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Abstract—We describe a system for deep reinforcement learn-
ing of robotic manipulation skills applied to a large-scale real-
world task: sorting recyclables and trash in office buildings.
Real-world deployment of deep RL policies requires not only
effective training algorithms, but the ability to bootstrap real-
world training and enable broad generalization. To this end,
our system combines scalable deep RL from real-world data
with bootstrapping from training in simulation, and incorporates
auxiliary inputs from existing computer vision systems as a
way to boost generalization to novel objects, while retaining
the benefits of end-to-end training. We analyze the tradeoffs of
different design decisions in our system, and present a large-scale
empirical validation that includes training on real-world data
gathered over the course of 24 months of experimentation, across
a fleet of 23 robots in three office buildings, with a total training
set of 9527 hours of robotic experience. Our final validation
also consists of 4800 evaluation trials across 240 waste station
configurations, in order to evaluate in detail the impact of the
design decisions in our system, the scaling effects of including
more real-world data, and the performance of the method on
novel objects. The projects website and videos can be found at
rl-at-scale.github.io.

I. INTRODUCTION

Real-world robotic manipulation problems require the inte-
gration of a range of components, including visual perception,
planning, and control. The design and integration of these
components, and the abstractions needed to make them work
together, often present a challenge for real-world deployment
of robotic systems in open-world settings. End-to-end learning
offers an appealing alternative: by optimizing the performance
of a robotic learning system directly on the final objective
of the task, and learning this task directly from visual ob-
servations, we can in principle sidestep these challenges and
devise robotic manipulation strategies that are fully optimized
for the real-world task that they are intended to solve. How-
ever, while general-purpose reinforcement learning algorithms
can in principle provide such functionality, in practice they
suffer from their own set of challenges, including difficulties
associated with gathering suitable datasets, generalization, and
overall system design. While a broad range of robotic learning
methods have been proposed, it remains unclear how to devise
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Fig. 1: Overview of our data flywheels that we operated over
24 months: We bootstrap the initial policy from scripts in simulation
and on real robots (grey), re-train the policy in simulation as needed
(green), deploy the latest policy weekly to a local setup of 20
robots sorting 20 waste stations on random waste-scenes and scenes
encountered in the deployment site (blue), and deploy to 23 robots
operating in 3 different buildings sorting 30 waste stations (red).

an end-to-end learning system that can scale to realistic real-
world tasks. In this paper, we approach this system design
problem in the context of a complex real-world problem that
requires effective and generalizable manipulation strategies:
sorting trash and recyclables in office building waste bins.
This task naturally provides a broad range of objects for goal-
directed manipulation, and serves as a lens to examine how we
can design effective and generalizable robotic reinforcement
learning pipelines for the real world. The central question in
this paper is: how can the various tools in the deep reinforce-
ment learning toolbox be put together to address such a com-
plex and diverse real-world task? Prior works have proposed
a variety of tools of this sort, including the use of simulation
to overcome the high sample complexity requirements of
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reinforcement learning from scratch [37) 54], the use of prior
data [46] 21 291, off-policy or offline reinforcement learning
strategies [27], large-scale collective learning involving fleets
of multiple robots [[17, 18], and the use of priors and inductive
biases [35} 43, [13]. However, each of these approaches has
their own strengths and weaknesses. Simulated training is
problematic if we expect to encounter a broad range of real-
world situations, as unless we can characterize this range of
settings in advance, we might fail to generalize. Collective
learning from real-world data gathered by multiple deployed
robots provides a very powerful method for gathering data
that is representative of what the robot actually encounters
in the real-world, but training from scratch in the real world
presents a major exploration challenge, and relying entirely
on robot-collected data can make generalization challenging.
Incorporating prior knowledge from other sources, such as
computer vision datasets or data from the Internet, can provide
a major boost to generalization, but it remains unclear how to
most effectively integrate it into an end-to-end trained system.
Our final system, which we call RL@Scale or RLS in short,
makes use of all three components: real-world training is
bootstrapped using simulation, collective learning by a fleet
of 20 robots is used to collect representative experience in
the real world, and a visual masking approach is further
used to incorporate prior knowledge about object classes
and appearance from computer vision datasets to additionally
boost generalization to new objects. Our extensive empirical
investigation shows the importance of each component, and
provides a large-scale case study of how end-to-end deep RL
can be deployed for a practical and relevant real-world task at
scale.

Our evaluation requires the robot to sort trash and recy-
clables: the robot locates bins with recyclables, approaches
them, and sorts their content by type to minimize contami-
nation (i.e., moving all compostables, recyclable plastic, and
trash into their respective containers). This task requires gen-
eralization to a wide variety of possible objects, as well as
the ability to pick up and identify those objects so as to place
them in the right container. The objects that the robot might
encounter will include difficult-to-simulate properties, such as
in the case deformable chip bags, or might be particularly hard
to grasp, such as in the case of large boxes. They will also
vary over time and across locations. Thus, this task presents
a particularly challenging manipulation scenario, but also one
that provides a great testbed for scalable robotic learning.

The contribution of our work is a system for real-world
end-to-end deep reinforcement learning, RLS, for a complex
robotic manipulation task. While our policies are trained
end-to-end, they incorporate additional knowledge via object
masks trained on computer vision datasets, and are boot-
strapped from simulation to overcome the exploration chal-
lenge. We show that these decisions lead to excellent perfor-
mance in the real world. While the individual components of
this system have been explored in various prior works, we
focus on their integration into a complete robotic learning
system at scale: we believe that our method is the first to

be applied at such a large scale to a realistic real-world task,
and therefore serves as a valuable case study to understand
the considerations and tradeoffs in the design of end-to-
end robotic learning systems. We present extensive ablations
and comparisons to study the individual components of our
system, and show that our best-performing design can sort
84.35% of misplaced objects on challenging waste scenarios.
We demonstrate dexterous robotic manipulation of waste that
emerge from the end-to-end formulation of our policy. When
deployed at office buildings, our fleet of mobile manipulators
further reduce contamination of waste stations filled by office
workers unrelated to the project as part of their day-to-day by
up to 53%.

II. RELATED WORK

Advances in reinforcement learning algorithms [1, 55|
2] have enabled machine learning systems that can play
games [34} 45]), control robots [36, 17,137, 15, [18]], and perform
a variety of tasks from chip design to drug discovery [33 39].
However, real-world deployment of RL systems, particularly
in robotics, presents a number of major challenges [8].

First, deep RL algorithms typically require a large number
of samples, especially when learning large, image-based poli-
cies [34]]. Because of this, a common choice is to employ sim-
ulation for training [42] 32, [14} [10]. While policies trained in
simulation can work well in relatively constrained real-world
settings in a laboratory [32, 137, |6], simulated training alone
can be insufficient for robotic systems that must generalize to a
wide variety of real-world environments, where the range and
variability of objects and settings might exceed the variability
seen in the simulator. In our proposed robotic RL system, we
employ simulated data generation, but combine it with real-
world data that is collected autonomously through a variety
of policy bootstrapping approaches, and find that this hybrid
design allows our system to generalize well in the real world.

Second, RL agents that learn complex tasks from scratch
must typically spend considerable time on exploration to
discover effective behaviors [3 38, |49], particularly with
simple sparse reward functions that merely indicate success
or failure at the task and provide little guidance for how
to improve before a successful behavior is discovered. To
avoid this challenge, many prior works have explored imitation
learning as an alternative to RL [53 31} 44} |15], or as a way to
supplement RL [50, 140, [29]] in robotics. In our system, we also
sidestep exploration, but we find that we can do this effectively
with a combination of relatively simple scripted exploration
policies, bootstrapping from simulation, and the use of multi-
task training to learn simple tasks as a stepping stone to more
complex ones. While prior works have studied each of these
methods individually [17} 140, 47]], our system combines all of
these components into a complete robotic manipulation system
that tackles a complex real-world task.

