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Abstract—Recent work in visual representation learning for
robotics demonstrates the viability of learning from large video
datasets of humans performing everyday tasks. Leveraging meth-
ods such as masked autoencoding and contrastive learning, these
representations exhibit strong transfer to policy learning for
visuomotor control. But, robot learning encompasses a diverse
set of problems beyond control including grasp affordance
prediction, language-conditioned imitation learning, and intent
scoring for human-robot collaboration, amongst others. First,
we demonstrate that existing representations yield inconsistent
results across these tasks: masked autoencoding approaches pick
up on low-level spatial features at the cost of high-level seman-
tics, while contrastive learning approaches capture the opposite.
We then introduce Voltron, a framework for language-driven
representation learning from videos and associated captions.
Voltron trades off language-conditioned visual reconstruction to
learn low-level visual patterns, and visually-grounded language
generation to encode high-level semantics. We also construct an
evaluation suite spanning five distinct robot learning problems — a
unified platform for holistically evaluating visual representations
for robotics. Through comprehensive, controlled experiments
across all five problems, we find that Voltron’s language-driven
representations outperform the prior state-of-the-art, especially
on targeted problems requiring higher-level features.

I. INTRODUCTION

Good words are worth much, and cost little.
— GEORGE HERBERT

Realizing a future of ubiquitous, broadly capable robots is
predicated on systems capable of generalizable perception and
interaction [95, 12, 47]. Towards this goal, recent work in
robotics present approaches for learning visual representations
to bootstrap learning for visuomotor control [62, , 05].
Critically, these approaches show that we can learn such
representations from real-world videos of human behavior
— specifically, egocentric video datasets such as Something-
Something-v2 and Ego4D [24, 25] — instead of solely relying
on in-domain robotics data that is scarce and expensive. While
prior work has developed and evaluated representations for
visuomotor control, robot learning is an expansive discipline,
spanning a diverse spectrum of problems: predicting grasp
proposals from visual input [71, 54], language-conditioned
imitation learning [59] and belief/intent tracking for human-
robot interaction [27, 38], amongst others. Broadening our
focus to problems beyond learning for control enables us to
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develop flexible, generalizable representations that capture
both low-level spatial reasoning and high-level semantic
understanding — a flexibility that is a key prerequisite to
realizing a foundation model for robotics [! 1]. Thus, we ask:
how can we learn visual representations that generalize across
the diverse spectrum of problems in robot learning?

Recent approaches for learning visual representations for
robotics use pretraining objectives that reflect different in-
ductive biases for what the learned representations should
capture. Masked Visual Pretraining [MVP; 65] proposes using
masked autoencoding [29] to prioritize visual reconstruction
from heavily masked video frames, encoding representations
that facilitate per-pixel reconstruction. Separately, Reusable
Representations for Robotic Manipulation [R3M; 58] eschews
pixel reconstruction for two contrastive learning objectives: time
contrastive learning [74] and video-language alignment. These
approaches show strong performance on imitation learning in
simulated and real-world settings, with sizeable improvements
over strong alternatives such as ResNet or CLIP features
[28, 64]; however, they have not been evaluated beyond these
settings. As a first contribution, we evaluate these represen-
tations on problems beyond control and identify inconsistent
evaluation performance, with huge penalties depending on
the approach and specific application. MVP performs well on
problems such as grasp affordance prediction, but struggles with
higher-level problems such as language-conditioned imitation.
R3M instead excels at the higher-level problems, but degrades
completely on problems such as grasp affordance prediction.

Motivated by this, we present Voltron, a framework for
language-driven visual representation learning for robotics that
learns representations that capture both low-level and high-level
features, empirically outperforming prior approaches over
all applications. Voltron models take videos and associated
language captions as input to a masked autoencoding pipeline,
reconstructing one (or more) frames from a masked context.
The novelty of our framework is in how we use language
supervision. Depending on a tunable probability «, we either
condition on (a = 0), or generate (o > 0) the associated
caption. Explicitly conditioning on words in different contexts
allows for low-level pattern recognition at the local, spatial
level, while generating language from our learned visual
encoding allow us to infer higher-level features around
affordances and intents. Furthermore, guided by the hypothesis
that language is especially useful in describing change, we
study dual-frame contexts consisting of the initial and current
observation in multi-timestep tasks.
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Fig. 1: Voltron Evaluation Suite. We introduce a suite of evaluation problems spanning five applications within robotics,
including grasp affordance prediction, referring expression grounding, single-task visuomotor control (in simulation), language-
conditioned imitation learning (on a real robot), and intent scoring.

