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Fig. 1: An illustration of the problem setting for our proposed system GenAug. GenAug takes a small set of image-action demonstration data on a robotics
problem like tabletop pick-and-place and generates a diverse set of augmented image observations to supplement the real-world demonstration dataset. These
augmented observations add semantically meaningful visual diversity in objects, distractors, and backgrounds while maintaining functional invariance of the

actions. Training on this augmented training set leads to significant improvements in policy generalization, without requiring additional data collection.

Abstract—Robot learning methods have the potential for
widespread generalization across tasks, environments, and ob-
jects. However, these methods require large diverse datasets that
are expensive to collect in real-world robotics settings. For robot
learning to generalize, we must be able to leverage sources of data
or priors beyond the robot’s own experience. In this work, we
posit that image-text generative models, which are pre-trained
on large corpora of web-scraped data, can serve as such a
data source. We show that despite these generative models being
trained on largely non-robotics data, they can serve as effective
ways to impart priors into the process of robot learning in a way
that enables widespread generalization. In particular, we show
how pre-trained generative models can serve as effective tools
for semantically meaningful data augmentation. By leveraging
these pre-trained models for generating appropriate “semantic”
data augmentations, we propose a system GenAug that is able
to significantly improve policy generalization. We apply GenAug
to tabletop manipulation tasks, showing the ability to re-target
behavior to novel scenarios, while only requiring marginal
amounts of real-world data. We demonstrate the efficacy of this
system on a number of object manipulation problems in the real
world, showing a 40% improvement in generalization to novel
scenes and objects.

I. INTRODUCTION

While robot learning has often focused on the search for
optimal behaviors [1, 2] or plans [3], the power of learning
methods in robotics comes from the potential for generaliza-
tion. While techniques such as motion planning or trajectory
optimization are effective ways to solve the policy search
problem in highly controlled situations such as warehouses
or factories, they may fail to generalize to novel scenarios

without significant environment modeling and replanning [4].
On the other hand, techniques such as imitation learning
and reinforcement learning have the potential for widespread
generalization without significant environment modeling and
replanning, especially when combined with deep neural net-
work function approximators [5, 6, 7].

Let us consider this question of learning from human
demonstrations [8]. While imitation learning methods cir-
cumvent the challenges of exploration, these methods often
impose a heavy burden on data collection by human super-
visors. Human demonstrations are often collected by expen-
sive techniques such as on-robot teleoperation or kinesthetic
teaching, which limit the amount of real-world data that can
be collected. Beyond the sheer quantity of data, the rigidity
of most robotics setups makes it non-trivial to collect diverse
data in a wide variety of scenarios. As a result, many robotics
datasets involve a single setup with just a few hours of robot
data. This is in stark contrast to the datasets that are common
in vision and language problems [9, 10], both in terms of
quantity and the diversity of the data. Given how important
large-scale data has been for generalization in these domains,
robot learning is likely to benefit from access to a similar scale
of data.

Data augmentation can provide a way to improve model
generalization, but these techniques typically perform augmen-
tation in low-level visual space, performing operations such
as color jitter, Gaussian blurring, and cropping, among others.
While this may help with generalization to low-level changes
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in scene appearance, they are unable to handle large seman-
tic differences in the scene such as distractors, background
changes, or object appearance changes. In this work, we aim
to provide semantic data augmentation to enable broad robot
generalization, by leveraging pre-trained generative models.
While on-robot data can be limited, the data that pre-trained
generative models are exposed to is significantly larger and
more diverse [9, 10]. Our work aims to leverage these
generative models as a source of data augmentation for real-
world robot learning. The key idea of our work builds on a
simple intuition: demonstrations for solving one task in one
environment should still largely be applicable to the same task
in new environments despite the visual changes in scenes,
background, and object appearances. The small amount of
on-robot experience provides demonstrations of the desired
behavior, while a generative model can be used to generate
widely varying visual scenes, with diverse backgrounds and
object appearances under which the same behavior will still be
valid. Furthermore, since such generative models are trained
on realistic data, the generated scenes are visually realistic
and extremely diverse. This allows us to cheaply generate a
large quantity of semantically augmented data from a small
number of demonstrations, providing a learning agent access
to significantly more diverse scenes than the purely on-robot
demonstration data. As we show empirically, this can lead
to widely improved generalization, with minimal additional
burden on human data collection.

We present GenAug, a semantic data augmentation frame-
work that leverages pre-trained text-to-image generative mod-
els for real-world robot learning via imitation. Given a dataset
of image-action examples provided on a real robot system,
GenAug automatically generates “augmented” RGBD images
for entirely different and realistic environments, which display
the visual realism and complexity of scenes that a robot might
encounter in the real world. In particular, GenAug leverages
language prompts with a generative model to change object
textures and shapes, adding new distractors and background
scenes in a way that is physically consistent with the original
scene, for table-top manipulation tasks with a real robot. We
show that training on this semantically augmented dataset sig-
nificantly improves the generalization capabilities of imitation
learning methods on entirely unseen real-world environments,
with only 10 real-world demonstrations collected in a single,
simple environment.