Third, RL-trained policies, like any machine learning model,
are vulnerable to distributional shift: when the conditions
at deployment-time do not match the conditions seen in
training, a learned model will underperform. RL provides an



appealing solution to this problem: as the agent experiences
new domains, it can simply keep training and continue to
adapt [16]. While this observation is not new, we show in our
work how a complete RL-based robotic manipulation system
can benefit from this capability and get better as it observes
more real-world data.

Our work is related to a number of large-scale learning-
enabled robotic manipulation systems that have been proposed
in prior work. Many of these systems have been shown to
learn behaviors that are physically complex [52}[37]] or exhibit
good generalization [17, 40, 5, 30, [18 29, 26|, but their
evaluations are typically confined to laboratory settings, or
else to tasks such as locomotion or navigation that do not
require manipulating a wide variety of objects [[L1} 28, [20]]. In
contrast, our aim is to develop and evaluate a system that can
be deployed at scale on a realistic object manipulation task,
with a real-world deployment and a quantitative evaluation that
evaluates on scenes replicated from this deployment.

III. PRELIMINARIES

Let M = (S, A, P,R,po,7y) define an MDP, where S
and A are state and action spaces, P is a state-transition
probability function, R is a reward function, py is an initial
state distribution, ~ is a discount factor. We use a sparse
reward function that assigns a reward of 1.0 if the task was
accomplished successfully at the end of the episode, and 0.0
otherwise. The goal of reinforcement learning is to find a
policy m(a|s) that maximizes the expected discounted reward
over trajectories induced by the policy, E.[R(7)], where
So ~ Po,St+1 ~ P(sty1lst,a:) and a; ~ m(az|s;).

To train our end-to-end sorting policy, we use PI-QT-
Opt [26], a combination of QT-Opt [17] and a predictive
information representation auxiliary [23} 25} 126].

QT-Opt is a value-based RL method that learns a Q-function
by minimizing the Bellman error, and obtains the policy by
running a stochastic optimization on the learned Q-function
using cross-entropy method (CEM) [41l], a zeroth-order
optimizer that finds argmax,, Qo(s:,a;) for the learned
Q-function Qy(s¢, a;). Importantly, for CEM to be effective
in this setting, the actions generated by the RL agent should
be in distribution of the actions sampled by the CEM in
the Bellman update equation described below. To learn the
Q-function, QT-Opt optimizes the following objective: L(6) =
E(s,,,a,,,stJrl)Np(st,at,sHl) [D(Qé‘ (st,ar), Qr(se, a, St+1))] )
where Qr(s¢, ar,Si4+1) = 7(s¢,a¢) + ymaxay Qo(Si4+1,a’) is
a target Q-value, +y is a discount factor, and D is a divergence
metric. Since the cumulative reward for each episode is
always between 0.0 and 1.0, the Q-values can be treated
as probabilities (formally, denoting the probability that the
robot will succeed at the task), and thus we can use the
cross-entropy loss for D. The target value max, Qg(S¢11,a’)
is computed by running the same CEM optimization as we
use for the policy action selection. In this work, we use the
version of QT-Opt that includes predictive information called
PI-QT-Opt [26]. We provide the preliminaries of predictive
information in the appendix.

IV. TASK AND SYSTEM OVERVIEW

Our aim is to develop a deep RL system that can be applied
to a real-world waste sorting task, exhibits robust performance
and good generalization, and can integrate both autonomously
collected real-world experience and bootstrapping from sim-
ulation and computer vision systems. In this section, we first
describe the waste sorting task we tackle, and then provide an
overview of the different components of our system.

A. Waste Sorting Task

We situate our deep RL system in the context of a waste
sorting task, which requires separating trash, compostables,
and recyclables in waste bins. Since office buildings are
created to serve a large number of people, they usually have
multiple trash stations distributed throughout different floors,
resulting in broad range of environments and potential trash
sorting scenarios. Each sorting station contains three bins that
correspond to recyclables, compost and landfill. Office workers
unrelated to the project use these stations in their regular day-
to-day routines. Usually, they make mistakes and misplace
their trash into incorrect bins resulting in bin contamination.
Our goal is to deploy an autonomous robot to reduce the
resulting contamination (i.e., move all the compostables, re-
cyclables, and landfill waste items into their respective bins).
We present the visual depiction of the task in Fig. 2] This task
presents a number of challenges for a robotic manipulation
system: (i) the robots must be able to sort waste at the
stations in many different locations; (ii) the manipulation
controllers must generalize effectively to previously unseen
objects, since people will deposit new and unexpected items
into the bins; (iii) many of the objects that are encountered
are especially difficult to manipulate, including deformable or
complex shaped objects. Examples are shown in Fig.

We assign a reward to an episode when the robot picks
up a misplaced object, moves it to the correct bin, and
terminates the episode. After termination, we open the robot
gripper and observe which bin the object landed in. This
reward structure results in an additional partial observability
challenge, since the reward depends on where the object was
grasped from (i.e., the robot can’t simply “cheat” by picking
up an already correctly sorted object from its bin and putting it
back down), which motivates our use of recurrent architectures
with memory as discussed in Sec [V]

Iterations of our system, RLS, were deployed in three
office buildings with 30 waste stations over the course of
two years at various points in its development, resulting in
3803 autonomous station visits by the robots. Although the
particular design of the system evolved over this time, this
experience combined with more structured data collected in
controlled settings, as well as simulated data, were included
in the components of our final design, and the final eval-
uation scenarios used in our experiments were modeled on
the challenges observed during deployment. Fig. [6] shows a
small subset of scenarios encountered by the robot during
deployment.
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Fig. 2: The experimental platform. left: Our mobile manipulator with
a 7 degree-of-freedom (DoF) arm and a parallel jaw gripper.

right: The sorting task demonstrated by an example: A compostable
food container (red box) is misplaced in the landfill tray. Once the
robot arrives at its initial state in front of the waste station with
the arm above the station, it executes a trained or scripted policy that
identifies misplaced objects and moves them to the correct bin. In the
case of this example, the robot would receive a reward for moving
the food container into the compost tray (green box).

B. Robotic System Overview

We use a fleet of mobile manipulators with 7-degrees-of-
freedom arms and parallel jaw grippers as shown in Fig. 2] For
our problem, the state observations S for the robot corresponds
to a 640 x 512 x 3 RGB image observation from the robot’s
camera as well as a few proprioceptive signals that include the
current tool height as well as the target tool pose and gripper
aperture that the robot is moving towards. The action space A
controls the whole body and consists of a target tool position
and orientation and gripper aperture as well as target pose of
the mobile base. Specifically, our action space consists of 10
dimensions: 3D position and orientation of the end-effector,
gripper closedness, x and y position and yaw of the base and
an added dimension for whether to terminate, each specified
in the frame defined by the robot base and as deltas to the
robot’s current pose. Our model chooses either an arm or a
base motion at 1Hz or it chooses to terminate an episode. The
commanded arm targets are mapped to straight-line Cartesian
trajectories. Base targets are converted to a trajectory of two
half-circles connecting the current and target base poses.