Altogether, we examine three different Voltron variants:
1) V - Cond (Language Conditioning: single frame, o = 0).
2) V — Dual (Context: dual-frame conditioning, o = 0).
3) V - Gen (Language Generation: dual-frame, a = 0.5).

To evaluate Voltron and other visual representation learning
approaches, we assemble a new evaluation suite (depicted in
) spanning five problem domains within robotics: 1)
dense segmentation for grasp affordance prediction [101], 2)
object detection from referring expressions (e.g., “the blue
coffee mug to the left of the plate”) in cluttered scenes [94],
3) imitation learning for visuomotor control (in simulation)
[58], 4) learning multi-task language-conditioned policies for
real-world manipulation [86] (on a real-world Franka Emika
fixed-arm manipulator), and 5) zero-shot intent scoring [38,
]. We choose these tasks for their broad coverage; tasks
such as grasp affordance prediction and referring expression
grounding require reasoning over low-level spatial features,
while language-conditioned imitation and intent scoring require
a deeper understanding of semantics.

Through experiments controlling for pretraining data and
model capacity, we show that the simplest Voltron representa-
tions (from )V — Cond) strictly outperform both MVP and R3M
representations across all evaluation domains. Furthermore, by
adapting our models to learn from multiple frame contexts
and that favor generation (e.g., with V - Dual and V
— Gen), we show that we can further boost performance
on evaluations requiring higher-level features such as with
language-conditioned policy learning (on a real robot) and
intent scoring. Though language-conditioning offers universal
performance gains, there are tradeoffs between Voltron models;
adding language generation hurts performance on some control
tasks, even though its necessary for strong performance
on intent scoring. Furthermore, Voltron with single-frame

language conditioning performs well on non-episodic tasks (e.g.,
grasping), but underperforms multi-frame models on control
tasks. There is not yet a silver bullet — a single representation
strong on all tasks — but the ability to balance tradeoffs between
encoding low and high-level features offers a net win over
restrictions of past work.

Contributions. 1) We present Voltron, a framework for
language-driven visual representation learning. Through con-
trolled experiments and comprehensive ablations we demon-
strate that Voltron’s representations strictly outperform the
prior art across 2) a new evaluation suite composed of five
distinct problem domains within robotics. Finally, 3) we analyze
the tradeoffs between different Voltron models that balance
different types of feature learning, outlining several directions
for future work. We release all models, the evaluation suite,
code (pretraining and adaptation), and preprocessed data at:
https://sites.google.com/view/voltron-robotics.

Limitations. We do not have access to the compute resources
to train models of the same scale and data used in prior work
[65, 58]. Instead, we carefully reproduce MVP and R3M -
the current state-of-the-art approaches — by pretraining on
the Something-Something-v2 dataset [24], further controlling
for batch ordering, model capacity, and other sources of
randomness (full details are in ). However, for full context
we also include results from the official release artifacts from
both these works, as well as other methods such as CLIP [64],
though we note these results in gray or with dashed lines as
to indicate they are not directly comparable.

II. RELATED WORK

Voltron is situated within a rich body of work in visual
representation learning for robotics and multimodal pretraining.
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Fig. 2: The Voltron Framework. Central to our approach is language-driven learning on top of a masked autoencoding

backbone. We incorporate language in two ways, following

: 1) as a conditioning variable fed to a multimodal encoder

that also encodes one or more video frames, or 2) as a generation target for the language generator [Left]. During downstream
evaluation, we use the (frozen) outputs from the encoder, adapting evaluation-specific “heads” on top [Right].

