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Abstract—By transferring knowledge from large, diverse, task-
agnostic datasets, modern machine learning models can solve
specific downstream tasks either zero-shot or with small task-
specific datasets to a high level of performance. While this
capability has been demonstrated in other fields such as computer
vision, natural language processing or speech recognition, it
remains to be shown in robotics, where the generalization
capabilities of the models are particularly critical due to the
difficulty of collecting real-world robotic data. We argue that
one of the keys to the success of such general robotic models
lies with open-ended task-agnostic training, combined with high-
capacity architectures that can absorb all of the diverse, robotic
data. In this paper, we present a model class, dubbed Robotics
Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes
and their ability to generalize as a function of the data size, model
size, and data diversity based on a large-scale data collection on
real robots performing real-world tasks.

I. INTRODUCTION

End-to-end robotic learning, with either imitation or rein-
forcement, typically involves collecting task-specific data in
either single-task [28, 71] or multi-task [30, 23] settings that
are narrowly tailored to the tasks that the robot should perform.
This workflow mirrors the classic approach to supervised
learning in other domains, such as computer vision and NLP,
where task-specific datasets would be collected, labeled, and
deployed to solve individual tasks, with little interplay between
the tasks themselves. Recent years have seen a transformation
in vision, NLP, and other domains, away from siloed, small-
scale datasets and models and towards large, general models
pre-trained on broad, large datasets. The keys to the success
of such models lie with open-ended task-agnostic training,
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(a) RT-1 takes images and natural language instructions and outputs discretized base and arm actions. Despite its size (35M parameters), it does this at 3 Hz,
due to its efficient yet high-capacity architecture: a FiLM [45] conditioned EfficientNet [61], a TokenLearner [52], and a Transformer [63].

(b) RT-1’s large-scale, real-world training and evaluation (3000 real-world trials) show generalization, robustness, and ability to learn from diverse data.

Fig. 1: A high-level overview of RT-1’s architecture, dataset, and evaluation.
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combined with high-capacity architectures that can absorb all
of the knowledge present in large-scale datasets. If a model can
“sponge up” experience to learn general patterns in language
or perception, then it can bring them to bear on individual
tasks more efficiently. While removing the need for large task-
specific datasets is appealing generally in supervised learning,
it is even more critical in robotics, where datasets might
require engineering-heavy autonomous operation or expensive
human demonstrations. We therefore ask: can we train a single,
capable, large multi-task backbone model on data consisting of
a wide variety of robotic tasks? And does such a model enjoy
the benefits observed in other domains, exhibiting zero-shot
generalization to new tasks, environments, and objects?

Building such models in robotics is not easy. Although
recent years have seen several large multi-task robot policies
proposed in the literature [51, 23], such models often have
limited breadth of real-world tasks, as with Gato [51], or focus
on training tasks rather than generalization to new tasks, as
with recent instruction following methods [56, 57], or attain
comparatively lower performance on new tasks [23].

The two main challenges lie in assembling the right dataset
and designing the right model. While data collection and
curation is often the “unsung hero” of many large-scale
machine learning projects [48, 50], this is especially true in
robotics, where datasets are often robot-specific and gathered
manually [6, 10]. As we will show in our evaluations, good
generalization requires datasets that combine both scale and
breadth, covering a variety of tasks and settings. At the same
time, the tasks in the dataset should be sufficiently well-
connected to enable generalization, such that the model can
discover the patterns between structural similar tasks and
perform new tasks that combine those patterns in novel ways.
We utilize a dataset that we gathered over the course of 17
months with a fleet of 13 robots, containing ∼130k episodes
and over 700 tasks, and we ablate various aspects of this
dataset in our evaluation.

The second challenge lies in the design of the model
itself. Effective robotic multi-task learning requires a high
capacity model, and Transformer [63] models excel in this
regard, particularly when it is necessary to learn many tasks
conditioned, as in our case, on language instructions. However,
robotic controllers must also be efficient enough to run in
real time, which presents a major challenge for Transformers
in particular. We propose a novel architecture that we call
RT-1 (Robotics Transformer 1), which by encoding high-
dimensional inputs and outputs, including camera images,
instructions and motor commands into compact token repre-
sentations to be used by the Transformer, allows for efficient
inference at runtime to make real-time control feasible.

Our contribution is the RT-1 model and experiments with
this model on a large and broad dataset of real-world robotic
tasks. Our experiments not only demonstrate that RT-1 can
exhibit significantly improved generalization and robustness
compared to prior techniques, but also evaluate and ablate
many design choices in both the model and in the composition
of the training set. Our results show that RT-1 can perform

over 700 training instructions at 97% success rate, and can
generalize to new tasks, distractors, and backgrounds 25%,
36% and 18% better than the next best baseline, respectively.
This level of performance allows us to execute very long-
horizon tasks in the SayCan [1] framework, with as many as
50 stages. We further show that RT-1 can incorporate data from
simulation or even other robot types, retaining performance
on the original tasks and improving generalization to new
scenarios. Fig. 1b shows an overview of RT-1’s capabilities.

II. RELATED WORK

A number of recent works have proposed Transformer-
based policies for robotic control. As in RT-1, several works
use language commands processed with Transformers as a
robust framework for specifying and generalizing to new
tasks [72, 44, 58, 23, 1, 42]. Our work takes the applica-
tion of Transformers a step further and treats the mapping
of language and vision observations to robot actions as a
sequence modelling problem, using a Transformer to learn this
mapping. This idea is directly inspired by successes in game-
playing [4, 34] as well as simulated robot navigation [12],
locomotion [24, 15], and manipulation [25] environments. We
note that several of these works go beyond only text condi-
tioning and use Transformers to also generalize across robot
morphologies (e.g., Gupta et al. [15]) and other modalities for
task specifications (e.g., Jang et al. [23], Jiang et al. [25]).
These extensions are promising future directions for RT-1.

Beyond Transformer-based policies, the focus of our work is
on generalizable and robust real-world robotic manipulation at
scale. Existing works on real-world Transformer-based robotic
manipulation focus on efficiently learning tasks from a set
of demonstrations per task [57]. Behavior Transformer [54]
and Gato [51] advocate for training a single model on large-
scale robotic and non-robotic datasets. However, these works
are limited in their real-world robotic tasks; e.g., Gato learns
effectively a single task (colored block stacking) without
evaluating generalization to new tasks or a variety of real-
world settings. On the technical side, our work examines how
Transformer-based policies can be built so as to combine high
capacity and generalization with the computational efficiency
necessary for real-time control.

While the use of high-capacity Transformer models to learn
robotic control policies is a fairly recent innovation, robotics
has a long history of multi-task and language-conditioned
learning, and RT-1 builds on these foundations. A significant
body of work deals with learning policies and predictive
models for robotic grasping [53, 36, 46, 14, 64], with the
aim of generalizing to new objects. Prior works have sought
to address robotic language understanding through pipelined
approaches that combine language parsing, vision, and robotic
control [40, 31, 62] and with end-to-end approaches [41, 60,
39, 1]. Multi-task robotic learning has also been approached
from the perspective of learning to reach goals [5, 49, 27, 19],
as well as learning policies that can perform tasks in a discrete
set or some other parameterized form [7, 8, 13, 29]. Mobile
manipulation policy learning too has been studied, primarilary



via reinforcement-learning [32, 26, 67, 37, 65, 20, 18, 11, 69],
and recently through foundation models [3, 38, 66]. Herein,
we add to this line of work, where we provide evidence that
it is possible to learn simple mobile manipulation tasks in
an end-to-end fashion with large-scale Transformer policies.
A number of prior works in robotics have also focused on
collecting datasets containing demonstrations or trials that
illustrate a variety of different tasks [55, 6, 70, 59, 22].
Our work adds further evidence in support of the power of
multi-task, language-conditioned robotic learning, presenting
experimental results at a larger scale and with a greater
variety of behaviors, objects, and scenes and proposing new
architectures and design choices that enable robotic learning
at a significantly larger scale.

III. RT-1: ROBOTICS TRANSFORMER

The goal of this work is to build and demonstrate a general
robot learning system that can absorb large amounts of data
and generalize effectively. In the following, we overview the
system that allows us to effectively learn how to execute over
700 instructions in the real world.

A. Robots and environments

We use mobile manipulators with a 7 dof arm, a two-
fingered gripper, and a mobile base (see Fig. 3 (d)). To
collect data and evaluate our method, we use three kitchen-
based environments: two real office kitchens and a training
environment modelled off these real kitchens. The training
environment, shown in Fig. 3 (a), consists of partial counters
and is constructed for large scale data collection. The two real
environments, shown in Fig. 3 (b, c), have similar counter tops
to the training environment, but vary in lighting, background,
and full kitchen geometry (e.g., there may be a cabinet
instead of a drawer or a sink may be visible). We evaluate
the performance of our policies across these environments,
measuring the policy’s performance and ability to generalize.

B. Model

Our model is built on a Transformer architecture [63] and
takes a history of images and task description as input and
directly outputs tokenized actions, as shown in Fig. 1a and in
detail in Fig. 2. In the following we describe the components
of the model, following the top-to-bottom order in Fig. 2. More
detail on model selection at scale are provided in Appendix F.