V. RL@SCALE

Our method, RLS, incorporates end-to-end deep RL with
data from simulation, data from the real world, and com-
puter vision components to address the waste sorting task
described in the previous section. While the basic deep RL
methodology underlying our approach largely follows prior
work [17, 26], our full robotic learning system must address
a number of important challenges that arise both with real-
world application of deep RL in general, and with the waste
sorting task in particular. First, deep RL requires overcom-
ing exploration challenges that might necessitate impractical
amounts of data collection when learning from scratch directly
in the real world. We therefore employ several bootstrapping
strategies to prime the learning process: we employ scripted
policies that attain a low but non-zero success rate at object
grasping (not necessarily the full sorting task) to collect initial

object interaction data, together with simulated data collection.
We also employ a multi-task curriculum learning strategy to
bootstrap the complex sorting task with simpler tasks, such
as grasping indiscriminately or grasping objects of specific
types. This allows us to collect data both in simulation and
in the real world, which we can incorporate into an offline
RL method based on PI-QT-Opt [17, 26]. To address the
partial observability of this manipulation task, we use recurrent
models with memory (LSTMs) to represent the value function.
Finally, since the waste sorting task requires broad generaliza-
tion to new objects and semantic determination of the type of
waste that each object represents (recyclable, compostable, or
landfill), we additionally incorporate inputs from a computer
vision system based on ShapeMask [22] to additionally boost
the generalizability of our method, while retaining the benefits
of end-to-end policy learning. We describe the bootstrapping
procedure, data collection process, RL approach, and the
vision system integrating in the subsequent sections.

A. Bootstrapping

In order to bootstrap our real-world RLS policy, we use
three different and complementary sources of data: scripted
policies, simulation, and multi-task RL objectives. We start
this process by employing scripted policies in simulation and
in the real world. The data collected from these is used to
train RetinaGAN [10], which transforms simulated images to
look more realistic. Equipped with this sim-to-real transfer
tool we deploy policies learned in simulation in the real-
world and run them side by side with scripted real-world
policies. Since both of these policies encounter only occasional
full-sort successes, we further employ multi-objective RL to
enable faster bootstrapping. Below we describe these different
components in more detail.

Scripted policy. We start by implementing a simple scripted
indiscriminate grasping policy (i.e., a policy that lifts any
object) in simulation and in the real world. In each episode,
the scripted policy would randomly detect an object using an
off-the-shelf object detector (or in simulation ground-truth),
plan the grasp pose, and generate the trajectories to reach the
object. Even though the initial success rate of this policy is
around 20%, it is enough to bootstrap simulation and start
collecting data on the real robots. We start collecting data in
a laboratory environment that we refer as robot classrooms,
where we deploy the scripted policy on 20 robots that are
located in front of sorting stations, where they continuously
perform the task of indiscriminate grasping.

Sim-to-real. Our simulation policy is initially bootstrapped
using the same scripted policy as deployed in the real world.
Once it gathers enough successes, we start reinforcement
learning training in simulation. The simulation policy is trained
with PI-QT-Opt [26]. Once a simulation policy is trained, to
enable sim-to-real transfer, we transform simulated images to
look more realistic using RetinaGAN [[10]], which is trained
on real and simulation camera images. Even though this
initial sim-to-real policy has a relatively low performance, it is
good enough to simultaneously start deploying it in the robot



classrooms to provide an additional source of real-world data
besides the scripted policy.

Multi-task RL. Once we have good performance of in-
discriminate grasping in both simulation and the classrooms,
we start to encounter very occasional successes of the more
complex tasks such as displacing an object (moving it from on
tray to another) or even sorting (moving it to the correct target
bin). Since the reward signals for the sorting task are still too
rare, we introduce the final bootstrapping step that allows us
to generate a large number of successful sorting examples. We
take advantage of multi-task reinforcement learning where we
introduce de-facto a curriculum of various task difficulties,
the most difficult of which is the task of sorting waste.
In particular, we train a sorting policy using a multi-task
training strategy described in MT-Opt [18]. We therefore
devise a total of 15 tasks, including “indiscriminate grasping”,
“grasp recyclable”, “grasp compostable”, “grasp landfill”, “in-
discriminate from recycling”, “indiscriminate from compost”,
“indiscriminate from landfill”, “grasp misplaced recyclable”,
“grasp misplaced compostable”, “grasp misplaced landfill”,
“displace object”, “sort recyclable”, “sort compostable”, “sort
landfill” and finally “sort”. Since the easier tasks experience
more successes initially, they learn faster and lead to more
successes of the more difficult tasks, which in turn bootstrap
even more difficult tasks and so on. Once the multi-task policy
has converged, we switch to only collecting data for the sort
task and only training on the sort task for further improvements
of the policy.

B. Real-World Challenges and Data Collection

Next, we go into detail on various design choices that were
made to address the real-world challenges of collecting a large-
scale dataset with autonomous robots sorting waste.

Scripted exploration. As described in the previous section,
we start our data collection by running a scripted grasping
policy that succeeds some of the time using off-the-shelf object
detectors and grasp planning techniques. The goal of this
policy is to generate enough data that, together with simulated
data, will bootstrap the real-world RL policy. To accomplish
this, the scripted policy needs to fulfill two requirements. First,
it needs to encounter occasional successes that can be used to
bootstrap the more powerful RL policy, which is described
in Sec. The second, more subtle requirement is that the
distribution of actions for the scripted policy should be similar
to that of the future RL policy, to provide sufficient coverage
to support learning a more optimal policy with RL. To address
this, we propose an action conversion mechanism and, together
with the underlying script, we refer to this component as
scripted exploration. To this end, the scripted policy we use
for exploration first generates waypoints to reach for randomly
selected objects proposed by an off-the-shelf object detector. It
then uses these waypoints as “attractors” for a pseudo-value-
function that is then fed to the same CEM process that we
use to select actions with RL. That is, instead of optimizing
the action via CEM to maximize its Q-value, we optimize it
with CEM to minimize the distance to the waypoint, using

the same proposal distribution that is used for running the RL
policy. Since the stochastic CEM optimizer is imperfect, this
leads to the same noise profile in both the exploration policy
and the final RL policy. We present the details of the scripted
exploration algorithm in the appendix.

Autonomous data collection. Deploying robots for ex-
tended periods of autonomous operation and data collection,
both in robot classrooms and in the real world, is central to our
data collection strategy. To prevent damage to the robot and
its environment, while still allowing the robot to make contact
with the world and manipulate it, we employ the following
three strategies: (1) When sampling potential actions for the
arm and the base during the CEM phase of the algorithm, we
restrict the samples for arm poses to a box spanning the waste
trays and the area above and the orientation of the gripper to
not be pointing upwards. CEM samples for movements of the
base are constrained to a rectangular area in front of the waste
stationE] (2) We employ a controller that executes commands
only in a best-effort manner, meaning that trajectories are only
executed to the point where any part of the robot (except
the fingers) would collide with a voxel map representation
of robot’s direct environment, reconstructed from the robots
depth sensors. (3) All motion is interrupted when a force
threshold of 7N is exceeded at the wrist.

C. Reinforcement Learning Flywheel

Equipped with real and simulated data, we use deep RL
to train an end-to-end policy that is directly optimized for
reducing the contamination of the bins. Similarly to how we
train our simulation policy, we leverage PI-QT-Opt [26] to
train the final policy on the complete dataset assembled from
simulation and real world collection. Deep RL allows us to not
only distill the best possible policy out of the bootstrapping
data, but also to enable the robot to improve continuously as it
interacts with waste stations more and more. We refer to this
iterative improvement as a data flywheel: a continual process
where the robot performs the waste sorting task, gathers more
experience, and incorporates this experience back into the RL
process to further improve its policy.

Since training and updating the policy after each sample
across a large fleet of robots is impractical from a systems
engineering perspective, we update the policy and deploy it
to the fleet iteratively in batches. For each iteration of the
flywheel, we deploy an updated model to the robot fleet and
collect a batch of data over a week of operation time. We train
our model with PI-QT-Opt using all the data collected so far,
including the newly added batch, and deploy the converged
model back to the robot fleet and proceed with the next
flywheel iteration. Since we train our policy on real robots
and we aim to deploy the best possible version of the policy
at all times, we use an offline policy evaluation metric called
OPC [12] to find the most performant checkpoint of the current
flywheel iteration.