Visual Representation Learning for Robotics. An emerging
body of work in robot learning studies learning visual state
representations for control. A wealth of prior approaches learn
representations from in-domain data taken directly from the
target environment (and corresponding task); these techniques
range from using data augmentation [45, , s ] to
modeling forward dynamics [22, 20] to using task-specific
information [39, ]. Unlike these approaches, we move
beyond task-specific data, instead leveraging large, accessible
datasets such as videos of humans performing everyday tasks.
Work in this paradigm has exploded in recent years. A number
of approaches find that existing representations such as features
from models trained on ImageNet [19], or features from
CLIP [64] enable more efficient learning [75, 42]. More
recently, multiple approaches have shown increased dividends
in applying such representations to visuomotor control, for
example by combining features at different layers of pretrained
ResNets [62] or by pretraining such representations on human
videos, conjecturing that such data captures features useful
for robotic manipulation [58, 97, 65, 53]. Missing from these
approaches however is a notion of semantics; works such as
MVP [97, 65] purely learn to perform masked reconstruction,
and even works that leverage some temporal and linguistic
signals do so in a limited way [58, 53]. Instead, our work is
motivated by the hypothesis that language understanding — via
conditioning and generation — is an essential component for
learning generalizable representations. It is not enough that a
representation summarizes an observation; instead, for general-
ization to new contexts, it must capture how observations (and

changes thereof) relate to higher-level semantic abstractions.

Voltron aims to do this with its language-driven representa-
tion learning objective: by jointly modeling sequences of frames
and language, we enable a range of capabilities, from producing
representations of single images in isolation, to providing the
capability to generate language grounded in visual contexts.
We demonstrate the benefits of language-driven learning in our
evaluation (see $V): in head-to-head comparisons controlling
for data and model capacity, Voltron models strictly outperform
prior approaches across all evaluation domains.

Learning Multimodal Foundation Models. Our work draws
further inspiration from a wave of progress in multimodal
foundation models such as CLIP, Multimodal Masked Autoen-
coders (M3AE), Flamingo, CoCa, and Gato, amongst many
others [064, 23, 3, 99, 68, 51, 1]. These approaches highlight the
myriad benefits of multimodal pretraining: language supervision
works to enrich visual representations (even in the absence
of language downstream), while visual supervision similarly
enriches language representations [50, 82]. Of the many
capabilities afforded by these models, many have applications in
embodied Al and robotics. CLIP representations have shown to
be effective in applications to various robotics tasks [80, 42, 17],
while multimodal transformer models have proven effective
initializations for training control policies [69, 49]. These
approaches are similar to Voltron in their joint use of visual
and language inputs; where Voltron differs, however, is in our
novel representation learning objective that balances language
conditioning and generation, enabling learning representations
that transfer to a wide range of applications within robotics.



III. YVOLTRON — LANGUAGE-DRIVEN LEARNING

We assume access to a dataset of videos paired with
natural language annotations; in each video-language pair
(v, ¢), language can take the form of a caption (e.g., “peels
the carrot” in ), narration, or even coarse textual label of
a behavior. We assume each video v € RT*HXWXC congsists
of a sequence of frames v = [o01,...,o0r|, where each frame
0; € REXWXC i RGB-encoded. We tokenize and one-hot
encode each utterance into a vocabulary V' of cardinality |V,
padding to a max length L such that ¢ € REXIVI, We define a
<NULL> token (separate from the <PAD> token) as a placeholder
for an empty language context. Furthermore, following the
MAE work, we define a visual masking function Mask(v,y) —
(Uvisible c R(l—’y)(TXHXWXC), Umasked € R'y(TXHXWXC)) that
partitions the regions of a video into a set of visible and
masked-out regions subject to a fixed masking ratio . This
mask is held constant across timesteps in a given clip. We
sample a mask once, and apply it uniformly across all frames
in the video to prevent leakage [©0]; if the masks were sampled
independently, a masked region in one frame could be visible
in another, allowing the encoder to “cheat” by looking ahead.

A. Voltron — Core Components

A Voltron model comprises 1) a multimodal encoder that
takes in a visual context and (optional) language utterance
producing a dense representation, 2) a visual reconstructor that
attempts to reconstruct the masked-out visual context from the
encoder’s representation of what is visible, and 3) a language
generator that predicts the language annotation for the video
given the encoded visual context. The visual reconstructor and
language generator crucially act to shape the representations
by first erasing portions of a (v,c) pair, then attempting to
reconstruct the missing parts; we show in our experiments
(see §V) that this bottleneck helps focus on more low-level
features when we favor reconstruction over generation, and
more high-level, semantic features when we favor generation
over reconstruction. We step through each component below.