In summary, our key contributions are:
1) We present a general framework for leveraging genera-

tive models for data augmentation in robot learning.
2) We show how this framework can be instantiated in

the context of tabletop manipulation tasks in the real
world, building on the framework of CLIPort introduced
in [11].

3) We demonstrate that GenAug policies can show
widespread real-world generalization for tabletop ma-
nipulation, even when they are only provided with a
few demonstrations in a simple training environment.

4) We provide a number of ablations and visualizations to

understand the impact of various design decisions on
learned behavior.

II. GENAUG: GENERATIVE AUGMENTATION FOR
REAL-WORLD DATA COLLECTION

In this section, we will describe the problem statement
we consider in our semantic data augmentation technique
- Generative Augmentation (GenAug), show how generative
models can conceptually be used to inject semantic invariances
into robot learning and instantiate a concrete version of this
setup for learning policies for tabletop robotic manipulation
tasks.

A. Problem Formulation

In this work, we consider robotic decision-making prob-
lems, specifically in robotic manipulation. For the sake of
exposition, let us consider prediction problems where an agent
is provided access to sensory observations o ∈ O (e.g. camera
observations) and must predict the most appropriate action
a ∈ A (e.g. where to move the robot arm for picking up an
object). The goal is to learn a predictive model fθ : O → ∆A
(where ∆A denotes the simplex over actions) that predicts a
distribution over actions such that the action a ∼ fθ(.|o) is
able to successfully accomplish a task when executed in the
environment. In this work, we will restrict our consideration
to supervised learning methods for learning fθ(.|o). We will
assume that a human expert provides a dataset of optimal data
D = {(o0, a0), (o1, a1), . . . , (oN , aN )}, and learn policies
with standard maximum likelihood techniques [12, 11]:

max
θ

E(o,a)∼D [log fθ(a|o)] (1)

This training process is limited to the training dataset D
that is actually collected by the human supervisor. Since this
might be quite limited, data augmentation methods apply
augmentation functions q : O × A × Z → O × A which
generate augmented data (o′, a′) = q(o, a, z); z ∼ p(z), where
different noise vectors z generate different augmentations. This
could include augmentations like Gaussian noise, cropping,
and color jitter amongst others [13, 14, 15, 16]. Given an
augmentation function, an augmented dataset can be generated
Daug = D ∪ {(o′, a′)i}Mi=1, where M ≫ N , and then used
for maximum likelihood training of fθ(a|o). Typically these
augmentation functions q are not learned but instead hand-
specified by an algorithm designer, with no real semantic
meaning. Instead, they impose invariances to the correspond-
ing disturbances such as color variations, rotations and so on
to help combat overfitting. Next, we describe how generative
models can be leveraged for semantic data augmentation.

B. Leveraging Generative Models for Data Augmentation

While data augmentation methods typically hand-define
augmentation functions (o′, a′) = q(o, a, z); z ∼ p(z), the
generated data (o′, a′) may not be particularly relevant to
the distribution of real-world data that might be encountered
during evaluation. In this case, it is not clear if generating



Fig. 3: GenAug provides the ability to augment the scene by changing the object texture (first row), changing the background (second
row), adding distractors (third row) and changing object categories (fourth row)

a large augmented dataset Daug will actually help learned
predictors f generalize in real-world settings. The key insight
in GenAug is that pretrained generative models are trained on
the distribution preal(o) of real images (including real scenes
that a robot might find itself in). This lends them the ability
to generate (or modify) the training set observations o in a
way that corresponds to the distribution of real-world scenes
instead of a heuristic approach such as described in [16]. We
will use this ability to perform targeted data augmentation for
improved generalization of the learned predictor fθ.

Let us formalize these generative models as
g : T × O × Z → O, mapping from a text description,
an image, and a noise vector to a modified image
o′ = g(o, t, z); z ∼ p(z). This includes commonly used
text-to-image inpainting models such as Make-A-Video
[17], DALL-E 2 [18], Stable Diffusion [19] and Imagen
[20]. It is important to note that since these generative
models are simply generating images, they are not able
to appropriately generate novel actions a, simply novel
observations o. This suggests that data generated by these
generative models will be able to impose semantic invariance
on the learned model fθ, i.e ensure that an equivalence group
{o, g(t1, o, z1), g(t2, o, z2), . . . , g(tM , o, zM )} all map to the
same action a. To leverage a pretrained text-image generative

