity actions. In simulation these

are directly interpreted by the PyBullet simulator. On the real

robot system they are run through the safety simulator stack as

described in II-B, providing a position and velocity per joint

of the arm to reach. Directly using this result as a position

+ speed reference to the ABB arms does not faithfully move

the arms through the same trajectory as seen in simulation.

While the position portion of the command is accurate (fol-

lowing the exact intended), the speed reference parameter is

interpreted differently by the hardware controller through gain

parameters. The actual speed reference command is modeled

as a combination of the velocity + torque, scaled by varying

gain factors per component and joint. These gain factors

were learned through a process of system identification, by

optimizing them with a blackbox parameter tuning framework.

The optimization objective was to minimize differences vs the

trajectory described by the position portion of the commands.

This tuning process replays some trajectories with different

gain parameters to find the optimal way to set the speed

reference portion. The result was fixed multiplicative gain

factors that were primarily driven by the per-joint velocity as

obtained from the safety simulator to use as the optimal speed

reference command.

The problem of avoiding safety stops is mitigated in a

few ways. First the safety simulator predicts collisions and

sends the ”bounced-back” commands so that they don’t collide

with environment as described earlier. Secondly to prevent

exceeding joint ranges, a predictive system caps the speed

reference portions of the command as the robot gets closer

to the joint limits. The system predicts motion of the joint

from the commanded position + an assumed inertial motion

using the speed reference projected 250ms into the future

and caps the speed ref portion of the command to prevent

the predicted position from exceeding joint limits. This was

modelled experimentally to identify the cases in which the

hardware controller faults due to exceeding joint ranges, which

helped discover this predictive window of 250ms. Lastly, over-

torquing is minimized by reducing the safety simulator’s max

joint force limits.

D. Simulation Details

Four desiderata guided the design of the simulator.

1) Compatibility with arbitrary policy training infrastruc-

ture so as to retain research flexibility, motivating the

choice to conform to the Gym API.

2) Flexibility, especially for components that researchers

experiment with often, such as task definition, obser-

vation space, action space, termination conditions, and

reward function.

3) Simulation-to-reality gap is low. “Low” means (1) al-

gorithmic or training improvements demonstrated in

simulation carry over to the real system and (2) zero-shot

sim-to-real policy transfer is feasible. Perfect transfer

is not required — 80%+ of simulated performance is

targeted.

4) Easy to apply domain randomization to arbitrary physi-

cal components.

The design isolates certain components so they are easy to

iterate on. For example, the tasks are encoded as sequences of

states. Transitions between states are triggered by ball contact

events with other objects. The task of a player returning

a ball launched from a ball thrower is represented by the

following two sequences. The first is P1 LAUNCH (the

ball is in flight towards the player after being launched from

the thrower) → P1 TABLE (the ball has bounced on the

player’s side of the table) → P1 PADDLE (the player hit

the ball) → P2 TABLE (the ball landed on the opponent’s

side of the table) → DONE P1 WINPOINT . The second

is P1 LAUNCH → P1 TABLE → P1 PADDLE →
P1 NET (the ball just hit the net) → P2 TABLE →
→ DONE P1 WINPOINT . This accounts for the case

where the ball first hits the net after being hit by the player and

then bounces over and onto the opponent’s side of the table.

All other sequences lead to DONE P1 LOSEPOINT .

For each task the complete set of (state, event) →
next_state triplets is enumerated in a config file. Tasks

are changed by initializing the StateMachine with different

configs.

Another example is the reward function. It is common

practice in robot learning, especially when training using the

reinforcement learning paradigm, for the scalar reward per step

to be a weighted combination of many reward terms. These

terms are often algorithm and task dependent. Therefore it

should be straightforward to change the number of terms, the

weight per term, and to implement new ones. Each reward term

is specified by name along with its weight in a config. The

RewardManager takes in that config and handles loading,

calculating, and summing each component. If a user wants

to try out a new reward term, they write a reward class

conforming to the Reward API (see below), which gets

automatically registered by the RewardManager, and add

it and its weight to the config. Over 35 different reward

components have been tried ≈ 20 are in active use.

1) Latency: The latency of key physical system compo-

nents were empirically measured as follows. Timing details are

tracked starting with when the system receives hardware inputs

(perception and robot feedback), through various transforma-

tions and IPCs (including policy inference), to when actual

hardware commands are sent. This tracing gives a drill-down

of latency throughout the stack with the ability to get mean and

percentile metrics. The other half of the latency is how long

the robot hardware takes to physically move after being given

a command, which is separately measured by comparing time

between a command being issued and receiving a feedback for

reaching it. This completes the latency picture, covering the

full time taken across the loop. See Table VI 100% (baseline)

column for the default latency values per component.