Multimodal Encoder: Ey(9,u) — h € RS*4

The multimodal encoder ( ; lower half in blue and )
is the core of a Voltron model. It takes as input (0, ) where
¥ € {vyisible, v} denotes either the masked or unmasked (full)
visual context respectively, and u represents a (possibly <NULL>)
utterance to condition on. As output, the encoder produces a
dense representation i € R5*?% where S denotes the number
of encoded regions, and d is a hyperparameter denoting the
dimensionality of the representation. Keeping with the original
MAE work, we divide each image o; € RHEXWXC into a set
of non-overlapping regions R, where each region is a p X p
patch; this results in |R| = HW/p? regions. Given a k-frame
context, S = (1 —y)k|R)|.

Visual Reconstructor: Ry(h) — Gpaskea € RYFXHXWXC)

The visual reconstructor ( ; upper half in ) takes as
input the encoded representation of the visible visual context

h = Eg(vyisible, ¢). It attempts to reconstruct the missing visual
regions Umasked, conditioned on language context ¢, producing a
prediction Opasked. Following prior work, the elements of Opasked
are the normalized pixel targets from the original image. We
use mean-squared error as the reconstruction 10ss Lyeconstruct (6)-

Language Generator: Gy(h) — ¢ € REXC

The language generator ( ; upper half in red) takes the
encoded representation of the visible context and the <NULL>
language token, h = Eg(vyisible, <NULL>). It generates the
language annotation, producing ¢ € RX*IVI, with each of the
L elements corresponding to a probability distribution over the
vocabulary. We use the negative log-likelihood (cross-entropy)
of the annotation c¢ under the generator as our 108s Lgenerate-

The language generator crucially takes the <NULL> token as
input instead of the annotation c; inputting the same c that
the generator is trying to output can lead to trivial collapse
where the encoder learns to memorize the tokens to aid the
generator. As a result, for each example during training we need
to either condition or generate language; this further motivates
the parameter « in and in the training objective.

B. Balancing Reconstruction & Generation

The Voltron learning objective trades off language-
conditioned reconstruction and visually-grounded language
generation to shape the features captured by the encoder’s
learned representation. The reconstruction objective prioritizes
low-level spatial information conducive to filling in missing
textures, colors, or edges; likewise, the generation objective
captures higher-level semantic information, encouraging the
encoder to encode features that are predictive of the language
caption. We make this tradeoff explicit by minimizing the
following loss, characterized by the parameter « € [0, 1]:

,C(@) = Creconstruct(e) + Egenerate(e)
MSE(Umaskeda Ry (EO (Uvisiblea C))) ifz=0
= MSE(Vmasked; Ro (Eg (visible, NULL>)))  if z =1

+ NLL(c, Gg(Eg(vvisible, <NULL>)))

and z ~ Bernoulli(«)

For each example (v,c) seen at training, we draw 2z ~
Bernoulli(«): with z = 0 we condition on the original language
utterance, while with z = 1, we generate the original language
utterance, conditioning the encoder on the <NULL> token. We
limit our exploration in this work to at most two frame contexts
k = 2 due to computational cost; even four frame contexts
exceed the memory on the compute available to us. In selecting
the two frame contexts, we sample at least five frames from
each video clip in our dataset (with random intervals between).
We enforce a heuristic such that the first frame in each dual-
frame context comes from the first 20% of the clip, with the
other frame appearing in the remaining 80%.

Driven by the hypothesis that different values of « and
frame-contexts k shape the balance of low-level and high-level



features in our representations, we evaluate three different
instantiations of Voltron (as mentioned in §1):

e V- Cond: a =0, k=1 single-frame conditioning.

e V—Dual: o =0, k = 2 dual-frame conditioning; identical
to V — Cond but trained on dual-frame pairs (initial frame,
random subsequent frame).

e V - Gen: o = 0.5, k = 2; condition and generate with
equal probability, trained on dual-frame contexts as above.

Note that we do not evaluate o = 1; preliminary experiments
show that some language conditioning is always helpful.

IV. IMPLEMENTATION & REPRODUCIBILITY

In addition to our framework, a core contribution of this
work is a comprehensive set of controlled experiments. To do
this, we reimplement both MVP and R3M using code released
by the authors, controlling for the pretraining data (at the level
of the individual frames seen per epoch) and model capacity.