model for semantic data augmentation, we can simply generate
a large set of semantically equivalent observation-action pairs
{(o, a), (g(t1, o, z1), a), (g(t2, o, z2), a), . . . , (g(tM , o, zM ), a)}
for every observation (o, a) ∈ D using the generative
model g. Note that the generative models cannot
simply generate arbitrary observations g(t, o, z), but
only observations that retain semantic equivalence, i.e
the ground truth actions for the generated augmentations
{o, g(t1, o, z1), g(t2, o, z2), . . . , g(tM , o, zM )} are all a. We
discuss how to actually instantiate this semantic equivalence
in the following section. GenAug allows us to generate a
large dataset of realistic data augmentations, that ensures
robustness to various realistic scenes that may be encountered
at test time, while still being able to perform the designated
task. Unlike typical data augmentation with the hand-
defined shifts described above, the generated augmented
observations {g(t1, o, z1), g(t2, o, z2), . . . , g(tM , o, zM )}
have high likelihood under the distribution of real images
preal(o) that a robot may encounter on deployment. This
ensures that the model generalizes to a wide variety of novel
scenes, making it significantly more practical to deploy in
real world scenarios, since it will be robust to changes in
objects, distractors, backgrounds and other characteristics
of an environment. It is important to note the limitations



of doing this type of augmentation - it will not be able to
generate novel actions a, but instead generate invariances
to realistic observational disturbances o′ = g(t, o, z) that
are generated by the text-image generative model. If not
performed carefully, these augmentations can also possibly
invalidate the original action a due to factors such as physical
inconsistencies or collisions. Next, we discuss a concrete
instantiation of this framework in the context of tabletop
robotic manipulation.

C. Instantiating GenAug for Tabletop Robotic Manipulation

We scope our discussion of GenAug for this work to tabletop
rearrangement tasks with a robot arm. This problem has a
non-trivial degree of complexity when performed from purely
visual input, especially in very cluttered and visually rich
domains, and constitutes a significant body of work in robot
learning [12, 11]. In particular, we consider tasks where the
observation o is a top-down view of the scene, and the action
is a spatial action map over the image, indicating where
to pick and place objects with a suction-activated gripper.
This builds on the transporter networks[12, 11] framework for
visual imitation learning. In this section, we describe how to
instantiate GenAug for semantic data augmentation for these
table-top manipulation problems.

The important question to answer is — how do
we use and prompt the generative model g to gen-
erate the appropriate equivalence set of semantically
equivalent augmented states for an observation o -
{o, g(t1, o, z1), g(t2, o, z2), . . . , g(tM , o, zM )}, such that the
same action a would apply across all of them? We leverage the
fact that for a tabletop manipulation task involving picking and
placing objects, the same actions are applicable across a wide
range of visual appearances including objects being grasped,
distractor objects, target receptacles, and backgrounds, as long
as the approximate position of the object of interest and the
target remain unchanged.

Given a pick-and-place task on a tabletop, we can perform
data augmentations on the visual appearance of 1) the object
being grasped or the target receptacle, 2) distractor objects 3)
the background or table. We will next describe how we can
use the text-to-image depth-guided image generation for gen-
erating GenAug’s augmentations and maximize visual diversity
while preserving semantic invariances for each of these types
of augmentations.

a {colorful} basket

Object Image Object Mask
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Generative Models
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+

Fig. 4: GenAug takes the RGB image and the object mask and uses
a depth-guided diffusion model to perform in-category data

augmentation.

1) Generating Diverse Grasping Objects and Target Recep-
tacles: Simply generating new scenes with an image gener-
ation model is unlikely to retain the semantic invariance that
we desire for in GenAug since the images will be generated

in an uncontrolled way with no regard for functionality. To
appropriately retain semantic invariance, we propose a more
controlled image generation scheme. In particular, we assume
access to masks M(o) for every observation o, labeling the
object of interest and the target receptacle. Note that this
is only needed for the small number of demonstrations that
are collected, not at inference time. To generate a diversity
of visuals, we consider augmentation both “in-category” and
“out-of-category”, as described below:

Text-to-Image 
Generative Models

a {metal} bucket
+

Fig. 5: GenAug randomly chooses a new object and place it at the
center of the original object to perform cross-category data

augmentation
In-Category Generation For in-category generation,

GenAug takes the provided mask M(o) of the object to grasp
(or the target receptacle) and the original RGB image, and ap-
plies a pretrained depth-guided text-to-image inpainting model
[21] to generate novel visual appearances for objects from the
same category. To encourage diverse visual appearances of the
object, we leverage the fact that the generative model is guided
by text and randomly generate novel text prompts involving
color (e.g. red, green, yellow, etc) and material (glass, marble,
wood, etc) to generate visually diverse objects. Since the object
masks remain the same, the resulting positions and shapes are
the same, thereby retaining semantic invariance.

Cross-Category Generation While in-category generation
provides a degree of visual diversity, it often falls short at
generating novel objects altogether and we must consider
replacing object categories altogether. When replacing the
category of the original object Oi (e.g. a basket) with a new
object (e.g. a bucket), one potential technique involves using
inpainting models to generate images directly over the masked
object (or target receptable). However, naively applying this
technique does not generate physically plausible images since
it does not appropriately account for geometric consistency
during image generation, which causes problems for robotic
manipulation.