2) Ball distributions: Modeling the ball has two compo-

nents, the dynamics and training distribution. PyBullet models

the contact dynamics and the in-flight ball dynamics are

modeled as in Abeyruwan et al. [2]. Drag is modelled with a

fixed coefficient of 0.47 but neither an external Magnus nor

wind force is applied to the ball in the simulation. We refer

readers to [2] Appendix C4 for more details on the in-flight

ball model. The initial position and velocity of the balls are

derived following Abeyruwan et al. [2] and this determines the

distribution of balls that are sampled during simulated training.

See Table VII Thrower (baseline) column for the parameters of

the default ball distribution used for training the BGS policies

in this paper.

3) Physical Parameters: The restitution coefficients of the

ball, table, and paddle, and the friction of the paddle are

measured using the method from [28]. The mass of the ball and

paddle is also measured. All other components have estimated

un-tuned values or use PyBullet defaults. See Table VIII Tuned

(baseline) column for the values used.

4) Gymnasium API: The real world and simulated environ-

ments were developed according to the Gymnasium standard

API for reinforcement learning5. Dictionary formats are used

for observation and action specifications (for further details

on individual components, see Appendix F). All extended

environment functionalities are implemented as wrappers. In

addition, the environments are compatible with agent learn-

ing frameworks, for example, TF-Agents [31], ACME [38],

Stable-Baselines3 [81], and so on. For consistent policy evalu-

ation in simulation and hardware, TF-Agent’s Actor API is em-

ployed. All the supported policies (section II-G) are wrapped

in PyPolicy and integrated to Actor API. TF-Agents provides

transformations to convert the Gymnasium environment to a

PyEnvironment.

5) Reward API: The Reward class API is outlined below.

Latex code style from [50].

class Reward:

def init (self, ∗kwargs):
Initializes the reward class.

def compute reward(self, state machine data, done, ∗kwargs):
Computes and returns the reward per step along with a

dictionary which optionally contains reward specific
information.

return reward, reward info

def reset(self, done):
Resets any stored state as needed when the episode is done.

E. Perception Details

1) Cameras and Calibration: Previous iterations of the

system included a variety of other camera types and posi-

tions. Larger arrays of slower cameras were effective during

prototyping for basic ball contact, but struggled on tasks that

required more accurate ball positioning. Adding more cameras

to the current setup could produce still more accurate position

estimations, but there start to be bandwidth limitations on

a single machine and it may require remote vision devices

(increasing latency and system complexity) or switching away

from USB3.

Cameras are calibrated individually for intrinsic parameters

first and later calibrated extrinsically to the table coordinate

system via sets of AprilTags [74] placed on the table. Both

calibrations are done with APIs provided by OpenCV [11].

Calibration is an important factor in the performance of the

system given the small size of the ball it needs to track. While

it is relatively easy to get decent camera performance with

basic camera knowledge, it required the help of vision experts

to suggest hardware solutions like lens spacers and locks as

well as calibration tools such as focus targets to get truly stable

performance.

5https://github.com/Farama-Foundation/Gymnasium

Fig. 10: Examples of training patches for the Ball detector

which consist of the past three frames. The left-most RGB

formatted patch is for visualization purposes to highlight the

motion of the ball in play with the current and next labeled

position indicated with white and black circles respectively.

The three single channel images to the right of the RGB image

show the raw Bayer pattern as expected by the detector. Top

row shows two sequences of three frames centered on the

final ball position (modulo 2 to match Bayer stride). Bottom

row shows hard negative examples where the center position

contains a bright spot with some motion originating from a

person carrying a ball-in-hand or from the robot itself.

2) Patch based Training Data: Figure 10 shows some

examples of the patches extracted from the raw Bayer images

used to train the ball detector network. These patches are cen-

tered on the ball in the current frame where the two previous

frames are included to prime the temporal convolutional layers

within our custom architecture.

3) Ball Detector Network Structure: The spatial convolu-

tion layers capture shape and color information whilst down-

sampling the image size to reduce computation. Operating on

the single channel raw images means it is important that the

first layer has a 2 × 2 stride matching the Bayer pattern, so

that the weights of the convolutional kernel are applied to

the same colored pixels at all spatial locations. In total, five

convolutional layers are applied with the first three including

batch normalization [43] before a ReLU activation [24, 30].