Instruction and image tokenization. The RT-1 architec-
ture relies on a data-efficient and compact tokenization of
images and language instruction. RT-1 tokenizes a history
of 6 images by passing images through an ImageNet pre-
trained EfficientNet-B3 [61] model, which takes 6 images of
resolution 300 × 300 as input and outputs a spatial feature
map of shape 9× 9× 512 from the final convolutional layer.
Unlike Reed et al. [51], we do not patchify the images
into visual tokens prior to feeding them to our Transformer
backbone. We instead flatten the output feature map from the
EfficientNet into 81 visual tokens which are passed on to the
later layers of the network.
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Fig. 2: The architecture diagram of RT-1. The instruction is trans-
formed into a USE embedding and used to condition a pre-trained
EfficientNet via FiLM layers. The resulting vision-language tokens
are reduced by the TokenLearner and fed into a decoder-only Trans-
former, which outputs tokenized actions.

To include the language instruction, we condition the image
tokenizer on the natural language instruction in the form of
a pretrained language embedding, allowing extraction of task-
relevant image features early on and improving performance of
RT-1. The instruction is first embedded via Universal Sentence
Encoder [2]. This embedding is then used as input to identity-
initialized FiLM layers [45] added to the pretrained Efficient-
Net to condition the image encoder. Normally, inserting a
FiLM layer into the interior of a pretrained network would
disrupt the intermediate activations and negate the benefit of
using pretrained weights. To overcome this, we initialize the
weights of the dense layers (fc and hC) which produce the
FiLM affine transformation to zero, allowing the FiLM layer
to initially act as an identity and preserve the function of



Skill Count Description Example Instruction

Pick Object 130 Lift the object off the surface pick iced tea can
Move Object Near Object 337 Move the first object near the second move pepsi can near rxbar blueberry
Place Object Upright 8 Place an elongated object upright place water bottle upright
Knock Object Over 8 Knock an elongated object over knock redbull can over
Open Drawer 3 Open any of the cabinet drawers open the top drawer
Close Drawer 3 Close any of the cabinet drawers close the middle drawer
Place Object into Receptacle 84 Place an object into a receptacle place brown chip bag into white bowl
Pick Object from Receptacle
and Place on the Counter

162 Pick an object up from a location and then
place it on the counter

pick green jalapeno chip bag from paper
bowl and place on counter

Section IV-C and IV-D tasks 9 Skills trained for realistic, long instructions open the large glass jar of pistachios
pull napkin out of dispenser
grab scooper

Total 744

TABLE I: The list of skills collected for RT-1 together with their descriptions and example instructions.

the pretrained weights. We find that identity-initialized FiLM
also produces better results when training with an EfficientNet
initialized from scratch, without ImageNet pretraining, but
it does not surpass the initialization described above. The
architecture of the image tokenizer is presented in Fig. 2.

RT-1’s image and instruction tokenization via FiLM
EfficientNet-B3 is a total of 16M parameters, with 26 layers
of MBConv blocks and FiLM layers, which output 81 tokens.

TokenLearner. To further compress the number of tokens
that RT-1 needs to attend over and thus speed up inference,
RT-1 uses TokenLearner [52]. TokenLearner is an element-
wise attention module that learns to map a large number of
tokens into a much smaller number of tokens. This allows
us to soft-select image tokens based on their information,
passing only the important token combinations to the sub-
sequent Transformer layers. The inclusion of TokenLearner
subsamples the 81 visual tokens that come out of the pre-
trained FiLM-EfficientNet layers to just 8 final tokens that are
then passed on to our Transformer layers.

Transformer. These 8 tokens per-image are then concate-
nated with the other images in the history, forming 48 total
tokens (with added position encoding) to be fed into the
Transformer backbone of RT-1. The Transformer is a decoder-
only sequence model with 8 self-attention layers and 19M total
parameters that outputs action tokens.

Action tokenization. To tokenize actions, each action di-
mension in RT-1 is discretized into 256 bins. As mentioned
previously, the action dimensions we consider include seven
for the arm movement (x, y, z, roll, pitch, yaw, opening of the
gripper), three for base movement (x, y, yaw) and a discrete
variable to switch between three modes: controlling arm, base
or terminating the episode. We specify the low-level robot
control details in Appendix Section C. For each variable, we
map the target to one of the 256 bins, where the bins are
uniformly distributed within the bounds of each variable.

Loss. We use a standard categorical cross-entropy en-
tropy objective and causal masking that was utilized in prior
Transformer-based controllers [51, 34] and a standard behavior
cloning loss used in imitation learning. We provide more
details on preliminaries in the appendix Sec. A.

Inference speed. In contrast to many applications of large

models, such as natural language or image generation, one
of the unique requirements for a model that needs to run on
real robots in real time is fast and consistent inference speed.
Given our measurements of how long it takes a human to
accomplish the instructions considered in this work (which
are in the 2 − 4 secs range), we want the model to be not
significantly slower than that. Based on our experiments this
requirement corresponds to at least 3Hz control frequency and
the resulting inference time budget for the model, given other
latencies in the system, to be less than 100ms.

This requirement limits the size of the model that we can
use. We further explore the impact of model size on inference
speed in the experiments. We employ two techniques to speed
up inference: (i) reduce the number of tokens generated by
a pre-trained EfficientNet model by using TokenLearner [52],
(ii) compute these tokens only once and reuse them for the
following windows that overlap for the future inferences. Both
of these allow us to speed up the model inference by 2.4 and
1.7 times, respectively. Additional details on model inference
are in Appendix B.

C. Data

Our goal is to build a system that exhibits high performance,
generalization to new tasks, and robustness to distractors and
backgrounds. We therefore aim to collect a large, diverse
dataset of robot trajectories that includes multiple tasks, ob-
jects and environments. Our primary dataset consists of ∼130k
robot demonstrations, collected with a fleet of 13 robots over
the course of 17 months. We conducted this large-scale data
collection in a series of office kitchen segments, which we
refer to as robot classrooms, shown in Fig. 3. More details on
data collection are in Appendix E.

Skills and instructions. While the definition of a task
remains inconsistent in the literature, in this work we count the
number of language instructions that the system can perform,
where an instruction corresponds to a verb surrounded by one
or multiple nouns, such as “place water bottle upright”, “move
the coke can to the green chip bag” or “open the drawer”.
RT-1 is able to perform over 700 language instructions in
multiple realistic office kitchen environments that we evaluate
and describe in detail in the experiments. In order to group the



evaluations and draw conclusions on the performance of the
system, we group the instructions by the verbs used in them,
which we refer to as skills. Unfortunately, there are no agreed
upon definitions of what constitutes a new task, and thus we
strive to define our version as clearly as possible. For our
definition, there is a substantial body of work in the machine
learning and robotics literature (e.g. [7, 70, 33]) that consider
different tasks to be MDPs with different dynamics or reward
functions. Specifically, different tasks correspond to different
objective criteria being met: picking up and placing the apple
into the top drawer will not be accomplished if the robot picks
up the wrong object from the table or places the apple into the
wrong drawer. A more detailed list of instructions is shown
in Table I, with examples and the number of instructions per
skill.

The current set of skills includes picking, placing, opening
and closing drawers, getting items in and out drawers, placing
elongated items up-right, knocking them over, pulling napkins
and opening jars. The skills were chosen to demonstrate
multiple behaviors with many objects (seen in Fig. 3(e)) to
test aspects of RT-1 such as generalization to new instructions
and ability to perform many tasks. We then greatly expanded
the object diversity for the “pick” skill to make sure that the
skills generalize to varied objects (see the expanded set of
objects in Fig. 3(f)). The skills were further expanded while we
conducted the ablations to include instructions added in the last
row of Table I, which were used for the experiments described
in Sec. IV-D and IV-C. These additional skills focused on
realistic, long-horizon instructions in an office kitchen. The
entire process of adding tasks and data is described in the
Appendix G. Since we do not make any assumptions about
particular skills when adding new instructions, the system
is easily extendable, and we can continuously provide more
diverse data to improve its capabilities.

IV. EXPERIMENTS

Our experiments seek to answer the following questions: (1)
Can an RT-1 learn to perform a large number of instructions,
as well as to generalize in zero shot to new tasks, objects
and environments? (Section IV-B) (2) Can we push the re-
sulting model even further by incorporating heterogeneous
data sources, such as simulated data or data from different
robots? (Section IV-C) (3) How do various methods generalize
to long-horizon robotic scenarios? (Section IV-D) (4) How
do generalization metrics change with varying amounts of
data quantity and data diversity? (Section IV-E) (5) What
are the important and practical decisions in the design of the
model and how do they affect performance and generalization?
(Appendix Section M)

Throughout this section we will compare to two baseline
state of the art architectures, Gato [51] and BC-Z [23].
Importantly both of these are trained on our data described in
detail in Sec. III-C (which is an important part of our system)
since the original models in these publications would not
exhibit generalization properties required for our evaluation

tasks. We provide details on the baselines in the appendix
Section H.

We evaluate the success rate in experiments to measure
performance on training instructions, generalization to unseen
instructions, robustness to backgrounds and distractors, and
performance in long-horizon scenarios, as detailed below.
Throughout this section, we evaluate our approach and base-
lines with over 3000 real-world trials, making one of the
largest scale evaluation of a robot learning system to-date.