To allow the generated images to show physical plausi-
bility and 3-D consistency, we leverage a dataset of object
meshes to assist the generative model’s generation process. In
particular, we first render randomly scaled and sized object
meshes from a different category without any visual detail
to get the perspective correct using the same camera pose,
followed by a process of visual generation with a depth-aware
generative model, as described for an in-category generation.
The object meshes are able to ensure 3-D consistency and
physical plausibility, while the generative model allows for
significant visual diversity. We note that since we are doing
top-down grasping with a suction gripper, even cross-category
generation ensures semantic invariance leaving the point of
interaction with the object largely unchanged while boosting
visual diversity.
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Fig. 6: GenAug places a distractor with collision check on the table
and uses a depth-guided model to generate realistic-looking objects

that are physically plausible.

2) Generating Distractors with Diverse Visual Appear-
ances: While Section II-C1 discusses how to augment the
appearance of the object to grasp and the target receptacle,
real-world scenarios are often cluttered scenes with several
irrelevant distractors. GenAug leverages the same techniques
described in Section II-C1 to generate scenes with a diversity
of visual distractors. Similar to cross-object augmentation, to
add a new distractor Di, we randomly choose a new object
mesh from a family of object assets and render it on the table,
followed by visual generation with a text-to-image generative
model as described in Section II-C1. Importantly since the
distractors must be generated in a way that retains semantic
invariance, they must not be in collision with the object to
grasp or the target receptacle. To ensure this, we compute
collisions by checking for overlapping bounding boxes (in
image space) between the generated distractor Di and masks
M(o) for the object to grasp and the target receptacle and
remove this distractor if it is in collision. This ensures semantic
invariance while being able to generate very cluttered and
diverse scenes, as shown in Figure 6.

Object Image Object Mask

Text-to-Image 
Generative Models

Augmented Image

+
a view inside a {kitchen}

Fig. 7: GenAug takes the original RGB image and the mask of the
Non-background regions to generate different styles of background

scenes such as kitchen, living room, or restaurant.

3) Generating Diverse Backgrounds: To augment not just
the appearances of objects, but also the background of the
scene while ensuring semantic invariance, we can simply
invert the process of generation in Section II-C1 and II-C2. In
particular, we can simply hold the object, target receptacle, and
distractor masks fixed while asking a text-guided generative
model to generate a diverse range of backgrounds, as shown
in Figure 7. Since the object masks are all held fixed, their
positions remain invariant, while ensuring that the visual
appearance of the background and table varies widely.

GenAug leverages these three forms of semantic augmen-
tation - 1) visual object generation, 2) distractor generation
and 3) background generation to augment robot learning data
with a large amount of semantically invariant, yet visually
diverse data. This data has a significant overlap with the types
of environments that might be encountered by a system in
the real world, and as we show empirically in Section IV,
is able to improve the robustness and generalization of robot
learning models significantly. Once data is generated with a
combination of these three forms of augmentation, we can

then simply run standard maximum likelihood techniques for
learning manipulation from the augmented dataset. To enable
GenAug to be an effective tool for robot learning, we next
describe the setup we used for real-world experiments.

III. SYSTEM DETAILS

A. Hardware Setup

Since GenAug is instantiated in this work for tabletop
manipulation, we use a robot arm equipped with a suction
gripper for all our hardware experiments. In particular, we
use the 6 DoF xArm5 with a vacuum gripper manipulator, and
control it directly in end-effector space. As shown in Figure
8, we attached the xArm to the end of a large wooden table
in a brightly lit room and set up the depth camera on a tripod
on one side of the table so that it has a clear view of the robot
and any objects on the table.

GenAug requires RGBD observations of the demonstration
scenes, masks for the object of interest and the target re-
ceptacles, as well as a calibrated camera pose. In our real-
world setup, we obtain RGBD images from an Intel RealSense
Camera (D435i) and manually label the object masks for the
collected demonstrations. While the input for GenAug is the
camera observations from the RealSense camera, the input
observation and the action for the predictive model fθ operate
on a top-down view, as described in [12].

In order to guide the robot to complete the tasks in the
cluttered environment, we largely build on the architecture and
training scheme of CLIPort [11], which combines the bene-
fits of language-conditioned policy learning with transporter
networks [12] for data-efficient imitation learning in tabletop
settings. GenAug replaces the imitation learning dataset in
CLIPort with a much larger augmented one, as described
in Section III-C. Implementation details can be found in
Appendix B.

B. Demonstration Collection

Fig. 8: An illustration of our robot experiment setup and data
labeling pipeline. A user clicks locations on a top-down view image,
to indicate pick (red) and place (green) locations in the robot space.

To collect demonstrations, we rely on humans to collect
action labels for various pick-and-place tasks. We first project
the front camera view to a 2D top-down image and height
map of the scene. The user can manually click locations on



the top-down images to indicate the pick and place locations.
These locations are then converted to end-effector positions
in full Cartesian space, which is then provided to a low-level
controller that uses inverse kinematics and position control. We
save the demonstration if the robot can successfully complete
the task. We collect 10 demonstrations per task and 10 tasks
in total, all in one single environment as shown as ”Demo
Environment” in Figure 9. Details of each task can be found
in Appendix A.