Baselines — Preliminaries. Throughout this work, we have
mentioned both MVP and R3M in terms of their tradeoffs;
here, we make their pretraining objectives explicit. Both prior
approaches use video datasets, but only learn single-frame
encoders, choosing to use the video structure in different ways
(detailed below). Of the two approaches, we note that only
R3M uses language supervision.

MVP follows a masked autoencoding backbone, similar to
that depicted in (without language). MVP does not offer
any special consideration to the temporal structure of videos,
instead treating each frame in the dataset as as standalone
input. Given a single frame, MVP masks out regions subject
to a fixed mask ratio v (same as in Voltron), encoding the
visible context with a Transformer encoder, then attempting to
reconstruct the missing context with a separate Transformer
decoder — also using mean-squared error for reconstruction.

R3M is different in that it does not contain a reconstruction
component, instead combining two contrastive objectives on
top of a single-frame visual encoder — time contrastive learning
[74] and image-language temporal alignment [64, 57]. These
objectives explicitly use the temporal structure of videos. Given
an encoding of a visual context, the time-contrastive objective
seeks to maximize the score of encodings between frames
close together in time (e.g., within a few frames of each
other), contrasted against frames from the same video that
are further away. R3M also uses language supervision. Given
a separate encoder that fuses a language caption with the
encoding dual-frames contexts (consisting of an initial and
subsequent frame) the image-language alignment objective
attempts to assign scores that capture “task progress:” the
score of a subsequent frame occurring later in a video subject
to a language caption should be higher than the score of a frame
occurring earlier. The two key differences between Voltron and
R3M are 1) using visual reconstruction as a dense objective
vs. time contrastive learning, and 2) explicitly conditioning
on or generating language in Voltron vs. matching visual and
language embeddings as a contrastive objective.

Pretraining Dataset Construction. We use Something-
Something-v2 [Sth-Sth; 24] as our pretraining dataset, mo-
tivated by prior work [77, 13, 97]. All models see the exact
same image frames. We extract 5 frames per video, per training
epoch to ensure we are learning from multiple visual inputs
of the same context and to facilitate R3M’s time contrastive
learning objective [/4]; we serialize the processed frames, and
store index files with the video/frame indices per epoch.

Data-Equivalent Reproductions. Though prior works release
trained model artifacts, they do not provide sufficient details for
reproduction, such as the exact frames sampled from videos,
preprocessing applied, or hardware/compute used. We thus
reimplement MVP and R3M in a controlled setting on Sth-
Sth using the released code from the original papers where
possible and clarifying additional details with the authors
directly as needed. We implement all models with a Vision
Transformer (ViT) backbone and additionally implement R3M
with a ResNet-50 backbone based on discussions with the
authors of the original work. They suggested that there may be
slight differences in the inductive bias of ResNets vs. Vision
Transformers [67] that would be worth investigating. We use
the ViT-Small/16 variant, with patch size p X p = 16 x 16 and
a Transformer with 12 blocks, 6 attention heads per block, and
hidden dimension d = 384 [96]. We refer to our reproductions
as “R-MVP,;” “R-R3M (ViT-S),” and “R-R3M (RN-50).”

We pretrain all models in this work on TPU v3-8 compute,
generously granted to us by the TPU Research Cloud program
(TRC). We run 400 epochs of training for all models with a
batch size of 1024, each epoch comprised of a pass through
844K frames (168K clips in Sth-Sth, 5 frames per clip).
We do not use dropout or data augmentation. All code and
reproducibility details are in our open-source code repositories,
linked from our project page.

Additional Comparisons. Though we lack the compute re-
sources to train on models on the same scale data, we further
contextualize our results by evaluating the official R3M and
MVP models released in the original works. We note that the
released R3M model uses an unspecified subset of the Ego4D
dataset [25], comprised of over 3000 hours of videos, spanning
over 3M individual clips (constituing a dataset more than 20x
larger than that used in this work). The released MVP also
uses an unspecified subset of Ego4D, but add Sth-Sth, Epic-
Kitchens, and more [!8, 76], while also scaling models up to
86M and 307M parameters, (4-10x the size of ViT-Small). We
also evaluate OpenAI’s CLIP model (ViT-Base) as a strong
baseline that leverages language supervision. We refer to these
models as “R3M (Ego4D),” “MVP (EgoSoup),” and “CLIP
(ViT-B),” following naming conventions from the original work
and denote them with gray fext and dashed lines in plots.