A. Experimental Setup

We evaluate RT-1 with a set of mobile manipulators in
three environments: two real office kitchens and a training
environment modelled off these real kitchens. The training
environment, shown in Fig. 3 (a), consists of partial counters
while the two real environments, shown in Fig. 3 (b, c), have
similar counter tops to the training environment, but vary in
lighting, background, and full kitchen geometry (e.g., there
may be a cabinet instead of a drawer or a sink may be visible).
The policies are evaluated for performance on training tasks
as well as generalization to new tasks, robustness to unseen
environments, and performance when chained together for
long-horizon tasks, as detailed below.

Success Metric. The key metric used throughout our exper-
imental evaluation is success rate of a given skill. An episode
is marked as failure if either the robot does not perform the
requested skill (as judged by a human rater) or if it violates
any of the following constraints: i) the robot collides with
the environment, ii) the robot touches irrelevant objects iii)
the robot behaves in an unsafe manner iv) the robot does
not complete the task within 100 actions (∼ 33secs), roughly
half a minute. For example, if the robot gripper is broken
while opening a drawer or if objects are knocked to the floor
those are considered failures even though the task might be
accomplished.

Seen task performance. To evaluate performance on seen
instructions, we evaluate performance on instructions sampled
from the training set. Note, however, that this evaluation still
involves varying the placement of objects and other factors of
the setup (e.g., time of day, robot position), requiring the skills
to generalize to realistic variability in the environment. In all,
we test over 200 tasks in this evaluation: 36 for picking objects,
35 for knocking objects, 35 for placing things upright, 48 for
moving objects, 18 for opening and closing various drawers,
and 36 for picking out of and placing objects into drawers.

Unseen tasks generalization. To evaluate generalization to
unseen tasks, we test 21 novel, unseen instructions. These
instructions are distributed across skills and objects. This
ensures that at least some instances of each object and skill
were present in the training set but they will be combined
in novel ways. For example, if “pick up the apple” is held
out, then there are other training instructions that include the
apple. The list of all unseen instructions can be found in the
Appendix I.

Robustness. To evaluate robustness, we perform 30 real-
world tasks for distractor robustness and 22 tasks for back-



Fig. 3: (a) Robot classroom where we collect data at scale; (b) a real office kitchen, one of the two realistic environments used for evaluation
(named Kitchen1 in the rest of the paper); (c) a different office kitchen used for evaluation (named Kitchen2 in the rest of the paper); (d)
mobile manipulator used throughout the paper; (e) a set of objects used for most of the skills to expand skill diversity; (f) a more diverse
set of objects used mostly to expand object diversity of the picking skill.

ground robustness. The background robustness was tested
by evaluating in new kitchens (which have different lighting
and background visuals) and with different counter surfaces
(e.g., a patterned table cloth). Example configurations of the
robustness evaluation scenarios are depicted in Fig. 4.

Long-horizon scenarios. We also evaluate generalization
to more realistic long-horizon scenarios, which each require
executing a sequence of skills. These evaluations consist of 15
long-horizon instructions in two real kitchens, which require
executing sequences of skills consisting of ∼ 10 distinct steps,
with each step of roughly comparable scope as the training
instructions. These steps are obtained automatically from
higher level instructions, such as “how would you throw away
all the items on the table?” by using the SayCan system [1],
as described in detail in Section IV-D and Appendix K.

B. Can RT-1 learn to perform a large number of instructions,
and to generalize to new tasks, objects and environments?

To answer our first question, we analyze the overall per-
formance, generalization, and robustness capabilities of RT-
1 compared to previously proposed models. Specifically, we
compare to the model architectures used by Gato [51] and BC-
Z [23], as well as a larger version of BC-Z, which we refer
to as BC-Z XL. Note, however, that all models are trained
on the same data as RT-1, and the evaluation only compares
the model architectures, not the task sets, datasets, or overall
robotic systems. The capabilities of RT-1 are determined to
a large extent by the dataset and task set, which we believe

Fig. 4: Evaluation scenarios for distractors (first row), from left
to right: easy (0-5 distractors), medium (9 distractors), hard (9
distractors and occluded object); background (second row), from left
to right: original environment, patterned table cloth, new kitchen; and
realistic scenarios in the real kitchen (third row), generalization levels
from left to right: L1, L2 and L3.

improves significantly over prior works (e.g. BC-Z uses 100
tasks and the original Gato model trains a stacking task with
various shapes), and thus this comparison should be viewed as
rather favorable to the prior models, which also benefit from
the large and diverse dataset and task set that we collected.



Model Seen Tasks Unseen Tasks Distractors Backgrounds

Gato [51] 65 52 43 35
BC-Z [23] 72 19 47 41
BC-Z XL 56 43 23 35
RT-1 (ours) 97 76 83 59

TABLE II: Overall performance of RT-1 and baselines across seen
tasks, generalization to unseen tasks, and robustness to distractors
and backgrounds.

The results are shown in Table II. Across each category,
we find that RT-1 outperforms the prior models significantly.
On seen tasks, RT-1 is able to perform 97% of the more than
200 instructions successfully, which is 25% more than BC-Z
and 32% more than Gato. On unseen tasks, RT-1 shows it is
capable of generalizing to novel instructions, performing 76%
of the never-before-seen instructions, 24% more than the next
best baseline. While such generalization to novel instructions
is made possible due to natural language conditioning of the
policy, as the policy is able to understand new combinations
of previously seen concepts, all of the baselines are also
conditioned on natural language and in principle enjoy the
same benefits. We further ablate different components of
RT-1 in the next section to better understand what aspects
of our method contribute the most to this difference. On
distractors and backgrounds, we find that RT-1 is quite robust,
successfully executing 83% of the distractor robustness tasks
and 59% of the background robustness tasks (36% and 18%
higher than the next best alternative, respectively). Overall, we
find that RT-1 has high general performance, while exhibiting
impressive degrees of generalization and robustness. We show
example trajectories of the RT-1 agent including instructions
that cover different skills, environments and objects in Fig. 5.
We also present additional trajectory examples for different
generalization tests in the Appendix, which include back-
grounds (Fig. 9), and distractors (Fig. 11).

Generalization to realistic instructions. Next, we test
whether our method generalizes enough across all the different
axes that we evaluated previously to be deployed in a real
kitchen, which poses multiple distribution shifts all at once
such as new tasks combinations, object distractors as well as
a novel environment.

To evaluate our algorithm in realistic scenarios in a real
kitchen, we construct task sequences to accomplish a number
of realistic goals. The robot restocks several snacks in drawers,
tidies up knocked over condiment bottles and closes drawers
left open by humans, prepares a snack with an orange and a
napkin and fetches lost sunglasses and an octopus toy from
several places in the kitchen. The detailed instructions used
in these scenarios are listed in the Appendix I. The office
kitchen involves a dramatic shift from the training environment
and we categorize tasks across these scenarios with varying
levels of generalization: L1 for generalization to the new
counter-top layout and lighting conditions, L2 for additionally
generalization to unseen distractor objects, L3 for additional
generalization to drastically new task settings, new task objects

“pick water bottle 
from the bottom 
drawer and put it 
on the counter”

“move sponge to 
green jalapeno 

chips”

“place red bull 
can in middle 

drawer”

“pull napkin out 
of dispenser”

“place coke can 
upright”

“open top 
drawer”

“pick apple from 
bowl”

Fig. 5: Example evaluation trajectories for RT-1 across various
instructions.

Generalization Scenario Levels

Models All L1 L2 L3

Gato [51] 30 63 25 0
BC-Z [23] 45 38 50 50
BC-Z XL 55 63 75 38
RT-1 (ours) 70 88 75 50

TABLE III: Realistic generalization scenarios: we compare model
success rate in a realistic kitchen scenarios across three levels of
generalization: L1 for generalization to the new counter-top layout
and lighting conditions, L2 for additionally generalization to unseen
distractor objects, L3 for additionally generalization to drastically
new task settings, new task objects or in unseen locations like near
a sink.

or objects in unseen locations such as near a sink. The
three levels that correspond to the three tasks of restocking,
preparing a snack and fetching a lost object in the real kitchen
are depicted in the last row of Fig. 4. Example trajectories for
each level are presented in the Appendix in Fig. 10.

We report the per-task success rate in these realistic scenar-
ios along with the varying generalization levels in Table III and
find RT-1 to be the most robust on all levels. Gato generalizes
fairly well at the first level but it performs significantly drops
for the more difficult generalization scenarios. BC-Z and its
XL equivalent perform fairly well at L2 level and better than
Gato at L3 but still not at the generalization level of RT-1.



Real Objects Sim Objects (not seen in real)

Seen Skill Seen Skill Unseen Skill
Models Training Data w/ Objects w/ Objects w/ Objects

RT-1 Real Only 92 23 7
RT-1 Real + Sim 90(-2) 87(+64) 33(+26)

TABLE IV: Experimental results for incorporating simulation data
in RT-1. Adding simulation data does not impact the performance
on real objects, while significantly improving real performance on
objects that were only introduced in simulation (+64%). It also
improves real-world generalization on simulated objects used with
skills seen only in the real world (+26%), e.g. “move X to Y” where
X only appeared in simulated “pick X” task.

C. Can we push the resulting model further by incorporating
heterogeneous data sources such as simulation or data from
different robots?