C. Augmentation Infrastructure

As described in Section III-A, GenAug requires object
meshes to generate cross-category augmentations and distrac-
tors. To perform this augmentation, we use 40 object meshes
from the GoogleScan dataset [22] and Free3D [23]. Of these,
we choose 11 objects to augment the original object of interest
and 12 objects to augment the target receptacle. Any of the
remaining 38 objects are then randomly chosen as distractors.
During augmentation, we randomly select which components
(table, object texture, shape, distractors) to change to generate
the augmented training dataset. For each demonstration, we
apply GenAug 100 times resulting in 1000 augmented envi-
ronments per task. The augmented data is then passed into
Cliport [11] to learn a language-conditioned policy.

IV. EXPERIMENT

We evaluate the effectiveness of GenAug in both the real
world and simulation. Our goal is to: (1) demonstrate GenAug
is practical and effective for real-world robot learning, (2)
compare GenAug with other baselines in end-to-end vision
manipulation tasks, (3) investigate different design choices in
GenAug. We will first show our results in a real-world setting,
followed by an in-depth baseline study in simulation.

A. Real-world Experiment

1) Design of demo and test environment: To show the
generalization capability of a model trained with GenAug,
we collect demonstrations of 10 tasks in one single envi-
ronment and create different styles of test environments such
as ”Playground”, ”Study Desk”, ”Kitchen Island”, ”Garage”
and ”Bathroom” as shown in Figure 9. For evaluation, we
randomly add and rearrange objects from each test style and
create unseen environments. Please see Appendix A for further
details.

2) Result: We train CLIPort with augmented RGBD and
text prompts for tasks collected in the real world and evaluate
in various unseen environments. In particular, for each task,
we randomly choose an environment style from Figure 9,
randomly rearrange and add objects on the table to create
10 unseen environments, 10 scenes with unseen objects to
pick, and 10 scenes with unseen objects to place. We observe
that GenAug shows a significant generalization to unseen
environments with an average of 85% success rate. On more
challenging tasks of unseen objects to pick or place, GenAug
is able to achieve 45% and 52% success rates, which are
expected to improve with more demonstrations and more

Fig. 9: Demonstration environment and examples of test
environments used in our robot experiments.

object meshes for augmentation. Results for each task can be
found in Table I.

3) Baselines for real-world experiments: To further show
the effectiveness of GenAug, we compare our approach with
CLIPort trained without GenAug, shown in Table II. To ensure
both methods are tested with the same input observations,
we evaluate the success rate by comparing the predicted pick
and place affordances with ground truth locations. For each
task, we evaluate both methods on 5 unseen environments,
5 unseen objects to pick, and 5 unseen objects to place. By
averaging the success rates from Table II, we observe GenAug
provides a notable improvement for zero-shot generalization.
In particular, GenAug achieves 80% success rate on unseen
environments compared to 38% without GenAug. On unseen
objects to place, GenAug achieves 54% success rate compared
to 8% without. Finally, GenAug achieves 46% success rate on
unseen objects to pick compared to 10% without. We visualize
and compare the differences in their predicted affordances in
Appendix A.

B. Simulation

To further study in depth the effectiveness of GenAug,
we conduct large-scale experiments with other baselines in
simulation. In particular, we organize baseline methods as (1)
in-domain augmentation methods and (2) learning from out-
of-domain priors, as described below.

1) In-domain augmentation methods: (1) ”No Augmenta-
tion” does not use any data augmentation techniques. (2) ”Spa-
tial Augmentation” randomly transforms the cropped object
image features to learn rotation and translation equivariance, as
introduced in TransporterNet [12]. (3)”Random Copy Paste”
randomly queries objects and their segmented images from
LVIS dataset [24], and places them in the original scene. This
includes adding distractors around the pick or place objects
or replacing them. Further visualization of this approach can
be found in Appendix C. (4)”Random Background” does not
modify the pick or place objects but replaces the table and
background with images randomly selected from LVIS dataset.
(5)”Random Distractors” randomly selects segmented images
from LVIS dataset as distractors.

2) Learning from out-of-domain priors: In addition, we
investigate whether learning from a pretrained out-of-domain



TABLE I: Real-World Robot Experiments tested on 10 tasks. On average, GenAug achieves 85% success rate on unseen environment, 52%
on unseen object to place, and 45% on unseen object to pick.

bowl to
Coaster

box to
basket

bowl to
bowl

plate
to tray

box to
tray

plate
to box

plate to
plate

coaster
to salt

coaster
to pan

box to
box Average

Unseen Env 0.8 0.9 1 1 1 0.9 0.9 1 0.5 0.5 0.85
Unseen Place 0.7 1 0.5 0.3 0.6 0.3 0.4 0.4 0.4 0.6 0.52
Unseen Pick 0.2 0.6 0.5 0.6 0.7 0.3 0.3 0.7 0 0.6 0.45

TABLE II: Evaluating with and without GenAug on unseen scenes collected in the real world across 10 tasks. On average, GenAug shows
notable improvement in unseen environments and objects.