Two of these layers employ a buffered temporal mechanism

resulting in an extremely compact network overall with only

27K parameters. Full details of the architecture is shown in

Table II. Note that the shape is represented as (B,H,W,C)
corresponding to the typical batch size, height, width and

channels, however during inference the batch is set to the

number of cameras. Also note that in contrast to typical

temporal convolutions operating on video data there is no time

dimension. Instead the temporal convolutional layers simply

concatenate their previous input to the current features along

the channel dimensions. Here the next convolutional layer with

weights will effectively span two timesteps.

4) Tracking Performance: To assess tracking performance

independently of the downstream processes, the output of

the perception pipeline is compared against human annotated

ball positions. These annotations capture the ball’s image

position in each camera view for the entire duration the ball

is considered in-play, i.e. has not touched the ground or any

object below the table height. Both views are recombined with

annotations, triangulated to their 3D position, and stitched over

time into 3D trajectories.

For tracking evaluation the 3D trajectories of the ball across

Layer Type Kernel Size Strides Dilation Rate Output Size # Trainable Parameters

Input – – – (2, 512, 1024, 8) –
2D Spatial Convolution 4 2 1 (2, 256, 512, 8) 128
Batch Norm 16
Buffered Temporal Convolution – – – (2, 256, 512, 16) –
2D Spatial Convolution – – 2 (2, 256, 512, 8) 1152
Batch Norm 16
2D Spatial Convolution 4 2 1 (2, 128, 256, 16) 2048
Batch Norm 32
Buffered Temporal Convolution – – – (2, 128, 256, 32) –
2D Spatial Convolution – – 1 (2, 128, 256, 64) 18496
Dropout (drop-rate=0.1) – – – (2, 128, 256, 64) –
Prediction Head 4 – 2 (2, 128, 256, 5) 5125

Optimizer Adam (α = 1e−4, β1 = 0.9, β2 = 0.999)
Learning Rate Schedule Linear ramp-up (5000 steps) then exponential decay.
Batch size 128
Weight decay None

TABLE II: Ball Detector, Architecture and Training Details. All layers employ ReLU non-linearities.

Training Data Source ATA ATR ATP

With HNM 66.4 % 69.0 % 64.0 %

Without HNM 58.5 % 64.0 % 53.8 %

TABLE III: Ball tracking performance comparing different

training datasets including hard negative mining (HNM). Av-

erage tracking accuracy (ALTA) is the key metric used for

tracking quality over the local temporal horizon of 100 frames

with a < 5cm true positive criteria. ATR and ATP denote the

average tracking recall and precision respectively [94].

10 annotated sequences are used as target reference positions

consisting of 514 annotated trajectories over 93,978 frames.

To measure the alignment of predicted trajectories to these

annotations, the recently proposed Average Local Tracking

Accuracy (ALTA) metric [94] is applied by defining a true

positive detection as the predicted 3D position of the ball at

time t to correspond to with in 5cm of the annotated position

in frame t. Since the temporal aspect of the tracking problem is

important from both a short history as used by the policy and

a longer history for locating hits and bounces by the referee

(Section II-E) the temporal horizon of ALTA is set to 100

frames with the results reported in Table III. These results

show the benefit that hard negative mining can bring to a

patch-based training method.

F. Real World Details

1) Referee: The primary role of the Referee is to gener-

ate ball and robot contacts to drive the StateMachine,

RewardManager, and DoneManager as defined in Sec-

tion II-G. The different contact events are as follows;

TABLE_ARM (ball contact with robot side of the table),

TABLE_OPP (ball contact with opponent side of the table),

PADDLE_ARM (ball contact with robot paddle), NET (ball

contact with net), GROUND (ball contact with the ground),

TABLE (robot contact with table), and STAND (robot contact

with stand). The real environment and the referee communi-

cate using a custom MPI (ROS [80] is an alternative), where

the Referee initializes a server and the environment uses a

client to request reward, done and info at step frequency. The

Referee updates its internal state at 100 Hz regardless of the

step frequency.

2) Real gym environment: The real environment interfaces

with the policy and hardware. In addition to the real world

challenges described in Section II-E, it must also ensure the

environment step lasts for the expected duration given the en-

vironment Hz. An adaptive throttling function facilitates this.

The throttling function is initialized with the first observation.

When the next step call completes, the throttler waits for the

remaining time of the environment timestep before returning.