Next, we explore the limits of RT-1 for utilizing highly
heterogeneous data. We demonstrate how RT-1 can incorporate
and learn from vastly different data sources and improve from
such data without sacrificing its original-tasks performance
across the varied tasks inherent in this data. To this end, we
conduct two experiments: (1) RT-1 trained and tested on both
real data and simulation data and (2) RT-1 trained across large
datasets of different tasks, originally collected by different
robots. More information on each is provided in Appendix J.

Absorbing simulation data. Table IV shows the ability of
RT-1, and baselines, to absorb both real and simulation data.
To test this, we take all of the real demonstration data but we
also provide additional simulation data that includes objects
that the robot has never seen in the real world. Specifically, we
specify different generalization scenarios: for seen skills with
real objects the training data has real data of that instruction
(i.e., performance on seen tasks), for seen skills with sim
objects the training data has sim data of that instruction (e.g.
“pick up a sim object”, which was present in sim), and for
unseen skills with sim objects the training data has sim data
of that object but there are no examples of the instruction
describing the skill with that object either in sim or in real
(e.g., “move a sim object to apple”, even though the robot has
only practiced in picking that sim object and not moving it
near other objects). All evaluations are done in the real world
but to limit the number of instructions evaluated, we focus on
pick and move-to skills.

We find in Table IV that for RT-1, we do not lose
performance adding simulation data compared to the Real
Only dataset. We do however, see a significant increase in
performance (from 23% to 87%) on objects and tasks seen
only in simulation, to approximately the performance of the
those in real, demonstrating an impressive degree of domain
transfer. We also see a significant increase in performance
on unseen instructions from 7% to 33%; impressive given
the object in question has never been seen in real and the
instruction never seen at all. Overall, we find that RT-1 is
able to efficiently absorb new data, even from a very different
domain.

Absorbing data from different robots. To push the data
absorption limits of RT-1, we conduct an additional set of
experiments where we combine two data sources that originate
from different robots: Kuka IIWA as well as the mobile
manipulators used in the experiments so far. The Kuka data
contains all the successful examples collected in QT-Opt [28],
which corresponds to 209k episodes, where the robot was
indiscriminately grasping objects in a bin (see an example
of a Kuka episode in Table. V). To test whether RT-1 can
effectively absorb these two very different datasets, which
we refer to as the standard “Classroom eval”, as well as the
performance on the newly constructed tasks that reflect the
bin-picking setup present in the Kuka data, which we refer to
as the “Bin-picking eval” (see Fig. 12).

We would like to emphasize the difficulty of this setting by
noting the major differences between the datasets. Not only are
the robots that collected the data different in appearance and
action space, but also the environment they were deployed in
has different appearance and dynamics. In addition the QT-Opt
data presents a completely different action distribution – it was
collected by an RL agent as opposed to human demonstrations
present in our dataset.

The results are presented in Table V. We observe that the
model that mixes the RT-1 data and the Kuka data has only
a minimal decrease in the original tasks’ performance (i.e.
Classroom eval), i.e. 2%. Even more importantly, in the Bin-
picking eval, we observe that the model trained on multi-
robot data performs at 39% compared to the 22% of the
model that was trained only on the RT-1 data. This is a
17% performance difference (almost 2x). Additionally, RT-1
trained on Kuka bin-picking data and evaluated on the bin-
picking tasks with the mobile manipulator (MM) achieves
0% performance, confirming that it is difficult to transfer a
behavior from another robot morphology. However, mixing the
data from both robots allows RT-1 to infer the correct actions
of the MM robot even when faced with the states observed by
Kuka robots. This is achieved without explicit demonstrations
of bin-picking on MM robot and by taking advantage of past
experiences collected by Kuka robots. These results indicate
that RT-1’s absorption properties also include the ability to
acquire new skills through observing other robots’ experiences
and present an exciting avenue of future work where we
combine many more multi-robot datasets to enhance the robot
capabilities.

D. How do various methods generalize long-horizon robotic
scenarios?

In the next set of experiments we evaluate whether our
method generalizes enough to be used in long-horizon realistic
kitchen settings. To answer this question, we execute RT-1
and various baselines within the SayCan [1] framework in two
different real kitchens. Since SayCan combines many low-level
instructions to perform high-level instructions, the number of
possible high-level instructions increases combinatorially with
skills, so the skill-breadth of RT-1 can be fully seen (for
more details on the SayCan algorithm please refer to [1]). The



Models Training Data Classroom eval Bin-picking eval

RT-1 Kuka bin-picking data + MM data 90(-2) 39(+17)

RT-1 MM only data 92 22
RT-1 Kuka bin-picking only data 0 0

TABLE V: Experimental results for mixing data from two different
robots. Incorporating Kuka bin-picking data from QT-Opt [28] in RT-
1 minimally impacts the standard classroom evaluation performance
and results in almost a 2x improvement in generalization to the Bin-
picking evaluation (that is similar to the setup in the Kuka data) on
the mobile manipulator (MM). This demonstrates an effective transfer
across two different robot morphologies.

success rate of long-horizon tasks also decreases exponentially
with the length of the task, so high success rates in manipula-
tion skills are particularly important. Furthermore, as mobile
manipulation tasks require both navigation and manipulation,
the policies ability to be robust to base position is crucial.
More detail is provided in Appendix K.

Table VI shows our results (on instructions in Appendix
Table XI). Except for original SayCan, all methods get 87%
as planning success rate, and RT-1 performs the best, with
67% execution success rate in Kitchen1. Kitchen2 constitutes
a much more challenging generalization scene, since the Robot
Classroom training scenes are modeled after Kitchen1 (see the
pictures of the kitchens in Fig. 3). Due to this generalization
difficulty, SayCan with Gato is not able to finish any long
horizon task, and SayCan with BC-Z is able to achieve a suc-
cess rate of 13%. The original SayCan paper did not evaluate
performance in a new kitchen. Surprisingly, the manipulation
performance does not see a visible drop from Kitchen1 to
Kitchen2 for our method. This enables us to operate unseen
drawers in Kitchen2, and that we can use SayCan-RT1 to plan
and execute ultra-long horizon tasks, with as many as 50 steps.

SayCan tasks in Kitchen1 SayCan tasks in Kitchen2

Planning Execution Planning Execution

Original SayCan [1]∗ 73 47 - -
SayCan w/ Gato [51] 87 33 87 0
SayCan w/ BC-Z [23] 87 53 87 13
SayCan w/ RT-1 (ours) 87 67 87 67

TABLE VI: SayCan style long horizon tasks in Kitchen1 and
Kitchen2. (*Original SayCan eval uses a slightly different prompt
so the planning success rate is lower.)

E. How do generalization metrics change with varying
amounts of data quantity and data diversity?

While previous works have shown the scaling abilities of
Transformer-based models [34, 51, 25] with the number of
model parameters, in many robotics works the model size is
often not the primary bottleneck, and the maximum size is
limited by the latency requirement for running such models
on real robots. Instead, in this study we focus on ablating
the influence of dataset size and diversity, as they play an
important role in the traditionally data-limited robot learning

field. Since data collection is particularly expensive for real
robots, it is important to quantify what kind of data our models
need to achieve a certain performance and generalization.
Thus, our last question focuses on the scaling properties of
RT-1 with different data properties.

Fig. 6: Various data ablations of RT-1 across seen tasks, generalization
to unseen tasks, and robustness to distractors and backgrounds. Data
diversity has a higher impact on the performance and generalization
than data quantity. Appendix Table XII shows the values for each
ablation.

In Figure 6 we show the performance, generalization, and
robustness of RT-1 as we decrease the dataset size (% data)
and the dataset diversity (% tasks). To separate the axes of
dataset size and diversity, we create smaller datasets with the
same task diversity by removing data from the tasks with
the largest data, capping the number of examples per task
at 200 (resulting in 51% of the data), 100 (37% of the data),
and 50 (22.5% of the data). To create a narrow dataset, we
remove the tasks with the least data, thus keeping 97% of
the overall data but only 75% of the tasks. As we decrease
dataset size, we see a general trend of decreasing performance
and a steeper trend of decreasing generalization. As we make
the dataset more narrow, we see much steeper performance
reductions, particularly in terms of generalization. In fact,
removing 25% of the tasks while keeping 97% of the data
achieves an equivalent generalization performance to reducing
the dataset size by as much as 49%. Our key takeaway is thus
that data diversity is more essential than data quantity.

V. CONCLUSIONS AND LIMITATIONS

We presented Robotics Transformer 1, RT-1, a robot learn-
ing method that can effectively absorb large amounts of data
and scales with data quantity and diversity. We trained RT-
1 on a large dataset of demonstrations containing over 130k
episodes collected over the course of 17 months with 13
robots. In our broad set of experiments, we demonstrated
that our method that can perform over 700 instructions at
97% success rate and effectively generalize to new tasks,
objects and environments better than previously published
baselines. We also demonstrated that RT-1 can successfully
absorb heterogeneous data from simulation and other robot
morphologies without sacrificing original-tasks performance
and while improving generalization to new scenarios. Lastly,
we showed how this level of performance and generalization



allowed us to execute very long-horizon tasks in the Say-
Can [1] framework, with as many as 50 steps.