box to tray box to basket coaster to dust pan plate to tray bowl to coaster
env pick place env pick place env pick place env pick place env pick place

No GenAug 0.8 0 0 0.2 0.2 0 0.8 0.4 0.4 0 0 0 0 0 0
GenAug 1 0.6 1 0.6 0.6 0.8 1 0.4 0.4 1 0.4 0.2 0.6 0.6 0.6

plate to plate box to box plate to box coaster to salt bowl to bowl Average
env pick place env pick place env pick place env pick place env pick place env pick place

No GenAug 0 0 0.2 0.2 0 0 0.6 0.2 0 0.2 0 0.2 1 0.2 0 0.38 0.10 0.08
GenAug 1 0 0.6 0.8 0.4 0.4 1 0.8 0 1 0.4 0.4 1 0.4 1 0.80 0.46 0.54

Unseen Environments Unseen pick/place objects

Put the green bowl
 on the coaster

Put the coaster
 on the salt container

Put the red bowl
 on the blue bowl

Put the mouse box
 in the basket

Put the green bowl
 in the green tray

Put the plate
 on the salt container

Put the red bowl
 on the white napkin

Demo 
Environments

Put the yellow box
 in the basket

Put the green bowl
 on the coaster

Put the coaster
 on the salt container

Put the red bowl
 on the blue bowl

Put the mouse box
 in the basket

Fig. 10: Examples of real-world experiments. Given demonstrations in one simple environment, GenAug enables the robot to generalize
unseen environments and objects.

visual representation can improve the zero-shot capability on
challenging unseen environments. In particular, we initialize
the network with pre-trained R3M [25] weights and finetune
it on our dataset.

We use baselines described above with two imitation learn-
ing methods: TransportNet [12] and CLIPort [11]. Since all the
baselines cannot update the depth of the augmented images,
we only use RGB images instead of RGBD used in the
original TransporterNet and CLIPort. For each baseline, we
train 5 tasks in simulation and report their average success
rate in Table III. We observe GenAug notably outperforms
other approaches in most of the tasks. One interesting ob-
servation is that randomly copying and pasting segmented
images or replacing the background images can provide
reasonable robustness in unseen environments but are not
able to achieve similar performance as GenAug at unseen
objects. This indicates generating physically plausible scenes
that are semantically meaningful is important. Details of tasks
in simulation experiments can be found in Appendix B.

C. Ablations

In this section, we aim to study different design choices
in GenAug. In particular, our goal is to investigate (1) how
the number of augmentations affects the generalization per-
formance to unseen environments, (2) when GenAug will fail
in real-world unseen environments. We further justify the
choice of using depth-guided models and compare this with
in-painting models in Appendix A.

1) Impact of the number of augmentations: Given the task
”put the brown plate in the brown box” in simulation, we apply
GenAug 0, 10, 50 and 100 times and compare their success rate
on 100 scenes of ”unseen environment”, 100 scenes of ”unseen
object to pick” and 100 scenes of ”unseen object to place”. As
shown in Figure 11, the performance improves as the number
of augmentations increases, which indicates the importance of
using augmentation as a way to robustify the generalization
capability.

2) Failure cases: In addition, we also analyze failure cases
and visualize them in Appendix A. We observe failure cases



TABLE III: Baseline experiments evaluated in simulation. We compare the average performance of GenAug with other methods on 5
pick-and-place tasks and observe GenAug provides a notable improvement at unseen environments and objects.

Unseen Environment Unseen to place Unseen to pick
TransporterNet CLIPort TransporterNet CLIPort TransporterNet CLIPort

Method 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
No Augmentation 4.8 8.1 9.8 11.7 14.3 14.4 15.1 30.4 52.6 39.4 40.8 44.6 8.5 34.6 54.9 46.0 67.0 64.1

Spatial Augmentation 11.0 12.2 8.3 23.3 16.1 26.7 44.3 50.5 65.3 26.1 36.9 50.7 53.6 57.2 66.4 38.2 56.9 80.3
Random Copy Paste 53.1 67.0 73.5 38.2 39.8 64.3 55.1 65.4 84.9 39.7 55.9 73.9 48.3 67.0 76.1 52.5 65.0 81.0
Random Background 53.0 75.3 79.1 33.6 62.2 55.4 24.5 22.1 35.5 7.6 9.9 17.9 44.4 40.7 35.9 19.2 52.7 72.3
Random Distractors 10.1 9.7 13.7 15.4 36.2 35.8 28.2 60.7 66.0 27.5 51.8 54.3 42.5 47.4 62.3 31.0 64.0 69.1

R3M Finetune 4.1 6.0 4.8 22.2 16.8 20.9 43.5 40.6 41.9 30.9 43.5 57.5 45.6 45.7 41.1 46.7 50.7 72.7
GenAug 43.9 58.5 77.6 46.6 57.0 71.9 69.1 76.5 83.6 62.6 83.9 86.3 75.3 75.6 87.2 61.5 77.7 83.1

GenAug (w Depth) 47.8 83.8 91.2 47.2 60.9 73.4 39.9 67.2 74.2 64.8 73.8 84.6 71.2 83.4 87.1 56.2 67.3 81.5

Fig. 11: Analysis of the number of augmentation on unseen scenes.

usually happen when the object and background share similar
colors or the table is cluttered with too many objects.