If the next step call consumes more computational time than

the timestep budget, the throttler advances to the next nearest

multiple of the timestep. Both the actor and environment run

on the same thread, therefore, the timestep also consumes the

computational time required by the policy. A recommendation

is that if the policy requires more computational time than

timestep budget, either reduce the step frequency or use an

asynchronous policy framework.

3) Subprocesses: The actor, environment, and referee com-

ponents are implemented using Python, therefore, process

speedup is limited by the GIL. Threading increased process

contention and the sim-to-real gap. If a process is known to

get throttled by thread contention or a high computational

workload, the code should be distributed to a different process.

4) Observation Filters: The system uses the Savitzky-

Golay FIR filter [5] for observation smoothing in

TableTennisRealEnv and Referee. The filter

coefficients were calculated once for a window length

of 9 and a 1-D convolution is applied for each sensor

modality independently. For boundary values, input is

extended by replicating the last value in the buffer.

The real environment uses interpolation/extrapolation to

generate observations for the given timestep. Noise from the

sensor can cause the interpolated/extrapolated values to show

a zig-zag pattern. In some cases, where a false positive ball

observations occurs, the calculated value does not generate an

Hyper-parameter Value

Number of directions (δ), N 200

Number of repeats per direction, m 15

Number of top directions, k 60

Direction standard deviation, σ 0.025

Step size, α 0.00375

Normalize observations True

Maximum episode steps 200

Training iterations 10,000

TABLE IV: Hyper-parameters used for training BGS policies

in simulation.

Reward Min. per episode Max. per episode

Hit ball 0 1.0

Land ball 0 1.0

Velocity penalty 0 0.4

Acceleration penalty 0 0.3

Jerk penalty 0 0.3

Joint angle 0 1.0

Bad collision -1 0

Base rotate backwards -1 * timesteps 0

Paddle height -1 * timesteps 0

Total variable 4.0

TABLE V: Rewards used for training BGS policies in simu-

lation.

observation within the expected observation range. Feeding

these observations to real policy tends to produce jittery or

unsafe actions. Similarly, Referee filters raw observations

prior to being used to calculate ball contacts.

G. Training Parameters

Table IV contains the hyper-parameter settings and Table V

details the rewards used for training the BGS policies in this

paper. A brief description of each reward is given below.

• Hit ball: +1 if the policy makes contact with the ball, 0

otherwise.

• Land ball: +1 if the policy successfully returns the ball

such that it crossed the net and lands on the opposite side

of the table.

• Velocity penalty: 1 - % points (timesteps * number of

joints) which violate the per joint velocity limits: [1.0,

2.0, 4.5, 4.5, 7.6, 10.7, 14.5]m/s.

• Acceleration penalty: 1 - % points (timesteps * number

of joints) which violate the per joint acceleration limits:

[0.2, 0.2, 1.0, 1.0, 1.0, 1.5, 2.5, 3.0]m/s2.

• Jerk penalty: 1 - % points (timesteps * number of joints)

which violate the per joint jerk limits: [0.92, 0.92, 1.76,

0.9, 0.95, 0.65, 1.5, 1.0]m/s3.

• Joint angle penalty: 1 - % points (timesteps * number of

joints) which lie outside the joint limits (minus a small

buffer).

• Bad collision: -1 per timestep if the robot collides with

itself or the table, 0 otherwise. The episode typically ends

immediately after a bad collision, hence the minimum

reward of -1.

• Paddle height penalty: -1 for every timestep the center of

the paddle is <12.5cm above the table, 0 otherwise.

• Base rotate backwards penalty: -1 each timestep the base

ABB joint has position <-2.0 (rotated far backwards).

H. Simulator Parameter Studies: Additional Results & Details

This section contains additional details about the simulator

parameter studies. First we discuss additional results and then

give details of all the parameter values for each study.

1) Additional Results: We present additional results from

the simulator parameter studies. In Section III-A we assessed

the effect of varying simulator parameters on the zero-shot

sim-to-real transfer performance. Here we discuss the effect

on training quality, defined as the percentage of the 10 training

runs that achieved ≥97.5% of the maximum score during train-

ing. Agents with scores above this threshold effectively solve

the return ball task. The results are presented in Figure 12.

Training contains significant randomness from two main

sources. First the environment has multiple sources of random-

ness; primarily from the ball distribution, latency sampling

and observation noise, but also from domain randomization

of some physical parameters and small perturbations to the

robot’s initial starting position. The extent of the environment

randomness in each of these areas is affected by parameter val-

ues. Second, randomness comes from the training algorithm,

BGS. During each BGS training step, directions are randomly

sampled and a weighted average of a subset of these forms

the update to the parameters.