While RT-1 presents a promising step towards large-scale
robot learning with an data-absorbent model, it comes with a
number of limitations. First, it is an imitation learning method,
which inherits the challenges of that class of approaches
such as the fact that it may not be able to surpass the
performance of the demonstrators. Second, the generalization
to new instructions is limited to the combinations of previously
seen concepts and RT-1 is not yet able to generalize to a
completely new motion that has not been seen before. Third,
our generalization experiments are conducted in a new kitchen
setting that is still similar to the training setup. More work
is needed to expand the generalization capabilities of these
models to generalize to much more diverse environments.
Lastly, our method is presented on a large but not very
dexterous set of manipulation tasks. We plan to continue
extending the set of instructions that RT-1 enables to address
this challenge.
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APPENDIX

• Evaluations (ablations, designing procedures, imple-
mentations, and running ablations): Yevgen Chebotar,
Keerthana Gopalakrishnan, Karol Hausman, Julian Ibarz,
Brian Ichter, Alex Irpan, Isabel Leal, Kuang-Huei Lee,
Yao Lu, Ofir Nachum, Kanishka Rao, Sumedh Sontakke,
Austin Stone, Quan Vuong, Fei Xia, Ted Xiao, and Tianhe
Yu.

• Network Architecture (tokenizer, training, infer-
ence): Yevgen Chebotar, Keerthana Gopalakrishnan, Ju-
lian Ibarz, Alex Irpan, Kuang-Huei Lee, Yao Lu, Karl
Pertsch, Kanishka Rao, Michael Ryoo, Sumedh Sontakke,
Austin Stone, and Quan Vuong.

• Developed Infrastructure (data, training, collect, sim-
ulation, evaluations, storage, and operations): An-
thony Brohan, Keerthana Gopalakrishnan, Karol Haus-
man, Alex Herzog, Jasmine Hsu, Alex Irpan, Nikhil Joshi,
Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel
Leal, Yao Lu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
and Tianhe Yu.

• Leadership (managed or advised on the project):
Chelsea Finn, Karol Hausman, Julian Ibarz, Sally Jes-
month, Sergey Levine, Yao Lu, Igor Mordatch, Carolina
Parada, Kanishka Rao, Pannag Sanketi, Vincent Van-
houcke.

• Paper (figures, vizualizations, writing): Keerthana
Gopalakrishnan, Karol Hausman, Brian Ichter, Sergey
Levine, Ofir Nachum, Karl Pertsch, Kanishka Rao, Austin
Stone, Fei Xia, and Ted Xiao.

• Data collection and evaluations: Noah Brown, Justice
Carbajal, Joseph Dabis, Tomas Jackson, Utsav Malla,
Deeksha Manjunath, Jodily Peralta, Emily Perez, Jornell
Quiambao, Grecia Salazar, Kevin Sayed, Jaspiar Singh,
Clayton Tan, Huong Tran, Steve Vega, and Brianna
Zitkovich.

In the interest of rigor and reproducibility, we include ex-
tensive implementation details and and additional evaluations
in the appendix. While these details are not essential for
understanding the core ideas behind our approach, since RT-1
is situated in the context of a large and relatively complex
robotic system, reproducibility and a complete evaluation
requires additional discussion that is difficult to fit into the
main paper.

A. Preliminaries

Robot learning. We aim to learn robot policies to solve
language-conditioned tasks from vision. Formally, we consider
a sequential decision-making environment. At timestep t = 0,
the policy π is presented with a language instruction i and an
initial image observation x0. The policy produces an action
distribution π(· | i, x0) from which an action a0 is sampled and
applied to the robot. This process continues, with the policy
iteratively producing actions at by sampling from a learned
distribution π(· | i, {xj}tj=0) and applying those actions to
the robot. The interaction ends when a termination condition



is achieved. The full interaction i, {(xj , aj)}Tj=0 from the
starting step t = 0 to terminating step T is referred to as an
episode. At the end of an episode, the agent will be given
a binary reward r ∈ {0, 1} indicating whether the robot
performed the instruction i. The goal is to learn a policy
π that maximizes the average reward, in expectation over a
distribution of instructions, starting states x0, and transition
dynamics.
Transformers. RT-1 uses a Transformer [63] to parameterize
the policy π. Generally speaking, a Transformer is a sequence
model mapping an input sequence {ξh}Hh=0 to an output
sequence {yk}Kk=0 using combinations of self-attention lay-
ers and fully-connected neural networks. While Transformers
were originally designed for text sequences, where each input
ξj and output yk represents a text token, they have been
extended to images [43] as well as other modalities [34, 51].
As detailed in the next section, we parameterize π by first
mapping inputs i, {xj}tj=0 to a sequence {ξh}Hh=0 and action
outputs at to a sequence {yk}Kk=0 before using a Transformer
to learn the mapping {ξh}Hh=0 → {yk}Kk=0.
Imitation learning. Imitation learning methods train the
policy π on a dataset D of demonstrations [47, 71,
23]. Specifically, we assume access to a dataset D =

{(i(n), {(x(n)t , a
(n)
t )}T (n)

t=0 )}Nn=0 of episodes, all of which are
successful (i.e., have a final reward of 1). We learn π using
behavioral cloning [47], which optimizes π by minimizing
the negative log-likelihood of actions at given the images and
language instructions.

B. Model inference

In addition to the inference speed requirement, we need
to ensure that our system outputs actions at a consistent
frequency, avoiding jitter. To accomplish this, we introduce
a fixed-time waiting mechanism that waits a certain amount
of time (280ms, the max observed latency of all components)
after the state, that was used to compute the next action, has
been captured, but before applying the action, similarly to the
procedure described by Xiao et al. [68].

C. Low-level control details.

We run position controllers tracking the 6D Cartesian tool
pose, 1D gripper aperture and 2D position and orientation of
the mobile base. Tool and gripper controllers are run simul-
taneously in a non-blocking mode, meaning the policy can
update the targets before they are achieved by the controllers.
The base controller is run in blocking mode, meaning if the
policy moves the base, the controller reaches the target before
it hands execution back to the policy.

Next, we describe how targets are converted to trajectories.
Cartesian tool poses are converted to straight line moves from
the current to the target pose. We use inverse kinematics to
convert cartesian trajectories to joint space and track them with
high-gain position control. We check the joint trajectories for
constraints such as joint limits and self-collision. We execute
trajectories only up to and excluding the first violation of a

constraint. This allows us to command targets that are not nec-
essarily feasible, which results in an improved computational
efficiency.

Base trajectories are executed by a non-holonomic base
from the current to the target base pose. We check constraint
satisfaction of the trajectory and execute up until and excluding
the first constraint violation.

D. Data details.

We specify details of the dataset used together with example
instructions in Table XI. We also provide pictures of the entire
setup including the environments and objects used as shown
in Fig. 3.

E. Data collection at scale.

Each of the robots autonomously approaches its station
at the beginning of the episode and communicates to the
operator the instruction that they should demonstrate to the
robot. To ensure a balanced dataset as well as randomization
of the scene, we created a software module responsible for
sampling the instructions to be demonstrated as well as the
randomization of the background configuration. Each of the
robots tells the demonstrator how to randomize the scene and
which instruction to demonstrate.

Demonstrations are collected with direct line-of-sight be-
tween operator and robot using 2 virtual reality remotes.
We map remote controls onto our policy action space to
preserve consistency of the transition-dynamics. 3D position
and rotational displacements of the remote are mapped to
6d displacements of the robot tool. The x, y position of the
joystick is mapped to a turning angle and driving distance
of the mobile base. We compute and track trajectories to the
target poses that we obtain from the joystick commands.

F. Model Selection at Scale

As robot learning systems become more capable and the
number of instructions they can handle increases, evaluation
of these models becomes difficult [29, 23]. This is an important
consideration not only for evaluating different model classes
and data distributions during the development process, but also
for selecting the most performant model checkpoints for a
particular training run. While there have been a number of
proposed solutions to this problem [9, 21, 16], mostly known
in the offline reinforcement learning literature as “off-policy
evaluation”, it still remains an open research challenge to
evaluate multi-task robot learning systems at scale.

In this work, we propose leveraging simulation for “real to
sim” transfer as a scalable tool that provides an approximate
estimate of model performance during training across many
real tasks. We run policies trained from real data in a simulator
to test the full rollout performance. Note that all of our training
data comes from the real world (except the experiment in Sec-
tion IV-C), and the simulator is used only for model selection.
To accomplish this, we expand the simulation environment
proposed by Lee et al. [35] to support 551 of the tasks
described in Section III-C. For each of these tasks, we define a



set of scene setup randomizations, robot pose randomizations,
and success detection criteria. To bridge the visual distribution
shift between the real world and the simulation, we train a
RetinaGAN [17] model that transforms simulated images into
realistic looking images. Then, we deploy policies trained
on real data directly into these simulation environments by
applying RetinaGAN visual transformations at each timestep
and measuring rollout simulated task success rates.

While models trained only on real world data perform better
in the real world than they do in simulation, we find that the
simulation success rates of high-performing real world policies
are higher than the simulation success rates of low-performing
real world policies. In other words, the ordering of simulation
policy success rates are informative for predicting the ordering
of real world policy success rates. We note that in this real-
to-sim evaluation setting, we have a less strict requirement for
simulation accuracy compared to sim-to-real settings; as long
as simulation success rates are directionally correlated with
real success rates, we can accept a moderate or even high gap
between real and simulation success rates.