I'A visualization of the arm and base workspace constraints is shown in the
supplemental material.
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D. Neural Network Architecture

In Fig. 3] we present the diagram of the neural network
architecture of the Q-function that is learned with PI-QT-Opt.
We feed two RGB images to two separate convolutional towers
which are later concatenated and processed by another set
of convolutional layers. The two images correspond to the
current camera image as well as the object mask image that we
describe in the next section. After the last convolutional layers,
we add a small multi-layer perceptron (MLP) to parameterize
the forward encoder for predictive information learning. We
use the same convolutional architecture with moving average
parameters of that for the current time step to encode the
two RGB images of the next time step. With the forward
and backward encoders, we enforce the contrastive CEB loss
described in Sec.

To further aid with the long-horizon task of sorting waste,
we enhance our policy by adding a set of LSTM layers to
cope with the partial observability of the task. In particular,
we employ a PI-QT-Opt-adjusted R2D2 approach [19] to pass
the recurrent policy state from data collection to the replay
buffer and further to the trainer. Towards the end of the neural
network processing, we add proprioceptive information as well
as the action that is being scored by the Q-function. These,
together with the previous signals are processed by an extra
set of MLP layers to output the final Q-value.

E. Boosting Generalization with Pretrained Object Masks

While the simulated and real-world datasets can provide
our waste sorting policy a sufficient level of performance
to continually collect useful data, diverse real-world sorting
scenarios necessitate a very high degree of generalization due
to the variety of objects that the robot is likely to encounter.
Furthermore, the robot must be able to correctly determine
the type of each object (compostable, recyclable, or landfill).
Therefore, to further boost generalization, we integrate a pre-
trained computer vision model that is further fine-tuned on
labeled data for the sorting task.

We use a pre-trained one-stage segmentation model to pre-
dict panoptic segmentation masks (a combination of instance
and semantic masks). The model consists of an EfficientNet-
B1 [48] backbone and separate convolutional heads for object-
wise classification, box regression, and mask prediction. We

also leverage mask priors to help generalize to different object
shapes as in ShapeMask [22]. The backbone is first pretrained
on ImageNet [7] through the noisy-student setup [S1], and
then the entire model, including the mask priors, is finetuned
on a separate perception dataset consisting of 30k examples
labeled with panoptic masks, all collected from the robot
during operations in the same waste sorting task setup. The list
of object classes used for semantic segmentation is a superset
of the waste objects seen during sorting.

Once the object mask predictor is trained, we incorporate
the information it provides into the policy network. To achieve
this, we create an extra image with a dot at the center of
every object that is currently misplaced. The color of the
dot indicates which bin the object should be sorted into.
This image is fed to the network as an extra input channel
concatenated to the current RGB image as shown in Fig. [3|

This design presents a number of advantages. We incorpo-
rate knowledge from pretraining on computer vision datasets,
enabling the robots in principle to classify and sort objects that
they have not interacted with. Further, it allows the RL policy
to focus on the manipulation aspects of the sorting task (e.g.,
how to singulate and grasp an object) rather than the semantic
classification, which can be achieved more efficiently using
supervised learning. At the same time, in contrast to more
standard approaches that decompose localization, planning and
control into separate modules, our deep RL approach is still
end-to-end, in the sense that the Q-function still operates on
raw images and actions and can use them in whatever way
it needs to maximize task performance, while additionally
receiving the object mask as a supplementary input.

VI. REAL-WORLD EXPERIMENTS

In our evaluation, we seek to answer the following ques-
tions: (1) How does the performance of RLS change with var-
ious amounts of data in terms of in-distribution performance as
well as generalization to new sorting scenarios? (2) What is the
impact of various design decision on the final performance of
RLS? (3) What are the overall trends and performance metrics
from deploying RLS in real office buildings?

A. Experimental Setup

For data collection in the robot classrooms, we use a fleet
of 20 robots that continuously sort waste from 20 waste



Fig. 4: Waste scenarios used for evaluations. Top 3 rows show the 9 in-distribution scenarios. The bottom row shows the held-out-scenes,
containing objects previously seen neither in the real world nor in simulation, such as the keyboard, banana and face-mask.

Fig. 5: The robot classroom, a controlled setting for repeatable
evaluations. 20 robots continuously collect data at 20 waste stations.

stations (see Fig. [5). We randomly place objects into the
waste stations and shuffle them several times throughout the
day to increase contamination. After an initial bootstrapping
phase (see Sec. [V-A) we deployed our flywheel and collected
540k episodes in the robot classrooms over the course of 4
months. Over the course of the project, we also deployed
various iterations of our method to 23 robots servicing 30
waste stations across three operational office buildings, which
we refer to as the deployment site, which we describe in
detail in the appendix. Waste stations at deployment sites
are filled with waste entirely by people that ordinarily work
in these buildings. We gathered 32.5k episodes from our
deployment and added them to the overall training set. Note
that data throughput was significantly higher in the robot class-
rooms, where robots could sort waste continually, whereas
the available unsorted waste at the deployment sites varied
drastically over time (particularly during stages of the project
that overlapped with the COVID epidemic). For repeatable
experimentation, we identified 9 challenging waste scenarios
from the deployment site and additional 3 held-out scenes
which contain objects that the robot has not interacted with
in the training data (see Fig. [d). A waste scenario prescribes
how many instances of each object class are placed in which of
the three bins before the robot starts sorting. The placement of
objects within each bin are randomized. We perform extensive
evaluations on the two sets of waste scenarios. Each robot

has a maximum of 20 attempts to sort all the objects in each
scenario, and the scenarios have between 2 and 9 initially
misplaced objects. We report the sorting success rate over 2
rounds for a total of 360 attempts (20 attempts x 9 scenarios
X 2 rounds).

B. Quantitative Evaluation of RLS

Since our system RLS is deployed at scale over the course of
multiple months, including deployment in actual office build-
ings with constantly changing trash scenarios, it is challenging
to perform a clean set of experiments delineating the influence
of different components of the system. We therefore use the
robot classrooms setup for ablations and experiments, using
the scenarios described in Sec. [VI-A] and shown in Fig. ]

To answer our first question: How does the performance of
RLS change with various amounts of real world data in terms
of in-distribution performance as well as generalization to new
sorting scenarios? we perform a set of evaluations where we
vary the amount of real-world data included in training the
model. In particular, we perform training of RLS in iterations
in the robot classrooms, where each iteration involves using
the policy from the previous iteration to collect data for several
days. A new policy is then trained on all the data, including the
latest iteration, and if performance improves over the previous
policy then it is used as the collection policy for the next
iteration. For data collection, we set up scenarios with the
same objects as the in-distribution evaluation scenario, but
with object numbers and configurations randomized, and we
additionally report performance on unseen scenarios. Robots
are allowed to autonomously operate with occasional reshuf-
fling of the objects by human operators. All episodes are
labeled by humans (via an image labeling interface similar
to ones used for other image labeling work) to mark if an
object is sorted or not, and these binary labels are directly
used as the RL reward.

We present the results in Fig.[7] In-distribution performance
is averaged over nine evaluation scenarios, and generalization
performance is averaged over three held-out scenes, as de-



Fig. 6: Example scenes from the deployment sites in 3 different buildings, showing the robot interacting with waste stations used by people
over the course of their standard daily routines. Note the high variability in quantity and contamination levels.
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Fig. 7: Waste sorting performance when using 0%, 25%, 50%, and
100% real world training data on the evaluation scenarios (blue)
and the held-out scenarios (red). 0% represents training RLS only
in simulation. As expected, the performance scales with the amount
of training data used, is slightly better on the evaluation scenarios,
but also generalizes and improves to excellent performance on the
held out scenes.

scribed in Sec. [VI-A] The policy steadily improves with more
real-world data, with 84% of the objects correctly sorted for
the final policy. We observe the biggest improvement in the
held-out scenarios when switching from 50% of the data to
100%, indicating that more data has a substantial impact on
the generalization of RLS.