Additionally, there appears to be distinct learning phases for

the return ball task, with corresponding local maxima. Two

common places for training to get stuck are (1) a policy never

learns to make contact with the ball and (2) a policy always

makes contact with the ball but never learns to return it to the

opposite side.

Consequently, we observe that about 70% of training runs

with the baseline parameters settings solve the problem. Sub-

stantially reducing latency to 0-20% appears to make the

task harder. Only 40% of runs in these settings train well

(see Figure 12 (top left)). Removing observation noise (see

Figure 12 (top right)) makes the problem easier, with 90%

runs training well. Increasing zero-mean noise does not affect

training quality for the settings tested, however introducing

biased noise does appear to make the problem much harder,

with only 30% runs training well. Changing the ball distribu-

tion (see Figure 12 (bottom left)) does not have a meaningful

impact on training quality except in one case. All training

runs for the different thrower distribution (thrower 2) failed

to reach the threshold in 10k steps. This is likely because

the ball distribution is more varied than baseline, medium, or

wide distributions (see Figure 15). However no policies got

stuck in local maxima. All achieved 93% of the maximum

reward and 50% achieved 95%. This is unlike the low latency

or biased observation noise settings where 20-60% runs got

stuck in local maxima. Finally, changing the values of different

physical parameter settings appears to make the task slightly

easier, with all experiments having 80-90% of runs that trained

well compared with the baseline 70% (see Figure 12 (bottom

right)).

Fig. 11: Ball collection system. Images from left to right. (I) Air blows down from a ceiling mounted fan, pushing any balls

on the table down to the floor. (II-top) & (II-bottom) Blower fans at each corner push the balls around the table. (III) At one

corner of the table is a ramp that guides the balls to a tube... (IV-top) ...where air pushes them to a higher ramp... (IV-bottom)

...which returns balls to the thrower’s hopper.

100%
(baseline)

0% 20% 50% 150%0

20

40

60

80

100

%
 ru

ns
 >

=
97

.5
%

 m
ax

 tr
ai

ni
ng

 re
tu

rn

Latency

[-4,4]
cm (baseline)

0cm [-8,8]
cm

[-16,16]
cm

[0,8]
cm

0

20

40

60

80

100

%
 ru

ns
 >

=
97

.5
%

 m
ax

 tr
ai

ni
ng

 re
tu

rn

Observation Noise

thrower
(baseline)

medium wide thrower 2 tiny velocity
offset

0

20

40

60

80

100

%
 ru

ns
 >

=
97

.5
%

 m
ax

 tr
ai

ni
ng

 re
tu

rn

Ball Distributions

tuned
(baseline)

table: no R
randomize

2%
ball R

8%
table R

measured0

20

40

60

80

100

%
 ru

ns
 >

=
97

.5
%

 m
ax

 tr
ai

ni
ng

 re
tu

rn

Physical Parameters

Fig. 12: Effect of simulator parameters on training quality

defined as % runs ≥ 97.5 maximum reward. Most settings

are similar to baseline performance of 70%. Notably very low

latency (0-20%), biased observation noise ([0,8]cm), and large

ball distributions (thrower 2) make the task harder and reduce

the % of runs that trained well within 10k training steps. R =

restitution coefficient.

I. Simulator Parameter Studies: Physical parameter measure-

ments, revisited

It was unsatisfactory not to follow the process outlined in

Appendix D to set physical parameter values in the simulator.

In Section III-A we hypothesized this was due to not modeling

spin correctly. To investigate this, we modeled spin in the

simulator following the method from [2]. We extended the

simulation ball model to incorporate the magnus force. Then

we collected a set of ball trajectories from a ball thrower. For

each trajectory we set up an optimization problem to solve

for the initial position, linear velocity, and angular velocity of

Original Env Damped Env0

20

40

60

80

%
 ru

ns
 >

=
97

.5
%

 m
ax

 tr
ai

ni
ng

 re
tu

rn

Method

Joint Space
TS(Act)
TS(Act&Obs)

Original Env Damped Env0.0

0.5

1.0

1.5

2.0
Re

wa
rd

Method

Joint Space
TS(Act)
TS(Act&Obs)

Fig. 13: (Top) Percent of seeds that solve the task (% runs

≥ 97.5% max training return) when trained in task space,

combined with the damped (harder) environment. (Bottom)

Zero shot transfer results of the seeds that succeeded the

training.

the ball, and used these values to derive ball distributions in

simulation.