We present example camera images from simulation as well
as their RetinaGAN-based transformations in Fig. 7.

Fig. 7: Example camera images showcasing raw simulation, simula-
tion with RetinaGAN applied, and the real world.

G. Data collection process

Figure 8 shows the growth of data, number of tasks, and
the success rate of the policy over time. The number of
tasks/instructions that our system is capable of grows over
time as more data is collected. The same is true with the
performance of seen tasks. One of the important aspects of the
future work is develop techniques that allow us to grow the
data as well as the robots performance and general capabilities
at a faster rate.

H. Baselines

Gato is, similarly to RT-1, based on a Transformer archi-
tecture, but varies from RT-1 in multiple aspects. First, it
computes image tokens without the notion of language and
each image token embedding is computed separately for each
image patch, as opposed to early language fusion and global
image embedding in our model. Second, it does not use a

Fig. 8: The growth of data, number of tasks, and seen instruction
performance over time.

pre-trained text embedding to encode the language string. It
also does not include inference time considerations that are
necessary for real robots as discussed in Sec. III-B such as
TokenLearner and the removal of auto-regressive actions. In
order to run Gato on real robots at a high enough frequency,
we also limit the size of the model compared to the original
publication, which was 1.2B parameters (resulting in on robot
inference time of 1.9s), to be of similar size to RT-1 (37M
parameters for Gato vs. 35M for RT-1). BC-Z is based on a
ResNet architecture, and was used in SayCan [1]. BC-Z differs
from RT-1 in that it is a feedforward model that does not
use previous timesteps, and it uses continuous actions rather
than discrete action tokens. In addition to the original BC-Z
model size, we also compare our method to a larger version
of BC-Z that has a similar number of parameters to RT-1
and refer to it as BC-Z XL. We study and analyze how each
of these design decisions changes performance in Appendix
Sections M and N.

I. Evaluation Details

In Section IV-B, we study the zero-shot generalization
capabilities of RT-1 to difficult scenarios not present in the
training dataset. To fairly evaluate different ablations of RT-1
as well as baseline policies, we design standardized evaluation
procedures that cover a range of incremental difficulty levels.

Seen tasks. We evaluate on 744 tasks present in the training
dataset. The breakdown between 12 skills is shown in Table I.
For all “Seen” evaluations, we use the same classroom setting
used for data collection as described in Section III-C. For each
policy, we report a single representative metric that takes a
skill-weighted average across individual skill evaluations.

Unseen tasks. We evaluate policy performance on 53 tasks
that are held out during training. While the unseen instruc-
tions’ specific combinations of skills and objects are not seen
during training, other combinations of the same skills and
objects are present in the training set. We evaluate these unseen
tasks in the same environment and the same randomization
procedure as the Seen tasks. A full list of these unseen tasks
is shown in Table VII.

Distractor robustness. We test three tasks (“pick coke can”,
“place coke can upright”, “move coke can near green rice
chip bag”) with incrementally more distractor objects added
to the scene. The easy setting includes 0, 2, or 5 distractor
objects. The medium setting includes 9 distractor objects, but



the coke can is never obscured. The hard setting includes 9
distractor objects, but the scene is more crowded and the coke
can is partially occluded. Both the medium are hard setting
are more difficult than scenarios in the training dataset, which
contained between 0 and 4 distractors. Examples of these
difficulty settings and policy evaluation rollouts are shown in
Figure 11.

Background robustness. We test six tasks (“pick coke can”,
“move blue chip bag near orange”, “knock redbull can over”,
“pick green jalapeno chip bag”, “move sponge near brown
chip bag”,“place redbull can upright”) with incrementally
more challenging backgrounds and counter textures. In the
easy setting, we utilize the same background environments
and counter textures as the training dataset. In the medium
setting, we utilize the same background environment but add
a patterned tablecloth to change the counter texture. In the
hard setting, we utilize a brand new kitchen environment with
a new countertop; this changes the counter texture, drawer
material and color, and background visuals. Examples of these
difficulty settings and policy evaluation rollouts are shown in
Figure 9.

Realistic instructions. To study how RT-1 performs in
more realistic scenarios, we propose an evaluation setting in
a real office kitchen that is a dramatic shift from the original
training classroom environment. We propose a variety of skills
that combine aspects of the previous zero-shot evaluations,
including adding new distractors, including new backgrounds,
and new combinations of objects with skills. We refer to the
easiest scenario as L1 generalization, which introduces a new
countertop and lighting condition but keeps the skills and
objects the same. Next, L2 generalization additionally adds
novel distractor objects such as kitchen jar containers. Finally,
L3 generalization adds new objects or new locations such as
near a sink. While some of these distribution shifts are tested
in Section IV-B, these realistic instructions aim to test multiple
dimensions simultaneously. Examples of these instructions are
presented in Fig. 10.

Easy
same background,

same texture

Hard
new background,

new texture

Medium
same background,

new texture

Fig. 9: “Backgrounds” evaluations focus on testing the performance
of RT-1 on settings with different table textures and different
backgrounds, such as those found in kitchens never trained on.
These visual differences are quite pronounced, which in the most
challenging case entails a new kitchen with different counter tex-
ture, different lighting conditions, different counter material, and a
different background.

Instruction
pick coke can from top drawer and place on counter
pick green can from top drawer and place on counter
pick green rice chip bag from middle drawer and place
on counter
pick redbull can from top drawer and place on counter
place 7up can into bottom drawer
place brown chip bag into top drawer
place green can into middle drawer
move 7up can near redbull can
move apple near green rice chip bag
move apple near paper bowl
move apple near redbull can
move blue chip bag near blue plastic bottle
move blue chip bag near pepsi can
move blue chip bag near sponge
move brown chip bag near apple
move brown chip bag near green rice chip bag
move brown chip bag near redbull can
move coke can near green jalapeno chip bag
move coke can near water bottle
move green can near 7up can
move green can near apple
move green can near coke can
move green jalapeno chip bag near blue chip bag
move green rice chip bag near orange
move green rice chip bag near orange can
move green rice chip bag near paper bowl
move orange can near brown chip bag
move pepsi can near orange can
move redbull can near coke can
move rxbar blueberry near blue plastic bottle
move rxbar blueberry near orange can
move rxbar chocolate near paper bowl
move rxbar chocolate near rxbar blueberry
move sponge near apple
move water bottle near 7up can
move water bottle near sponge
move white bowl near orange can
pick blue plastic bottle
pick green rice chip bag
pick orange
pick rxbar chocolate
pick sponge
place pepsi can upright
knock orange can over
pick blue plastic bottle from paper bowl and place on
counter
pick brown chip bag from white bowl and place on
counter
pick green can from paper bowl and place on counter
pick green jalapeno chip bag from white bowl and place
on counter
pick orange can from white bowl and place on counter
pick redbull can from white bowl and place on counter
place blue plastic bottle into paper bowl
place coke can into paper bowl
place orange can into paper bowl

TABLE VII: List of Unseen Instructions in Sec. IV-B. For the
“Unseen Tasks” evaluation, we exclude a total of 53 tasks during
training. While these exact instructions were not present in the
training set, the objects and skills contained in these instructions were
still present in the training set.



Fig. 10: “Realistic instructions” evaluations propose realistic sce-
narios multiple distribution shifts that incrementally increase in
difficulty. L1 generalization introduces a new real office kitchen with
new lighting conditions. L2 generalization additionally adds unseen
distractor objects. Finally, L3 generalization includes new objects or
objects in new locations, such as next to a sink.

Easy
2 - 5 distractors,

no occlusion

Medium
9 distractors,
no occlusion

Hard
9 distractors,

occlusion

Fig. 11: “Distractors” evaluations focus on diversifying initial scene
configurations well beyond the distributions contained in the training
dataset, which contain between 2 and 4 distractor objects. In the most
challenging scenarios, the scene is extremely cluttered and contains
occlusions for the objects of interest.

J. Heterogeneous Data

We also explore the limits of RT-1 for utilizing highly
heterogeneous data. We demonstrate how RT-1 can incorporate
and learn from vastly different data sources and improve from
such data without sacrificing its original-tasks performance
across the varied tasks inherent in this data. To this end, we
conduct two experiments: (1) RT-1 trained and tested on both
real data and simulation data and (2) RT-1 trained across large
datasets of different tasks, originally collected by different
robots.

Absorbing simulation data. Table VIII shows the ability of
RT-1, and baselines, to absorb both real and simulation data.
To test this, we take all of the real demonstration data but we
also provide additional simulation data that includes objects
that the robot has never seen in the real world. We add a
set of sim objects and only show them on a subset of tasks,
specifically the picking tasks, in simulation. To accomplish
this, we run our real2sim method described in Sec. F to
bootstrap a simulation policy from the real world policy that
is then trained with multi-task RL [29] with additional objects
in simulation. From this process, we extract 518k successful

Real Objects Sim Objects (not seen in real)

Seen Skill Seen Skill Unseen Skill
Models Training Data w/ Objects w/ Objects w/ Objects

RT-1 Real Only 92 23 7
RT-1 Real + Sim 90 87 33

TABLE VIII: Experimental results for incorporating simulation data
in RT-1. Adding simulation data does not impact the performance
on real objects, while significantly improving real performance on
objects that were only introduced in simulation.

trajectories of picking new objects and mix them with the
real data that was used in the previous experiments. The
goal of this experiment is to demonstrate that by expanding
the dataset of simulation trajectories, we can benefit RT-
1’s generalization capabilities without sacrificing the original
training performance – a desired property of an absorbent
model.