Voltron Architecture Details. Voltron follows the masked
autoencoding pipeline detailed above, with simple extensions
for incorporating language. We implement the Voltron encoder
Ey by jointly embedding the language u and visual inputs vyisible
with a Transformer [93]. We initialize language embeddings



TABLE I: Summary of Evaluation Suite & Results. While some of our evaluation domains use language input, grasp
affordance prediction and single-task visuomotor control do not. Voltron models obtain strong performance over all applications,
whereas R-R3M and R-MVP exhibit variable performance depending on the application subset.

Input Format Train Dataset Size Best Model Best Baseline
Grasp Single Frame 1470 V - Cond R-MVP
Referring Expressions Single Frame, Language Expression 259,839 Y - Cond R-R3M (ViT)
Single-Task Control Frame History n € [5, 10, 25] Demos V - Dual R-R3M (RN-50)
Language-Conditioned Imitation Frame History, Language Instruction 100 = 5 x 20 Demos V —Dual / V - Gen R-R3M (ViT)
Intent Scoring Frame History, Language Intent N/A (Zero-Shot) V - Gen N/A

from DistilBERT [70], learning a separate linear projection
into the encoder’s embedding space, similar to R3M. For the
visual reconstructor Ry and language generator Gy, we use a
separate Transformer with a small addition to enable language
generation. In a standard MAE decoder, patches are generated
independently, attending to all patch embeddings from the
encoder. To enable generation, we append a causal (lower
triangular) attention mask for preventing our language decoder
from “peeking” at the future inputs to generate (visualized
by the red triangle in ). This is akin to prefix language
modeling [66]; all embeddings can attend to the visual inputs
(as in a traditional MAE decoder), but language embeddings
can only attend to the preceding language input.

Voltron uses a combination of different language objectives
on top of the standard MAE pipeline, adding complexity.
To help ensure stable and reliable training, we follow best
practices from the NLP community and make a series of small
changes to the Transformer architecture including: 1) switching
the default LayerNorm to root-mean square normalization
[104, 59] (stability, no learned parameters), 2) switching from
the default GELU to the more performant SwishGLU activation
[79, 15] (performance), and 3) adopting LayerScale for scaling
down the magnitude of each residual connection [91, 40]
(prevents overflow). To ensure that any gains in evaluation
performance stem from our insights around language-driven
learning rather than this modified architecture, we run an
ablation experiment in . We find that these changes do
not change downstream evaluation results, but significantly
improve training stability. We present further details, including
a sketch of the implementation differences in

Adapting Representations. Unfortunately, there is not a
standard way to extract representations from learned Vision
Transformer encoders, especially for those trained via masked
autoencoding. However, Zhai et al. [102] suggest that multi-
headed attention pooling [MAP; 46] is a strong and versatile
approach. We choose to use MAP as the sole feature extraction
approach in all our ViT experiments, finding it to universally
improve performance for all ViT models, relative to the “default”
extraction approaches suggested in prior work. Notably, we find
that just switching to MAP-based extraction over the procedure
used in the original MVP work almost doubles success rate
on visuomotor control tasks; we provide this analysis in

We also use MAP when evaluating CLIP (ViT-Base/16) and
MVP (EgoSoup) for the strongest possible comparison.

Fig. 3: Grasp Affordance Prediction [ARC Grasping; ].
Given objects in cluttered bins, segment the image correspond-
ing to “graspable” (green), vs. “non-graspable” (red) regions;
note that these regions are labeled for use with suction grippers.

V. EVALUATION SUITE: CONSTRUCTION & RESULTS

We outline our evaluation suite ( ) comprised of five
problem domains within robotics. Each evaluation consists
of adaptation data and evaluation metrics. The adaptation
data consists of visual input(s) (as RGB frames) and in some
cases, language (e.g., an instruction for language-conditioned
imitation). We evaluate representations from Voltron and
various baseline models by freezing the pretrained vision
and language encoders, instead adapting evaluation-specific
“heads”(lightweight networks) on top of the extracted represen-
tations. We choose evaluations that capture different types of
visual understanding; in the following sections, we motivate
the role of each application and provide experimental results.

TABLE II: Results on Grasp Affordance Prediction. We re-
port average precision at various confidence intervals following
the original procedure described in Zeng et al. [101].