During the same time period we also changed the paddle

on the robots to a Tenergy 056. This paddle has a softer

and higher friction surface than the previous paddle and can

impart substantially more spin on the ball. We re-measured

the physical parameters of the system following the process

described in Appendix D. We performed a grid search over

the restitution coefficient of the paddle, setting the other

parameters to measured values, to find the value that resulted

in the best zero-shot sim-to-real transfer. The grid search

was necessary because the new paddle surface is soft but

is modeled in simulation as a rigid body. Thus we use

the restitution coefficient to approximate ‘softness‘. Values

are detailed in Table VIII (see column ”Re-measured post

changes”). Note that the paddle restitution coefficient that led

to the best transfer, 0.44, is much lower than the measured

value of 0.84. Finally, we observed that simulated training was

harder in this setting, likely due to higher finesse required to

6https://butterflyonline.com/Templates/RubberSpecifications.pdf

measured table: no R
randomize

10%
ball R

33%
table R

10%
paddle M

previous
baseline

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Re

wa
rd

Physical Parameters

10k
solve

measured table: no R
randomize

10%
ball R

33%
table R

10%
paddle M

previous
baseline

0

20

40

60

80

100

%
 ru

ns
 >

=
97

.5
%

 m
ax

 tr
ai

ni
ng

 re
tu

rn

Physical Parameters

Fig. 14: After making a number of improvements to the

system, zero-shot sim-to-real transfer scores 1.82 (measured

- solve) on average whilst following a principled procedure

for measuring physical parameter values used in simulation.

This is on par with the previous baseline presented in Figure 5

reproduced here as previous baseline. Top Mean reward (with

95% CIs) on zero-shot real world evaluation. Measured phys-

ical parameters performed best. 10k = evaluation at 10k steps.

solve = evaluation at earliest step < 10k which solved the

task (≥ 97.5 maximum training return). Policies evaluated at

the solve step had slightly higher performance on average. R

= restitution coefficient. M = mass. Bottom Percent of seeds

that solve the task.

return the ball with the new paddle. To remedy this we added

a small bonus for hitting the ball towards the opponent’s side

of the table even if the policy did not return it over the net.

The reward increases proportionally to how close to ball was

to the net.

After making these changes, we re-ran the physical pa-

rameter study and present the results in Figure 147. We find

that zero-shot sim-to-real transfer is on par with the previous

baseline (see top chart, measured vs previous baseline). We

also observe that evaluating policies at the checkpoint when

they first solve the task (i.e. first checkpoint to score ≥ 97.5%
maximum training return) perform slightly better on average

than evaluating at the end of training, after 10k training steps.

However the difference is not statistically significant.

Performance loss by not randomizing the table restitu-

tion is similar to our original study, however (fortunately)

performance is less sensitive to small changes in parameter

values. For example, increasing the ball restitution by 10% or

72 / 50 seeds got stuck. One for table no R randomize, and one for -10%
paddle M. These results are reported over 9 instead of 10 seeds. We do not
think this materially affects any of the findings.

reducing the paddle restitution by 10% only led to a small

reduction in performance. However large changes may lead

to performance collapse as indicated by reducing the table

restitution coefficient by 33%.

With the addition of the extra reward component, most

policies solve the task in most settings (see Figure 14, bottom).

The exception is when the table restitution coefficient was

reduced by 33%, reducing the bounciness of the incoming

ball and likely making the task very difficult to learn.

J. Simulator Parameter Studies: Study values

Table VI presents the latency values for each of the assessed

settings. Table VII contains the details of all of the different

ball distributions and Figure 15 visualizes them. A distribution

is visualized by sampling 500 initial ball conditions and

plotting a histogram of the ball velocity in each dimension,

and plotting the initial ball xy and the landing ball xy below

it. Table VIII gives details of the tuned and measured physical

parameters.

K. Task Space Studies: Additional Results

Additional results from training in task space (Figure 13)

show that it enables more seeds to solve the task, likely by

making the problem more intuitive to learn for the training al-

gorithm. This trend is more pronounced in the harder problem

setting (damped environment). Here only 10% of joint space

policy seeds solve the task compared with around 80% of

task space policy seeds. We also show the results of zero-shot

transfer of the converged seeds. In the original environment,

the transfer performance of task space policies is slightly lower

than joint space. Looking at the behavior, we see that most of

the balls are returned short, and hit the net. This phenomena

can be explained by the sim-to-real gap and that policies

trained in task space prefer softer returns (with less velocity

on the paddle). On the other hand, in the harder (damped)

environment, task space policies learn to return faster and more

dynamically. In this setting, transfer to the real hardware is

much better, with task space policies returning 97% of the

balls and scoring 1.95 out of 2.0.