V. RELATED WORK

a) Image space Augmentation: In the absence of diverse
data, a promising direction is finding ways to inject structure
directly into learned models for widespread generalization.
The most widely used technique is various forms of data
augmentation [26], such as cropping, shifting, noise injection
and rotation. These methods have been used in many robot
learning approaches and provide a significant improvement in
data efficiency [13, 14, 15, 27]. For example, [28] investi-
gate different augmentation modes in Meta-learning settings.
In addition, several methods attempt to enforce geometric
invariance through architectural innovations such as [29]
and [30]. While these methods can provide a local notion
of robustness and invariance to perceptual noise, they do not
provide generalization to novel object shapes or scenes. More
recently out-of-domain models have started making their way
into robot learning. For example - [31] uses large text-image
models like Dall-e [18] to generate favorable image goals for
robots, and CACTI [32] shows adding distractor objects using
in-painting models [19] improves multi-task policies. These
approaches while helpful in task specification, provide limited
benefit for robots to generalize to entirely unseen situations. In
contrast, GenAug induces semantic changes to the observations
thereby helping acquire behavior invariance to new scenes.

b) Leveraging Simulation Data: A natural solution to
this problem is to leverage simulation data [33]. However,
while this method is efficient at generating a large quantity of
data, it can be challenging to create diverse content (objects
meshes, physics, layouts, and visual appearances), and often
the resulting simulations exhibit a significant gap from reality.

To address this issue, domain randomization [34, 35] varies
multiple simulation parameters in order to boost the effec-
tiveness of trained policies in the real world. Randomization
of lighting and camera parameters during training can allow
a policy to be invariant to the effects of lighting and visual
perturbations in the real world. Physics parameters of the
scene can also be randomized to transfer policies trained in
simulation to the real world [36]. While effective, challenges
in creating a simulation with visual and physical realism for
every task and behavior severely restrict the applicability of
these methods to isolated known tasks and limited diversity.
Furthermore, they require the user to define augmentation
parameters and their ranges which can be very nontrivial for
complex tasks [37, 38].

VI. LIMITATIONS

Action Assumption: Despite showing promising visual
diversity, GenAug does not augment action labels and rea-
son about physics parameters such as material, friction, or
deformation, thus it assumes the same action still works on
the augmented scenes. For the augmented cluttered scenes,
GenAug assumes the same action trajectory is not colliding
with the augmented objects.

Augmentation and Speed: GenAug cannot guarantee
visual consistency for frame augmentation in a video. GenAug
usually takes about 30 seconds to complete all the augmen-
tations for one scene, which might not be practical for some
robot learning approaches such as on-policy RL.

VII. CONCLUSION

We present GenAug, a novel system for augmenting real-
world robot data. GenAug leverages a data augmentation
approach that bootstraps a small number of human demon-
strations into a large dataset with diverse and novel objects.
We demonstrate that GenAug is able to train a robot that
generalizes to entirely unseen environments and objects, with
40% improvement over training without GenAug. For future
work, we hope to investigate GenAug in other domains of
robot learning such as Behavior Cloning and Reinforcement
learning, and extend our table-top tasks into more challenging
manipulation problems. Moreover, investigating whether a
combination of language models and vision-language models
can yield impressive scene generations would be a promising
direction in the future.
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APPENDIX A
REAL-WORLD EXPERIMENTS

A. Real-World Tasks

We collect 10 pick-and-place tasks in the real world in one
single environment, as shown in Figure 15. All tasks are col-
lected with only 10 demonstrations in one single environment.
For each demonstration, we randomly place objects within the
work zone of the table. To augment the demonstration, we
apply GenAug 100 times per demonstration, resulting in 1000
augmented demonstrations for each task.

B. Baselines in the real-world

We use the ground truth of pick and place locations to
evaluate the performance of affordance prediction trained with
GenAug and without, as shown in Figure 12

Fig. 12: Comparison between training with and without GenAug by
comparing pick and place affordances predicted by two models.

GenAug significantly improves generalization over unseen
environments and objects compared to training without GenAug.
pick affordances are highlighted in red, and place affordances are

highlighted in green. Ground truth locations are represented in
green boxes

C. Failure modes

Fig. 13: Failure cases observed in the real-world setting

We observe failure cases usually occur when the background
color is similar to the pick or place object. Or one of a
few distractors has a very bright color or similar color. We
expect this can be improved by increasing the number of
augmentations in the training set, such that the training data
can have higher coverage of possible combinations of the
scenes.

D. depth-guided diffusion model vs inpainting

We further justify the choice of using a depth-guided
diffusion model, as shown in Figure 14. Directly using the
inpainting model often does not result in reasonable visual
augmentation. Instead, GenAug uses a depth-guided diffusion
model together with predefined 3D meshes, resulting in real-
istic new objects and scenes.