C. Qualitative Evaluation of RLS

In order to illustrate the difficulty of some of the en-
countered sorting scenarios, we present a few examples in
Fig. El These include a number of contact-rich, difficult-to-
accomplish manipulation behaviors. These are difficult not
only in terms of manipulation, but also the semantics of the
task (e.g., Fig. [8h), where the policy needs to distinguish that
the object inside a container is correctly sorted already, while
the container itself needs to be moved to a different bin. In
Fig.[8b, we show an example with poor lighting, which do not
prevent our policy from correctly sorting the object. We also
demonstrate an emerging re-grasping behavior of our policy
(e.g., Fig. [Bc), as well as the ability to cope with very large
(Fig. [Bd) and very small objects (Fig. [8).

D. Ablations of RLS and Design Decisions

Next, we study the second question: (2) What is the impact
of various design decision on the final performance of RLS?.
We evaluate the performance of variations of our method on
the 9 waste scenarios and report ratios of objects sorted in
Fig. El We observe the biggest negative impact, 45.66% objects
sorted, when we train our policy purely on simulated episodes
without including any real data, and when in addition we
choose a poor initial policy to bootstrap the training process. If
we use the original bootstrap model and no real data, we see a
performance of 67.39%. We observe a performance of 58.7%
when we remove the object mask, forcing the policy to rely
on only the RGB input, indicating the value of introducing
auxiliary semantic knowledge from the masks. If instead we
remove the LSTM architecture and fall-back to a memory-less
architecture we see a performance of 69.57%. Note that for
this baseline, we filter out episodes where the robot incorrectly
grasped an object that was not misplaced, so the drop in
performance is not due only to the inability to determine which
objects were already sorted. Finally, our method, RLS, with
all design decisions included, sorts 84.35% of the objects.
Overall, we see that the design choices made for RLS are
important to achieve good performance on a challenging real
world task as trash sorting.

E. Evaluating the Real-World Deployment of RLS

We deployed our system, RLS, in three office buildings
using a fleet of 23 robots servicing 30 waste stations over the
course of 14 months. Based on this deployment, we gathered
32.5k waste sorting episodes and visited the sorting stations a
total of 3803 times. The unstructured nature of this task makes
it difficult to perform rigorous head-to-head comparisons, but
we report some statistics of this deployment below.

First, to provide an intermediate evaluation between the
more structured robot classrooms and the fully unstructured
deployment, we picked one waste station in each building and
set up a scene analogous to our robot classrooms evaluation
scenario in each one. In this case, the results show a negligible
difference, with a 92.7% success rate in robot classrooms
and 93% in the office buildings, confirming that our policy
generalizes to different locations.



Fig. 8: Five successful sorts illustrating the dexterity of the learned policy: (a) Removing the compostable spoon (red circle) and correctly
sorting the yogurt cup. (b) Sorting a soda can (red circle) under poor lighting. Note how at first the can is occluded and the robot lifts its
gripper to make it visible again. (c) Sorting a plastic bottle (red circle) after a few re-grasps. (d) Sorting a large lunch box. (e) Pinching and
sorting a small candy wrapper (red circle).
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Fig. 9: Ratio of sorted objects of ablations of our approach. a) our
method, RLS b) our method without LSTM c) trained with sim data
only c) without mask-conditioning d) trained with sim data only and
a poorly performing bootstrap model.

Next, we fully deploy RLS “in the wild,” where our robot
fleet needs to sort previously unseen waste in novel waste
sorting scenarios that are created by the occupants of these
buildings. We deploy our system over three time periods in
2021 and 2022, each one of them spanning between 100
and 170 days. Because of the global pandemic, the first two
deployments experience much lower amounts of waste in the
sorting stations, and therefore fewer waste station visits. We
summarize our results in Table [II

The contamination reduction in Table [l is calculated as
a ratio between the weight of all the initially misplaced
objects in the bins and the weight of the misplaced objects

at the end of RLS runs. We measure the contamination
reduction to initially be 53% during the first deployments,
which experienced lower traffic because of the pandemic. The
contamination reduction drops to 39% once there are more
people in the office buildings, when our system experiences
much more diverse sorting scenarios. To visualize the diversity
of the encountered scenarios, we show some examples in
Fig. These include overflowing bins (last row, left column),
objects that are too large for our robot to possibly grasp, such
as keyboard packaging (first row, middle column), and tightly
packed objects that are difficult to manipulate (last row, last
column). These examples illustrate the gap between the real-
world “in the wild” distribution of sorting scenarios and the
distribution experienced in the robot classrooms, where RLS
achieves a high sorting performance. However, in all cases,
the RLS policy led to significant reductions in contamination,
resulting in a considerable reduction in the amount of waste
that would otherwise have been improperly sent to a landfill
or contaminated a recycling batch.

VII. LIMITATIONS AND CONCLUSIONS

In this paper, we presented a robotic manipulation system
based on reinforcement learning that sorts waste at waste
stations in office buildings, described a large-scale deployment
of this system, and presented a quantitative evaluation based
on the experience from this deployment. Our approach aims
to illustrate how deep RL methods can be integrated into



Deployment Waste station ~ Contamination
days (dates) visits reduction
165 (11/2021-4/2022) 15 53%

160 (8/2021-2/2022) 51 52%

104 (5/2022-8/2022) 277 39%

TABLE I: Statistics from the three deployments in three office
buildings that span ~ 2 years. The first two rows showcase fewer
waste station visits because of the global pandemic, which resulted
in lower amounts of trash in the waste sorting stations in the office
buildings.

Fig. 10: Example waste scenarios observed during site deployment.
We observe a significantly wider range of objects such as various
packaging materials, large plastic wrappers, very small torn up
papers/candy wrappers, glass bottles, spilled liquids, and perished
food. Also, we observe much more diverse object configurations,
trays are densely packed and objects are carefully piled and possibly
overhanging.

a robotic manipulation system that is feasible to deploy in
the real world and able to benefit from real-world data,
simulation, and improved generalization from computer vision
components. The policy is bootstrapped from a combination
of simulated data and experience collected with a scripted
policy, from where it is further improved through additional
data collection in robot classrooms and deployment. The
training process employs a curriculum that integrates multi-
task learning with simpler tasks to bootstrap the complete
sorting task, uses a memory-based LSTM architecture, and
integrates additional inputs from an object mask trained on
labeled data to boost generalization. We ablate the individual
components of our system and evaluate how its performance
improves with more data, including on held-out test scenarios.

One limitation of our system is that it still relies heavily on
experience gathered in the controlled robot classroom settings,
rather than entirely using data from real-world deployments.
We found the deployments to be highly variable, and also
harder for obtaining a steady volume of useful experience,
as real-world waste was deposited into the waste stations at
different rates during the day and week, resulting in lower
data collection throughput than we could obtain in the class-
rooms. We hope that the demonstration of large-scale real-
world robotic RL presented in this paper can serve as a
prototype for future works that will address this and other

future challenges and deploy complete robotic manipulation
systems that incorporate RL to enable real-world improvement
and generalization.

Acknowledgements

The authors would like to thank Mohi Khansari, Cameron
Tuckerman, Stanley Soo, Justin Vincent, Mario Prats, Thomas
Buschmann, Josphine Simon, Jarrett Lee, Kalpesh Kuber,
Meghha Dhoke, Christian Bodner, Russell Wong and the entire
Everyday Robots team for their help and support in various
aspects of the project.

REFERENCES

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and
A. A. Bharath. Deep Reinforcement Learning: A Brief
Survey. IEEE Signal Processing Magazine, 2017.