L. Debugging

The many interacting components in this system create a

complex set of dependencies. If the system suddenly starts

performing worse, is it a vision problem, a hardware failure,

or just a bad training run? A major design decision was to

be able to test as many of these components independently as

possible and to test them as regularly as possible. The design

of the system allows it to remotely and automatically run a

suite of tests with the latest software revision every night,

ensuring that any problems are detected before anyone needs

to work with the robot in the morning.

Each test in the suite exercises a particular aspect of the

system and can help isolate problems. For example, a test

that simply repeats a known sequence of commands ensures

the hardware and control stack are functional while a test

that feeds the policy a sequence of ball positions focuses

Fig. 15: Visualization of all the ball distributions used in the simulated parameter ball distribution study. A distribution is

visualized by sampling 500 initial ball conditions and plotting a histogram of the ball velocity in each dimension (3 small

charts), and plotting the initial ball xy and the landing ball xy below it. Red lines mark the boundaries of the distribution.

Distributions are shown as follows: (top left) thrower (baseline), (top center) medium, (top right) wide, (bottom left) thrower

2, (bottom center) tiny, (bottom right) velocity offset.

Latencies (ms): µ (σ)

Component 100% (baseline) 0% 20% 50% 150%

Ball observation 40 (8.2) 0 8 (3.7) 20 (5.8) 60 (10.0)

ABB observation 29 (8.2) 0 5.8 (3.7) 14.5 (5.8) 43.4 (10.0)

Festo observation 33 (9.0) 0 6.6 (4.0) 16.5 (6.4) 49.5 (11.0)

ABB action 71 (5.7) 0 14.2 (2.5) 35.5 (4.0) 106.5 (7.0)

Festo action 64.5 (11.5) 0 12.9 (5.1) 32.3 (8.1) 96.8 (14.1)

TABLE VI: Values used in the simulated latency study.

Component Thrower (baseline) Medium Wide Tiny Thrower 2

Initial ball velocity

Min x velocity -0.44 -0.55 -0.87 -0.05 -0.9

Max x velocity 0.44 0.55 0.87 0.05 0.9

Min y velocity -7.25 -7.45 -8.04 -6.90 -9.4

Max y velocity -6.47 -6.27 -5.68 -6.80 -5.0

Min z velocity -0.24 -0.42 -0.95 0.41 -1.2

Max z velocity 0.46 0.63 1.16 0.42 1.5

Initial ball position

Min x start 0.30 0.28 0.20 0.30 0.15

Max x start 0.41 0.43 0.51 0.31 0.55

Min y start 1.47 1.35 1.00 1.78 1.01

Max y start 1.94 2.05 2.40 1.79 1.57

Min z start 0.55 0.54 0.50 0.57 0.25

Max z start 0.61 0.63 0.67 0.58 0.64

Ball landing bounds

Min x land 0.18 0.12 -0.26 0.18 0.18

Max x land 0.42 0.48 0.66 0.42 0.62

Min y land -0.73 -0.82 -1.09 -0.73 -1.26

Max y land -0.37 -0.28 0 -0.37 -0.33

TABLE VII: Values used in the simulated ball distribution study.

Parameter Tuned (baseline) Measured Re-measured post changes*

Table

Restitution coefficient 0.9 +/- 0.15 0.92 +/- 0.15 0.9 +/- 0.15

Lateral friction 0.1 0.33 0.1

Rolling friction 0.1 0.1 0.001

Spinning friction 0.1 0.1 0.001

Paddle

Mass 80g 112g 136g

Restitution coefficient 0.7 +/- 0.15 0.78 +/- 0.15 0.44 +/- 0.15

Lateral friction 0.2 0.47 1.092

Rolling friction 0.2 0.1 0.001

Spinning friction 0.2 0.1 0.001

Ball

Mass 2.7g 2.7g 2.7g

Restitution coefficient 0.9 0.9 0.9

Lateral friction 0.1 0.1 0.1

Rolling friction 0.1 0.1 0.001

Spinning friction 0.1 0.1 0.001

Linear damping 0.0 0.0 0.0

Angular damping 0.0 0.0 0.0

TABLE VIII: Values used in the simulated physical parameters study.

+/- values indicate randomization range. If no +/- value is given the

value is not randomized during training. * see Appendix Section I.

on the inference infrastructure, independent of the complex

vision stack. Additionally, by running these tests every day,

an acceptable range of performance can be ascertained and

trends can be tracked. The independent evaluation also enables

testing and verification of changes to the various components.