To evaluate the properties of this model, we specify different
generalization scenarios: for seen skills with real objects the
training data has real data of that instruction (i.e., performance
on seen tasks), for seen skills with sim objects the training data
has sim data of that instruction (e.g. “pick up a sim object”,
which was present in sim), and for unseen skills with sim
objects the training data has sim data of that object but there
are no examples of the instruction describing the skill with
that object either in sim or in real (e.g., “move a sim object
to apple”, even though the robot has only practiced in picking
that sim object and not moving it near other objects). All
evaluations are done in the real world but to limit the number
of instructions evaluated, we focus on pick and move-to skills.

We find in Table VIII that for RT-1, we do not lose
performance adding simulation data compared to the Real
Only dataset. We do however, see a significant increase in
performance (from 23% to 87%) on objects and tasks seen
only in simulation, to approximately the performance of the
those in real, demonstrating an impressive degree of domain
transfer. We also see a significant increase in performance
on unseen instructions from 7% to 33%; impressive given
the object in question has never been seen in real and the
instruction never seen at all. Overall, we find that RT-1 is able
to efficiently “sponge up” new data, even from a very different
domain.

Absorbing data from different robots. To push the data
absorption limits of RT-1, we conduct an additional set of
experiments where we combine two data sources that originate
from different robots: Kuka IIWA as well as the mobile
manipulators used in the experiments so far. The Kuka data
contains all the successful examples collected in QT-Opt [28],
which corresponds to 209k episodes, where the robot was
indiscriminately grasping objects in a bin (see an example of a
Kuka episode in Table. IX). Our goal in this experiment is to
analyze whether the performance on the RT-1 tasks drops when
adding the additional data and, more importantly, whether we
can observe any transfer from data collected by a different
robot morphology.



Fig. 12: In Table V, RT-1 is trained with data from two robotics platforms and learns to generalize across them.

We would like to emphasize the difficulty of this setting by
noting the major differences between the datasets. Not only are
the robots that collected the data different in appearance and
action space, but also the environment they were deployed in
has different appearance and dynamics. In addition the QT-Opt
data presents a completely different action distribution – it was
collected by an RL agent as opposed to human demonstrations
present in our dataset.

To mix the Kuka data together with the RT-1 data, we first
transform the original Kuka 4-DOF action space into the same
action space as RT-1, namely we set the roll and pitch to 0,
while keeping the yaw values that were present in the original
Kuka data. In addition, we transform the binary gripper-close
command into a continuous gripper-closedness command that
is present in the RT-1 data. We also need text instructions
corresponding to the task performed and since the Kuka data
does not contain the name of the object that was grasped, we
relabel all the data to the “pick anything” instruction. With
these modifications, we mix both datasets with the 2:1 (RT-
1 data : Kuka data) ratio and train RT-1 to obtain the final
model.

To test whether RT-1 can effectively absorb these two very
different datasets, we evaluate the performance on the original
RT-1 tasks (in this case, we also focus on “pick” and “move
to” skills), which we refer to as the standard “Classroom eval”,
as well as the performance on the newly constructed tasks that
reflect the bin-picking setup present in the Kuka data, which
we refer to as the “Bin-picking eval”. For the Bin-picking eval
to be close to the original dataset, we put in the same looking
bin for the objects as well as modify the robot to be similar
to the Kuka manipulators by adding extra wires and coloring
the gripper gray. For all of the evaluations we use the mobile
manipulator robot with the picking commands and evaluate it
based on 72 grasping trials.

The results are presented in Table IX. We observe that the
model that mixes the RT-1 data and the Kuka data has only
a minimal decrease in the original tasks’ performance (i.e.
Classroom eval), i.e. 2%. Even more importantly, in the Bin-

Models Training Data Classroom eval Bin-picking eval

RT-1 Kuka bin-picking data + MM data 90 39

RT-1 MM only data 92 22
RT-1 Kuka bin-picking only data 0 0

TABLE IX: Experimental results for mixing data from two different
robots. Incorporating Kuka bin-picking data from QT-Opt [28] in RT-
1 minimally impacts the standard classroom evaluation performance
and results in almost a 2x improvement in generalization to the Bin-
picking evaluation (that is similar to the setup in the Kuka data) on
the mobile manipulator (MM). This demonstrates an effective transfer
across two different robot morphologies.

picking eval, we observe that the model trained on multi-robot
data performs at 39% compared to the 22% of the model that
was trained only on the RT-1 data. This is a 17% performance
difference (almost 2x). Additionally, RT-1 trained on Kuka
bin-picking data and evaluated on the bin-picking tasks with
the mobile manipulator (MM) robot achieves 0% performance,
confirming that it is difficult to transfer a behavior from
another robot morphology. However, mixing the data from
both robots allows RT-1 to infer the correct actions of the
MM robot even when faced with the states observed by Kuka
robots. This is achieved without explicit demonstrations of
bin-picking on MM robot and by taking advantage of past
experiences collected by Kuka robots. These results indicate
that RT-1’s absorption properties also include the ability to
acquire new skills through observing other robots’ experiences
and present an exciting avenue of future work where we
combine many more multi-robot datasets to enhance the robot
capabilities.

K. Long-horizon Evaluation Details

In addition to short-horizon individual skill evaluations
shown in previous sections, we also evaluate how RT-1 per-
forms in a long-horizon realistic kitchen setting that chains
multiple manipulation and navigation skills to accomplish nat-
ural language instructions within the SayCan framework [1].
A list of long-horizon instructions used for these evaluations



is listed in Table XI.
The success rate of long-horizon tasks decreases exponen-

tially with the length of the task, so high success rates in
manipulation skills are particularly important. Furthermore, as
mobile manipulation tasks require both navigation and ma-
nipulation, the policies ability to be robust to base position is
crucial. Since SayCan combines many low-level instructions to
perform high-level instructions, the number of possible high-
level instructions increases combinatorially with instructions,
so the skill-breadth of RT-1 can be fully seen.

SayCan works by grounding language models in robotic
affordances and it leverages few-shot prompting to break down
a long horizon task expressed in natural language to a sequence
of low level skills. An example of long horizon task would be
“Bring me two different sodas”, and one feasible plan would
be “1. find a coke, 2. pick up the coke, 3. bring it to you,
4. put down the coke, 5. find a pepsi, 6. pick up the pepsi,
7. bring it to you, 8. put down the pepsi, 9. done.” To obtain
the affordance function we use value functions trained with
MT-OPT [29]. For a detailed description of SayCan algorithm
please refer to [1].

Since the focus of this paper is acquisition of many gen-
eralizable skills, we focus our evaluation on one subset of
tasks presented in [1]. It is the long-horizon family of
tasks, involving 15 instructions, each instruction requires an
average of 9.6 steps to complete, and involves an average
of 2.4 manipulation skills per instruction. A full list of the
instructions can be found in Table XI.

We compare against 3 baselines. 1) SayCan with BC-
Z, which uses SayCan planning algorithm with BC-Z as
manipulation policy, 2) SayCan with Gato, which uses SayCan
planning algorithm with Gato as manipulation policy, 3) Orig-
inally reported SayCan results, which use SayCan planning
algorithm with BC-Z, but since it uses a slightly different
prompt, the planning success rate is lower. We reimplemented
3) in 1) for a fair comparison.

As shown in Table X, except for original SayCan, all meth-
ods get 87% as planning success rate, and RT-1 performs the
best, with 67% execution success rate in Kitchen1. Kitchen2
constitutes a much more challenging generalization scene,
since the Robot Classroom training scenes are modeled after
Kitchen1 (see the pictures of the kitchens in Fig. 3). Due to
this generalization difficulty, SayCan with Gato is not able to
finish any long horizon task, and SayCan with BC-Z is able
to achieve a success rate of 13%. The original SayCan paper
did not evaluate performance in a new kitchen. Surprisingly,
the manipulation performance does not see a visible drop
from Kitchen1 to Kitchen2 for our method. This enables us
to operate unseen drawers in Kitchen2, and that we can use
SayCan-RT1 to plan and execute ultra-long horizon tasks, with
as many as 50 steps.

L. Data ablations

While previous works have shown the scaling abilities of
Transformer-based models [34, 51, 25] with the number of
model parameters, in many robotics works the model size is

SayCan tasks in Kitchen1 SayCan tasks in Kitchen2

Planning Execution Planning Execution

Original SayCan [1]∗ 73 47 - -
SayCan w/ Gato [51] 87 33 87 0
SayCan w/ BC-Z [23] 87 53 87 13
SayCan w/ RT-1 (ours) 87 67 87 67

TABLE X: SayCan style long horizon tasks in Kitchen1 and
Kitchen2. (*Original SayCan eval uses a slightly different prompt
so the planning success rate is lower.)