[2] A.T. Azar, A. Koubaa, N. Ali Mohamed, H. A. Ibrahim,
Z. F. Ibrahim, M. Kazim, A. Ammar, B. Benjdira, A. M.
Khamis, I. A. Hameed, and G. Casalino. Drone Deep
Reinforcement Learning: A Review. Electronics, 2021.

[3] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul,
D. Saxton, and R. Munos. Unifying count-based ex-
ploration and intrinsic motivation. Advances in Neural
Information Processing Systems, 2016.

[4] W. Bialek and N. Tishby. Predictive information. arXiv
preprint cond-mat/9902341, 1999.

[5] S. Cabi, S. Gmez, A. Novikov, K. Konyushova, S. Reed,
R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik,
O. Sushkov, D. Barker, J. Scholz, M. Denil, N. Freitas,
and Z. Wang. Scaling data-driven robotics with reward
sketching and batch reinforcement learning. In Robotics:
Science and Systems, 2020.

[6] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin,
J. Issac, N. Ratliff, and D. Fox. Closing the Sim-to-
Real Loop: Adapting Simulation Randomization with
Real World Experience. In International Conference on
Robotics and Automation, 2019.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pattern
Recognition, 2009.

[8] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li,
C. Paduraru, S. Gowal, and T. Hester. Challenges of
Real-World Reinforcement Learning: Definitions, Bench-
marks and Analysis. In International Conference on
Machine Learning, 2019.

[9] L. Fischer. The conditional entropy bottleneck. Entropy,

22(9):999, 2020.

D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai.

RetinaGAN: An Object-aware Approach to Sim-to-Real

Transfer. In International Conference on Robotics and

Automation, 2021.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso,

V. Tsounis, V. Koltun, and M. Hutter. Learning Agile

and Dynamic Motor Skills for Legged Robots. Science

Robotics, 2019.

(10]

(11]



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Irpan, K. Rao, K. Bousmalis, C. Harris, J. Ibarz, and
S. Levine. Off-Policy Evaluation via Off-Policy Clas-
sification. Advances in Neural Information Processing
Systems, 2019.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z.
Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement
Learning with Unsupervised Auxiliary Tasks. In Inter-
national Conference on Learning Representations, 2017.
S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov,
A. Trpan, J. Ibarz, S. Levine, R. Hadsell, and K. Bous-
malis.  Sim-To-Real via Sim-To-Sim: Data-Efficient
Robotic Grasping via Randomized-To-Canonical Adap-
tation Networks. In Conference on Computer Vision and
Pattern Recognition, 2019.

E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert,
C. Lynch, S. Levine, and C. Finn. Bc-z: Zero-shot
task generalization with robotic imitation learning. In
Conference on Robot Learning, 2022.

R. Julian, B. Swanson, G. Sukhatme, S. Levine, C. Finn,
and K. Hausman. Never Stop Learning: The Effective-
ness of Fine-Tuning in Robotic Reinforcement Learning.
In Conference on Robot Learning, 2021.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog,
E. Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Van-
houcke, and S. Levine. Scalable Deep Reinforcement
Learning for Vision-Based Robotic Manipulation. In
Conference on Robot Learning, 2018.

D. Kalashnkov, J. Varley, Y. Chebotar, B. Swanson,
R. Jonschkowski, C. Finn, S. Levine, and K. Hausman.
MT-OPT: Continuous Multi-Task Robotic Reinforcement
Learning at Scale. In Conference on Robot Learning,
2021.

S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and
W. Dabney. Recurrent experience replay in distributed
reinforcement learning. In International Conference on
Learning Representations, 2019.

A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA:
Rapid Motor Adaptation for Legged Robots. In Robotics:
Science and Systems, 2021.

A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and
S. Levine. Pre-Training for Robots: Offline RL Enables
Learning New Tasks from a Handful of Trials. arXiv
preprint arXiv:2210.05178, 2022.

W. Kuo, A. Angelova, J. Malik, and T.-Y. Lin. Shape-
Mask: Learning to Segment Novel Objects by Refining
Shape Priors. In IEEE/CVF International Conference on
Computer Vision, 2019.

K.-H. Lee, L. Fischer, A. Liu, Y. Guo, H. Lee, J. Canny,
and S. Guadarrama. Predictive Information Accelerates
Learning in RL. Advances in Neural Information Pro-
cessing Systems, 2020.

K.-H. Lee, A. Arnab, S. Guadarrama, J. Canny, and
I. Fischer. Compressive Visual Representations. Ad-
vances in Neural Information Processing Systems, 2021.
K.-H. Lee, O. Nachum, T. Zhang, S. Guadarrama, J. Tan,
and W. Yu. PI-ARS: Accelerating Evolution-Learned

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

[35]

[36]

[37]

(38]

Visual-Locomotion with Predictive Information Repre-
sentations. In International Conference on Intelligent
Robots and Systems, 2022.

K.-H. Lee, T. Xiao, A. Li, P. Wohlhart, I. Fischer, and
Y. Lu. PI-QT-Opt: Predictive Information Improves
Multi-Task Robotic Reinforcement Learning at Scale. In
Conference on Robot Learning, 2022.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline
reinforcement learning: Tutorial, review, and perspectives
on open problems. CoRR, 2020.

A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy,
V. Koltun, and D. Scaramuzza. Deep drone racing: From
simulation to reality with domain randomization. IEEE
Transactions on Robotics, 2019.

Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang,
A. Herzog, T. Xiao, A. Irpan, M. Khansari, D. Kalash-
nikov, and S. Levine. AW-Opt: Learning Robotic Skills
with Imitation and Reinforcement at Scale. In Conference
on Robot Learning, 2022.

A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-
Fei, A. Garg, and D. Fox. Iris: Implicit reinforcement
without interaction at scale for learning control from
offline robot manipulation data. In International Con-
ference on Robotics and Automation, 2020.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang,
R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and
R. Mart’in-Mart’in. What Matters in Learning from
Offline Human Demonstrations for Robot Manipulation.
In Conference on Robot Learning, 2021.

J. Matas, S. James, and A. J. Davison. Sim-to-Real
Reinforcement Learning for Deformable Object Manip-
ulation. In Conference on Robot Learning, 2018.

A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang,
E. Songhori, S. Wang, Y.-J. Lee, E. Johnson, O. Pathak,
S. Bae, et al. Chip placement with deep reinforcement
learning. arXiv preprint arXiv:2004.10746, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 2015.

M. Mueller, A. Dosovitskiy, B. Ghanem, and V. Koltun.
Driving Policy Transfer via Modularity and Abstraction.
In Conference on Robot Learning, 2018.

H. Nguyen and H. La. Review of Deep Reinforcement
Learning for Robot Manipulation. In IEEE International
Conference on Robotic Computing, 2019.

OpenAl, 1. Akkaya, M. Andrychowicz, M. Chociej,
M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plap-
pert, G. Powell, R. Ribas, J. Schneider, N. A. Tezak,
J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. M. Zhang. Solving Rubik’s Cube with a Robot
Hand. ArXiv, 2019.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep
exploration via bootstrapped dqn. Advances in Neural



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Information Processing Systems, 29, 2016.

M. Popova, O. Isayev, and A. Tropsha. Deep rein-
forcement learning for de novo drug design. Science
Advances, 2018.

M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. De-
grave, T. van de Wiele, V. Mnih, N. Heess, and J. T.
Springenberg. Learning by Playing Solving Sparse Re-
ward Tasks from Scratch. In International Conference
on Machine Learning, 2018.

R. Y. Rubinstein and D. P. Kroese. The cross-entropy
method: a unified approach to combinatorial optimiza-
tion, Monte-Carlo simulation, and machine learning,
volume 133. Springer, 2004.

F. Sadeghi and S. Levine. Cad2rl: Real single-image
flight without a single real image. arXiv preprint
arXiv:1611.04201, 2016.