For example, when changing from Python to C++ control

discussed in Section II-B the metrics from the nightly tests

were used to judge if the new control mechanisms were

working as expected.

Due to the agile and interconnected nature of a system, it is

also nearly impossible to debug in real time and many issues

can only be reproduced when the whole system is running

at full speed. Another key decision was to log everything.

In the nightly tests described above, not only are the results

logged but many key metrics such as latency are captured

which can further isolate failures. Additionally, the state of

all aspects of the robot, environment, and even intermediate

states (e.g. the safety simulator) are logged and can be played

back later in a convenient interface (Figure 16 that shows the

user many aspects of the system at once and allows them to

step through the environment states in a way that’s impossible

to do on the actual robot. While the initial costs of planning

Fig. 16: Debugging visualization used in the system. Sensitive information has been redacted. This interface synthesizes logs

from several components in a unified interface that makes debugging the system and understanding its state very straightforward.

and executing efficient logging system are high, they more

than pay for themselves in diagnostic ability. The next section

dives more deeply into the various aspects of logging.

M. Logging

Logging throughout the system is very useful for multiple

reasons: Debugging, Timing & Performance analysis, Visual-

ization, Stats & Metric tracking. The logs are primarily divided

between:

1) Structured Logs: This includes detailed high frequency

logging used for timing & performance analysis as well

as visualizations. This data is post-processed to give

lower-granularity summary metrics.

2) Unstructured Logs: These are human readable logs,

primarily capturing informational data as well as un-

expected errors & exception cases.

3) Experiment Metadata: A small amount of metadata

describing each experiment run helps organize all logs

by runs.

High frequency logging is useful to introspect into the

performance of the system. Individual raw events are logged,

including hardware feedback as well as the data at different

steps in the pipeline through transformations, agent inference

and back to hardware commands. Logging the same data

through multiple steps of transformation along with tracing

identifiers, helps us track the time taken between steps to

analyze the performance of the system. Raw high frequency

data allows us to capture fine-grained patterns in the timing

distribution that are not as easily revealed by just summary

metrics. Care must be taken when logging at high frequen-

cy/throughput to not have performance issues from the logging

system itself. Logging system overhead is low on the Python

side, saving the heavy lifting for an asynchronous C++ thread

that actually saves and uploads the logs. Other performance

metrics we log include CPU and Thread utilization.

	Introduction
	Table Tennis System
	Physical Robots
	Communication, Safety, and Control
	Simulator
	Latency modeling
	Ball distributions, observation noise, and domain randomization

	Perception System
	Camera Hardware, Synchronization and Setup
	Ball Detection
	3D Tracking

	Running on the Real Robot
	Observation generation
	Episode Starts
	Referee
	Automatic system reset — continuously introducing balls

	Design of Robot Policies
	Policies
	Robot Policies in Task Space

	Blackbox Gradient Sensing (BGS)
	Reward differential elite-choice.
	Orthogonal sampling

	System Studies
	Effect of Simulation Parameters on Zero-Shot Transfer
	Evaluation methodology
	Modeling latency is crucial for good performance
	Anchoring ball distributions to the real world matters, but precision is not essential
	Policies are robust to observation noise provided it has zero mean
	Policies are sensitive to physical parameters, which can have complex interactions with each other

	Perception Resilience Studies
	ES Training Studies
	Acting and Observing in Task Space
	Applying to a New Task: Catching

	Related Work
	Agile Robotic Learning
	Robotic Table Tennis

	Takeaways and Lessons Learned
	Limitations and Future Work

	Conclusion
	Appendix
	Author Contributions
	By Type
	By Person
	Contact Authors

	Hardware Details
	Host Machines
	Robots
	Ball Thrower

	Control Details
	Additional Communication Protocols
	Python to C++ Interface
	Robot Lockups and System Identification

	Simulation Details
	Latency
	Ball distributions
	Physical Parameters
	Gymnasium API
	Reward API

	Perception Details
	Cameras and Calibration
	Patch based Training Data
	Ball Detector Network Structure
	Tracking Performance

	Real World Details
	Referee
	Real gym environment
	Subprocesses
	Observation Filters

	Training Parameters
	Simulator Parameter Studies: Additional Results & Details
	Additional Results

	Simulator Parameter Studies: Physical parameter measurements, revisited
	Simulator Parameter Studies: Study values
	Task Space Studies: Additional Results
	Debugging
	Logging