Instruction
How would you put an energy bar and water bottle on
the table
How would you bring me a lime soda and a bag of
chips
Can you throw away the apple and bring me a coke
How would you bring me a 7up can and a tea?
How would throw away all the items on the table?
How would you move an multigrain chips to the table
and an apple to the far counter?
How would you move the lime soda, the sponge, and
the water bottle to the table?
How would you bring me two sodas?
How would you move three cokes to the trash can?
How would you throw away two cokes?
How would you bring me two different sodas?
How would you bring me an apple, a coke, and water
bottle?
I spilled my coke on the table, how would you throw
it away and then bring me something to help clean?
I just worked out, can you bring me a drink and a snack
to recover?
How would you bring me a fruit, a soda, and a bag of
chips for lunch

TABLE XI: List of SayCan instructions evaluated in Sec. IV-D

often not the primary bottleneck, and the maximum size is
limited by the latency requirement for running such models
on real robots. Instead, in this study we focus on ablating
the influence of dataset size and diversity, as they play an
important role in the traditionally data-limited robot learning
field. Since data collection is particularly expensive for real
robots, it is important to quantify what kind of data our models
need to achieve a certain performance and generalization.
Thus, our last question focuses on the scaling properties of
RT-1 with different data properties.

In Table XII we show the performance, generalization, and
robustness of RT-1 as we decrease the dataset size (% data)
and the dataset diversity (% tasks). To separate the axes of
dataset size and diversity, we create smaller datasets with the
same task diversity by removing data from the tasks with
the largest data, capping the number of examples per task
at 200 (resulting in 51% of the data), 100 (37% of the data),
and 50 (22.5% of the data). To create a narrow dataset, we
remove the tasks with the least data, thus keeping 97% of
the overall data but only 75% of the tasks. As we decrease
dataset size, we see a general trend of decreasing performance
and a steeper trend of decreasing generalization. As we make



Generalization

Models % Tasks % Data Seen Tasks All Unseen Tasks Distractors Backgrounds

Smaller Data
RT-1 (ours) 100 100 97 73 76 83 59
RT-1 100 51 71 50 52 39 59
RT-1 100 37 55 46 57 35 47
RT-1 100 22 59 29 14 31 41

Narrower Data
RT-1 (ours) 100 100 97 73 76 83 59
RT-1 75 97 86 54 67 42 53

TABLE XII: Various data ablations of RT-1 across seen tasks,
generalization to unseen tasks, and robustness to distractors and
backgrounds. Data diversity has a higher impact on the performance
and generalization than data quantity.

the dataset more narrow, we see much steeper performance
reductions, particularly in terms of generalization. In fact,
removing 25% of the tasks while keeping 97% of the data
achieves an equivalent generalization performance to reducing
the dataset size by as much as 49%. Our key takeaway is thus
that data diversity is more essential than data quantity.

M. Model Ablations

What are the important and practical decisions in the
design of the model and how do they affect performance
and generalization?

To answer this question, we perform a set of ablations
over different design decisions in RT-1. We aim to test a
number of hypotheses that will help us disambiguate where
the benefits of our method come from. Possible hypotheses
about the source of improvement include: (i) the capacity and
expressiveness of our model, which we verify by ablating
the model size, trying other architectures (e.g., by remov-
ing the Transformer component); (ii) the particular action
representation, which makes it easy to represent complex
multi-modal action distributions, which we test by switching
to continuous (normally distributed) actions, as well as by
ablating the auto-regressive action representation; (iii) the
ImageNet pre-trained initialization of the components, which
we test by initializing the model’s weights randomly; and
(iv) access to the short history, which we test by excluding
observation history. More concretely, we ablate our model by
(1) decreasing the model size (from 35M to 21M parameters),
(2) removing the Transformer architecture (using a pre-trained
EfficientNet instead), (3) using a continuous instead of discrete

action space (using an MSE loss and multivariate normal
output), (4) auto-regressively conditioning on actions, (5)
removing ImageNet pre-training of the FiLM EfficientNet, and
(6) removing history (reducing the sequence of six images as
input to a single image). For each ablation we compare on the
axes of performance on seen tasks, performance on unseen
tasks, as well as inference speed and robustness to distractors
and backgrounds (with a more detailed description of each
category in Section IV-A and Appendix I).

Table XIII shows the results of each ablation and the delta
performance compared to the full RT-1. RT-1 achieves impres-
sive performance on tasks and new environments, and particu-
larly outperforms baselines on the most challenging robustness
problems. We also find that each design decision is important,
though at varying levels. We first evaluate a model that
replaces the per-dimension discretized action representation in
our model with a more standard continuous Gaussian distri-
bution. We observe a significant decline in performance from
this modification. The per-dimension discretization allows our
model to represent complex multi-modal distributions, while
the Gaussian distribution captures only a single mode. These
results suggest that this standard and popular choice is highly
suboptimal with the more complex and diverse demonstration
data used by our system. ImageNet pre-training is particularly
important for model generalization and robustness, decreasing
the unseen task performance rate by 33%, as a result of the
large and diverse visuals of the ImageNet dataset. Adding
history has an impact primarily on generalization to distractors,
while removing the Transformer component has a uniform but
small negative impact across the seen tasks, unseen tasks and
distractors. In order to keep the ImageNet pre-training while
reducing the model size, we reduce the number of parameters
only by 40% (from 31M to 25M). Resulting performance
drops across training and generalization tasks but not as much
as in other ablations. Finally, autoregressively conditioning on
actions, as used in [51, 4, 34], did not benefit performance
and slowed inference by more than 2x.

As described in Sec. III-B, in order to run large Transformer
models on real robots, we require a model that supports fast
inference for real-time operation. Note that in order to achieve
our target control rate of 3Hz (described in Sec. III-B), we also
need to consider other sources of latency in the pipeline, such
as the camera latency and communication overhead. However,
these factors will be constant for all the models, and therefore
we focus our evaluation on just the network inference time.
The last column of Table XIII shows the inference speed of
all the models. RT-1 is almost an order of magnitude faster
than Gato with a similar number of parameters, but it is also
considerably slower than a ResNet-based BC-Z. In terms of the
different ablations of our model, we observe that the biggest
slow-down is caused by including auto-regressive actions (∼2x
slow-down), and since this does not significantly influence
the performance, the final version of RT-1 does not generate
actions auto-regressively.



Distractors Backgrounds

Model Seen Tasks Unseen Tasks All Easy Medium Hard All Inference Time (ms)

Gato [51] 65 (-32) 52 (-24) 43 (-40) 71 44 29 35 (-24) 129
BC-Z [23] 72 (-25) 19 (-57) 47 (-36) 100 67 7 41 (-18) 5.3
BC-Z XL 56 (-41) 43 (-33) 23 (-60) 57 33 0 35 (-24) 5.9
RT-1 (ours) 97 76 83 100 100 64 59 15

RT-1 w/o big model 89 (-8) 62 (-14) 77 (-6) 100 100 50 53 (-6) 13.5
RT-1 w/o pre-training 84 (-13) 43 (-33) 60 (-23) 100 67 36 41 (-18) 15
RT-1 w/ continuous actions 68 (-29) 43 (-33) 37 (-46) 71 67 0 35 (-24) 16
RT-1 w/ auto-regressive actions 85 (-12) 71 (-5) 67 (-16) 100 78 43 65 (+6) 36
RT-1 w/o history 82 (-15) 62 (-14) 50 (-33) 71 89 14 59 (+0) 15
RT-1 w/o Transformer 86 (-13) 62 (-14) 67 (-16) 100 100 29 59 (+0) 26

TABLE XIII: Various model ablations of RT-1 across seen tasks, generalization to unseen tasks, and robustness to distractors and backgrounds.

Layer 2, 
Head 6

Layer 2, 
Head 6

Layer 4, 
Head 2

“pick green 
jalapeno chip 
bag from middle 
drawer and 
place on 
counter”

“place rxbar 
blueberry in 
bottom drawer”

“open middle 
drawer”

Fig. 13: In this figure we show the attention map of the RT-1 policy.
Different layers and heads generally focus on different part of the
image. Most commonly, they focus on the parts of the scene with the
richest interaction affordances, such as graspable objets. For example,
Layer 2 Head 6 focuses on the jalapeno chips and pepsi can in
grasping tasks; and Layer 4 Head 2 focuses on the drawer in drawer
opening tasks.

N. Summary and Analysis

In this section, we summarize some of our findings and
propose intuition for RT-1’s high performance, generalization,
and robustness. First, ImageNet pretraining (along with Uni-
versal Sentence Encoder language embedding) has a large
impact particularly on unseen tasks. We observe that RT-1
inherits some of the knowledge that results from the generality
and diversity of the datasets these models were trained on.
Second, continuous actions have a large impact across all
aspects of performance. This has been previously observed and
may be due to the ability to represent more complex action
distributions – the per-dimension discretization allows our
model to represent complex multi-modal distributions, while
the Gaussian distribution captures only a single mode. Third,
given such expressive multitask models, data diversity has a
larger impact than data size. Indeed, even datasets collected in
simulated environments or from different robotic embodiments
can be leveraged by RT-1, opening avenues for new regimes
of data collection.

Finally, RT-1 fuses language into the image pipeline early
via FiLM conditioning, compared to e.g., Gato’s late fusion.
This enables image tokens that focus only on relevant features



for the instruction at hand, which may be the cause of poor dis-
tractor performance for Gato. Figure 13 visualizes the attention
during rollouts of RT-1. We see that the attention is focused
on relevant features and particularly on interaction between the
gripper and the object of interest. The bottleneck of attention
layers such as these results in a compact representation which
effectively ignores distractors and varying backgrounds.
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