A. Sax, B. Emi, A. R. Zamir, L. Guibas, S. Savarese,
and J. Malik. Mid-Level Visual Representations Improve
Generalization and Sample Efficiency for Learning Vi-
suomotor Policies. arXiv, 2018.

M. Shridhar, L. Manuelli, and D. Fox. Perceiver-Actor:
A Multi-Task Transformer for Robotic Manipulation. In
Conference on Robot Learning, 2022.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis.
A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 2018.
A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and
S. Levine. COG: Connecting New Skills to Past Ex-
perience with Offline Reinforcement Learning. arXiv
preprint arXiv:2010.14500, 2020.

L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and
S. Levine. Legged Robots that Keep on Learning: Fine-
Tuning Locomotion Policies in the Real World. In
International Conference on Robotics and Automation,
2022.

M. Tan and Q. V. Le. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. In Inferna-
tional Conference on Machine Learning, 2019.

H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen,
Y. Duan, J. Schulman, F. DeTurck, and P. Abbeel. #
exploration: A study of count-based exploration for deep
reinforcement learning. Advances in Neural Information
Processing Systems, 2017.

M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin,
B. Piot, N. Heess, T. Rothorl, T. Lampe, and M. A.
Riedmiller. Leveraging Demonstrations for Deep Rein-
forcement Learning on Robotics Problems with Sparse
Rewards. CoRR, 2017.

Q. Xie, E. H. Hovy, M.-T. Luong, and Q. V. Le. Self-
training with noisy student improves imagenet classi-
fication. Conference on Computer Vision and Pattern
Recognition, 2019.

A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and
S. Levine. Collective Robot Reinforcement Learning

(53]

[54]

[55]

with Distributed Asynchronous Guided Policy Search.
In International Conference on Intelligent Robots and
Systems, 2017.

T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen,
K. Goldberg, and P. Abbeel. Deep Imitation Learning
for Complex Manipulation Tasks from Virtual Reality
Teleoperation. In International Conference on Robotics
and Automation, 2018.

W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-Real
Transfer in Deep Reinforcement Learning for Robotics:
a Survey. In Symposium Series on Computational Intel-
ligence, 2020.

K. Zhu and T. Zhang. Deep Reinforcement Learning
Based Mobile Robot Navigation: A Review. Tsinghua
Science and Technology, 2021.



APPENDIX
A. Scripted exploration

We present the scripted exploration algorithm in Alg.
Note that the action length and noise of s,,in depend on
the initial parameters of CrossEntropyMethod (line [I0). In
particular, we run only 2 iterations of the method for faster
computation. We use the same CrossEntropyMethod parame-
ters with our learned critic (Fig. [3) for inference and training.
This ensures that generated action samples from the script
(line [T) and our learned critic resemble the same action
distribution.

Algorithm 1: Scripted Exploration Policy

1 Def GenerateTargetWaypoints ():

2 if IsSimulation then
3 L object_poses <— simulation ground truth
4 else

W

L object_poses < object detector
Wapproach < Random (object_poses)
Wyrasp < Wapproach With gripper closed
Wi ft 4 Wyrasp With lift 20cm along z-axis
return Wapproachs Wyrasp, Wiift

e e 9

10 Def CrossEntropyMethod (critic) :

11 Initialize Gaussian, u, o

12 Initialize number of iterations, [ = 2

13 Initialize batch size, N = 128

14 Initialize number of elites, M = 13

15 for _in I do

16 s1.8 ~ N (i, 02)

17 di.n eritic(sy), ..., critic(sy)

18 dy,81,...,dn, SN < rank(dy, §1,...,dN,SN)
19 =37 Yo S5 00 = a7 2, (50— p)?

20 return s, d;

21 Initialize waypoint threshold, dijesnoia for w in
GenerateTargetWaypoints () do

22 dpmin < inf

23 while d,,.in > dinreshola O

24 s,d <~ CEM(EuclideanDistance(w,-))
25 if d <d,,;, then

26 Amin < d

27 Smin < S

28 Robot .Move (Smin)

B. Predictive information preliminaries

Predictive Information [4]], the mutual information between
the past and the future, has been an effective auxiliary for
large-scale real-world RL [26]. From here on, we will denote
the past by X and the future by Y. In an MDP, the past
X refers to what has been observed by the agent; the future
Y refers what will happen in the future process. Lee et al.

[23]] argues that a learned representation Z of the predictive
information should be compressed with respect to X, based
on the observation of Bialek and Tishby [4] that H(X) grows
faster than I(X;Y"). We follow Lee et al. [23] to learn the
representation Z with the Conditional Entropy Bottleneck
(CEB) [9], using the same contrastive variational bound:

CEB = mZin,BI(X;Z|Y) -I(Y;2)

) e(z]x)
< mZm Ez,y,zwp(r,y)e(z\m)ﬂlog b(2’|y)

b(zly)
1 K
7 2k=1 0(2|yk)
where (z,y) are sampled from the data distribution, p(z,y),
e(z|x) is the learned forward encoder distribution, b(z|y) is
the learned variational backward encoder distribution, 3 is
a Lagrange multiplier that controls how strongly compressed
the learned representation Z is, with smaller 3 corresponding
to less compression, and K is the number of examples in a
mini-batch during training. We choose e(z|xz) and b(z|y) to
be parameterized von Mises-Fisher distributions as in [24]].

— log

C. Fleet Deployment

Once our policy achieves a satisfying performance in the
robot classrooms, we deploy it in three real office buildings
using a fleet of 23 robots. The robots use SLAM to localize
themselves in the new building and navigate to a waste sorting
station in their proximity. Once the robot is in front of the bin,
we switch on our end-to-end RLS policy to perform the waste
sorting task.

Since many of the waste sorting scenarios that we encounter
in office buildings have not been seen previously and are
likely to be seen only once due to the non-stationary nature
of the task, and the overall throughput of data collection is
limited (since people only deposit a limited amount of waste
in the bins), we recreated the most commonly seen real-world
scenarios in the robot classrooms to enable the robots to
practice a realistic scenario for more trials. We periodically
update these scenarios in the robot classrooms to reflect the
most common waste sorting challenges encountered during the
deployment. We use the data gathered during the deployment
phase to train and improve all aspects of the RLS system:
the classifier used for the object masks, RetinaGAN used for
sim-to-real transfer as well as the PI-QT-Opt policy itself. To
ensure that the most performant policy is deployed in office
buildings at all times, we run the data flywheel described in
Sec. which includes one week worth of data. While the
bulk of our evaluations were conducted in the robot classrooms
using scenarios recreated from real-world deployment (in order
to allow systematic comparisons and repeatability), we discuss
some performance measurements that we recorded during

deployment in Section
D. Neural network parameters and training

The critic network presented in Figure [3|has a total of 1.43M
learnable parameters. The forward and backward encoder for



the predictive information loss each have 67k parameters.
The architecture and parametrization largely follows [26]. In
addition, the added LSTM is implemented by a ConvLSTM2D
layer with 64 3 x 3 filters.

During training, we use Momentum optimizer with a learn-
ing rate of 0.0095 and momentum of 0.924; the batch size is
4096, training on a 4 x 4 slice of a TPUV3 pod (batch size 256
per chip). As described in Section [V-C| we chose a checkpoint
from training by measuring OPC [12] on a held out dataset.
To that end we train the model until OPC stabilizes, which
typically happens well within the first 1 million training steps,
and pick the checkpoint with the best OPC value (typically
somewhere between 300k and 500k steps).