Fig. 14: Comparison between depth-guided diffusion model with
access to predefined 3D meshes and inpainting models.

E. Real-World Unseen Environments

In this section, we visualize examples of unseen test scenes
that are used for evaluation for all 10 tasks, as shown in
Figure 23. For each task, we evaluate GenAug performance
on 10 unseen environments, 10 unseen objects to place and
10 unseen objects to pick.

F. Real-World Evaluation

We visualize the demonstration environments collected in
the real world as well as their corresponding unseen test
environments and objects. Please see our website for better
visualization https://genaug.github.io

We visualize pick and place affordances predicted by CLI-
Port trained with GenAug in Figure 22

APPENDIX B
SIMULATION EXPERIMENTS

A. Table-top Pick and Place Tasks

We perform a large-scale evaluation in simulation. In par-
ticular, we collect 1, 10, 100 demonstrations for 5 tasks:
”Pack the brown round plate”, ”Pack the straw hat”, ”Pack
the green and white striped towel”, ”Pack the grey soccer
shoe” and ”Pack the porcelain cup”, and report the average
success rate across all tasks. Following evaluation metrics
defined in CLIPort [11] and TransporterNet [12], the success
rate is defined as the total volume of the pick object inside the
place object, divided by the total volume of the pick object in
the scene.

https://genaug.github.io


Fig. 15: Tasks used in the real-world experiments.

B. Behavior Cloning

In addition, we perform another experiment to show
GenAug can apply to a different task: ”close the top drawer”
with a fetch robot. In particular, we collected 100 demonstra-
tions and trained a CNN-MLP behavior cloning policy fine-
tuned with R3M [25] embeddings. The input for the network
is the RGB observation and the output is a 8-dim action vector.
We tested on 100 unseen backgrounds using iGibson [39]
rooms and observed GenAug is able to achieve 60% success
rate while policy without Genaug is only 1%, leading to almost
60% improvement. Please see the visualizations on the website
https://genaug.github.io

C. Augmented Dataset in Simulation

Given demonstrations from a task collected in simulation,
we apply GenAug 100 times for each demonstration. We
visualize examples of the augmented dataset in Figure 16.

Fig. 16: Augmented dataset for demonstrations collected in
simulation.

We also observe diverse visual augmentation on the same
object template, as shown in Figure 17. Given different text
prompts, GenAug is able to generate different and realistic
textures.

APPENDIX C
VISUALIZATION OF BASELINE DATA AUGMENTATION

We visualize some examples of randomly copying and
pasting segmented images from LVIS dataset [24], as shown
in Figure 18.

Fig. 17: Diversity of the appearance of the generated objects

Fig. 18: Examples of random copy and paste baseline. We extracted
queried segmented images from LVIS dataset and paste them

directly on the original demonstration image. This usually leads to
low-quality and incomplete image generation.

We observe this baseline often results in unrealistic, low-
quality image generation, which is not usually matching ob-
servations during test time in both real-world and simulation.

APPENDIX D
VISUALIZATIONS FOR REAL-WORLD EXPERIMENTS

In this section, we visualize more examples of applying
GenAug on demonstrations collected in the real world, as
shown in Figure 19. We train CLIPort [11] with such a dataset
and evaluate unseen environments and objects for 10 tasks. We

https://genaug.github.io


Fig. 19: Examples of augmented dataset given observations of
demonstrations collected in a simple environment.

Fig. 20: Pick and Place affordance predicted by CLIPort that
trained on GenAug on unseen environments and objects in

simulation and the real world.

further show affordance predictions in Figure 22 and Figure
20.

APPENDIX E
ASSUMPTIONS ON OBJECT MASKS

We found applying diffusion models on zoom-in image
crops usually results in better results, especially for small ob-
jects. Note that with the advances in open-VLM, object masks
can be automatically obtained from such as SAM [40], shown
in Fig.21. In addition, GenAug uses object masks to update
correct depth and provide more controllable augmentations
such as only changing the object texture. However, GenAug
is still able to do global augmentation without masks if depth
update is not required.

Fig. 21: Prediction masks by the Segment Anything Model[40]

APPENDIX F
FUTURE WORK

In the future, we are interested in extending GenAug to
other grippers and tasks that are beyond simple pick-and-
place tasks. In particular, it would be interesting to investigate
if we can train a diffusion model that can augment robot,
action and scenes together. We are also interested in applying
video diffusion models such as dreamix [41] to ensure visual
smoothness for tasks that requires temporal consistency. In our
current setup, we only have one front camera mounted on a
tripod. For future work, we hope to add a wrist camera on the
robot. This will give us flexibility to control the camera and
find the object. In addition, combining GenAug with the power
of common sense reasoning from LLM such as chatGPT to
augment actions with reasoning on object physics would be
interesting.



Fig. 22: Prediction of pick and place locations on various tasks with GenAug



Fig. 23: Unseen test set in the real-world experiments.
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