Overall, the training infrastructure for RLS consists of a
large scale distributed system: 5000 simulator jobs continu-
ously pick up new policy checkpoints and use it to gather new
experience. 2000 log replay jobs read episodes collected on the
real robots from disk. Both these data sources push episodes
to a distributed set of 20 replay buffers. A separate set of
jobs pulls from those buffers mixing real and simulated data
at a ratio of 1:1, computes Q-value targets with the Bellman
equation and trains new model checkpoints. In parallel, sets
of simulators evaluate model performance in simulation, and
another set of jobs calculates the OPC metric for each new
checkpoint.

The stability of the data flow through this system is crucial
for the performance of the resulting trained policy, but not
trivial to achieve in a distributed system where every part can
be randomly preempted due to resource constraints or machine
failures. We thus spent considerable time fine-tuning it. We
find that the most crucial part is to ensure that the training
does not overfit to the experience in the replay buffers at any
point in time, when data production slows down due to partial
outages of the feeding jobs. The replay buffers are configured
to hold a maximum of 2500 episodes, removing old episodes
in FIFO manner when the buffers are full and additional data
gets pushed. Sampling from the buffers occurs by drawing
batches randomly across all samples currently in the buffer. To
prevent overfitting we set a maximum re-use for each sample
of 40 before we drop it from the buffer. Additionally we only
allow sampling when the buffer contains at least 500 samples;
otherwise the whole system waits until new data arrives.

E. Workspace safety constraints

Figure [I1] shows a visualization of the workspace safety
constraints for the robot’s base and end-effector. Random
samples around the robot’s current pose are clipped to these
constraints before being scored by the policy Q-value function
in the CEM process.

FE. Simulation details

1) RetinaGAN for visual domain transfer: As described
in Section [V-A] following previous work we employ Retina-
GAN to narrow the visual simulation-to-real domain gap,
by applying an adapter GAN model to the images from our

Fig. 11: A visualization of the robot and action-space boundaries. We
span a box-constraint for the end-effector above the waste stations
that allows the robot to explore sorting strategies while excluding
non-productive poses. Similarly, for the base we define an area in
front of the waste station that allows the robot to reach all parts of
the waste station.

Fig. 12: Example 640x512 images generated using our simulator and
adapted with RetinaGAN [10].

simulation. This approach greatly reduces the burden of cre-
ating high fidelity models and textures and the computational
cost of complex rendering, allowing us to run our large scale
simulations on machines without GPUs or other accelerators
in the cloud. Figure [I2] shows examples of images from our
simulation adapted with RetinaGAN.

2) Deformable objects: For many of the objects we deal
with, like cans and bottles, it is sufficient to model and
simulate them as fully rigid, without introducing a large
domain gap in the physical behavior. For others though, like
for instance empty chips bags or other snack wrappers, we



found it crucial to model and simulate them as deformable. If
chips bags were modeled as rigid we would have to decide
on a rigid shape. If we made them completely flat it would be
near impossible to pick them up with our robot’s gripper when
lying flat in a tray, which is very unrealistic, since in reality it
is enough to press down almost anywhere on the bag and pinch
it to grasp. If we modeled them as crumpled up, it would be
too easy to grasp them and the policy would again not learn the
pressing down and pinching behavior required to get a good
grip on a flattened out bag. Preliminary experiments without
deformable objects showed that the policy, when facing a chips
bag in simulation or in the real world would just immediately
give up and terminate, “knowing” that it wouldn’t be able to
grasp them.

Figure [T3] shows an animation of the robot interacting with
deformable objects in our simulation.

G. Benchmark scenes taken from the “wild”

As described in the main paper, we create a set of scenarios
representing actual situations our robots encountered at the
deployment site (in the “wild”) and use them for representative
but repeatable experimentation in our robot classrooms. Fig. ]
shows images of the 9 in-distribution scenarios, Table [T4]
presents a description of the distribution of objects in the
individual bins.

H. Object classes

We define a list of 12 classes of objects we encountered in
the waste stations in the wild and used to define our benchmark
scenes, along with a mapping of those object classes to waste
target bin categories as follows:

« Recycle: “can”, “bottle”, “drink carton”, “yogurt cup”
o Compost: “cup”, “paper cup”, “clear cup”, “disposable
bowl”, “disposable plate”, “paper container”’, “napkin”

o Landfill: “bag/wrapper”, “face mask”

When continuing to run the policy at the deployment site,
whenever we would see objects that don’t belong to any
of those categories, we would define new object classes for
our annotation and metrics computation process. The list of
those additional classes includes “non-disposable bowl”, “non-
disposable plate”, “book/paper”, “non-disposable drinkware”,
“food scraps”, and “packaging”. The frequency at which those
objects appeared in the “wild” during the time of our exper-
imentation did not warrant including them in our benchmark
scenes.

L. Baseline performance of improved script

After bootstrapping our flywheel with the script (Alg. [I]
line [I), we further invested engineering time to extend the
initial script with various strategies specific to some objects
that the initial version struggled with. For example, we had to
modify the approach direction and gripper opening to grasp
large lunch boxes more reliably. We, however, did not add data
generated with the more specialized script to our flywheel, but
instead let our policies continue to improve through trial-and-
error. The goal of this experiment was to test the hypothesis
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Fig. 13: Example of manipulating a deformable object (a chips bag)
in simulation. Images on the left show the original rendering from
our simulation, on the right are the corresponding adapted images
using RetinaGAN [10]. The text on the left images shows the type
of action chosen in the current step and the corresponding Q-value.

that performance gained through added engineering time can
be met and surpassed with autonomous data-collection. We
evaluate the extended script on the 9 waste scenarios we
used for our evaluations in section Overall, the improved
script sorted 71% of the objects which is higher than our
initial policy trained with only sim data. However, our learned
policy further improved as we spun the flywheel without added
engineering time and eventually reached a performance of



scene recycle compost landfill

1 1 clear cup 1 cup, 2 disposable bowls,
2 napkins, 1 drink carton
2 2 bottles, 6 cans 1 cup, 2 napkins 2 paper containers, 1 cup,
4 napkins
3 1 can, 1 bottle, 2 paper cup 2 bag/wrappers
4 1 bottle, 1 clear cup, 1 paper cup 1 paper cup, 2 disposable bowls, 1 bag/wrapper, | yoghurt,
1 napkin, 2 bag/wrappers 1 disposable plate
5 1 bottle 1 paper cup, 1 bottle 2 clear cups, 1 disposable bowl
6 2 yogurt cups, 1 clear cup, 2 clear cups, 4 paper cups, 2 bottles, 2 napkins
1 bag/wrapper, 2 napkins 4 napkins, 1 bag/wrapper
7 1 bag/wrapper 2 paper cups, 1 clear cup, 1 yogurt cup, 2 napkins
1 paper bag
8 5 cans, | clear cup 1 disposable bowl, 3 paper cups, 1 paper container,
1 clear cup, 4 napkins, 1 can, 1 disposable bowl, 2 napkins
1 bag/wrapper
9 2 bottles, 3 cans, 2 bag/wrappers 1 paper container, 1 paper cup,
1 clear cup, 4 disposable bowls,
3 napkins, 1 yogurt cup
held out 1 2 bottles, 8 cans 3 paper cups, 1 banana peel, 1 clear cup,
1 compostable bowl, 1 napkin 4 napkins, 2 containers
held out 2 1 bottle 1 bottle 2 clear cups, 1 compostable bowl,
1 packaging
held out 3 1 bag/wrapper 2 paper cups, 1 clear cup, 2 napkins, 1 yogurt cup
1 napkin, 1 face mask

Fig. 14: Description of the benchmark scenes used for evaluations, shown in Figure |4} A scene is defined by the initial quantity of objects
of each class in each of the 3 waste bins. Misplaced objects are marked red.

84%. Although, it remains unclear how the script compares to
a learned policy at the limit of increasingly more engineering
time investment versus data collection, we observe that our
data-driven approach outperforms a fair amount of engineering
effort by a margin of 13 percentage points.
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