Architecture Top-1 Top 1% Top 5%
R-R3M ViT-Small 40.38 40.55 28.66
R-MVP ViT-Small 72.94 61.47 39.77
YV - Cond [Ours] ViT-Small 85.15 80.71 47.45
YV - Cond [Ours] ViT-Base 90.00 82.44 62.33
CLIP ViT-Base 43.20 44.11 29.66
MVP (EgoSoup) ViT-Base 77.49 72.87 51.28




Minimum Clutter

“The red bag.”

Fig. 4: Referring Expression Grounding (Object Detection) from the OCID-Ref Dataset [

Medium Clutter

“The blue black pen on the front left of
the orange can’

Maximum Clutter

“The yellow white glue stick on the rear
left of the navy white marker.

]. Given a referring expression

in natural language, the goal is to predict the bounding box coordinates around the respective object. An important feature of
OCID-Ref are the various dataset splits, corresponding to three increasing amounts of clutter, depicted left-to-right.

A. Grasp Affordance Prediction

We consider the problem of grasp affordance prediction:
given an image of a set of objects on a cluttered workspace,
predict a dense segmentation mask corresponding to “graspable”
and “non-graspable” locations for a suction-based gripper.

Motivation. Grasp affordance prediction from visual input
is a foundational task in robot learning, and is often a key
component of many modular systems [10, 16]. Including this
evaluation allows us to probe the low-level spatial features
retained by various representations.

Evaluation Details. We specifically consider the problem
as formulated in the Amazon Robotics Challenge Grasping
Dataset (ARC-Grasping) introduced by Zeng et al. [101]. We
choose this dataset over alternatives as it is readily available
and consists of 1800+ images of multiple real-world objects
in cluttered bins ( ; left). We focus on the RGB-only,
suction-grasping split of the dataset. We implement models for
grasp affordance prediction following recent work on semantic
segmentation with Transformers [105, 87, 7], specifically by
introducing a Progressive Upsampling (SETR-PUP) head on top
of our frozen visual features. We omit results from all ResNet
models — R-R3M (RN-50) and R3M (Ego4D); unfortunately,
training with simple PUP-style on the final ResNet-50 7 x 7
spatial grid did not converge, possibly indicating a need for
more complex architectures with significant added parameters

(beyond the scope of this work). As this task only takes a
single frame as input, we do not evaluate VV — Dual and V —
Gen. Following the original work, we report average precision
at various confidences: Top-1 precision, Top-1% precision, and
Top-5% precision. We select models via 5-fold cross validation.
This task does not have a language component. We provide

additional details around the adaptation procedure in and
the open-source code repositories.
Experimental Results. Looking at , representations

from MVP and Voltron models perform well across the board,
while contrastive representations (e.g., from CLIP and R-R3M)
perform quite poorly. Interestingly, ¥V — Cond outperforms
R-MVP and MVP (EgoSoup) on this task, despite the absence
of language input, demonstrating that language supervision
during pretraining can improve low-level feature learning, even
relative to larger-scale models trained on much more data.

B. Referring Expression Grounding

Given a cluttered scene and language expression, the goal
is to predict a bounding box around an object (e.g., “the blue
black pen on the front left of the orange can” in ; middle).

Motivation. Capturing object-centric priors and high-level se-
mantics around properties such as color and spatial relationships
is crucial across the entire robotics stack. More importantly,
this is a language-conditioned task, allowing us to evaluate
the impact of pretraining with language supervision.

TABLE III: Results on Referring Expression Grounding. We report average precision @ 0.25 IoU following Wang et al.
[94] (OCID-Ref). This is a language-conditioned task; across various clutter levels, Voltron models are substantially more
performant than baselines, as well as models trained on more data and with alternative language supervision (e.g., CLIP).

Architecture Total Minimum Clutter Medium Clutter Maximum Clutter
R-R3M ViT-Small 63.30 63.87 68.34 55.33
R-MVP + DistilBERT ViT-Small 49.58 50.98 53.83 41.94
V — Cond [Ours] ViT-Small 89.38 85.88 95.39 89.12
V - Cond [Ours] ViT-Base 90.77 87.56 96.58 90.17
CLIP ViT-Base 68.35 67.01 76.61 60.33
MVP (EgoSoup) + DistilBERT ViT-Base 49.25 51.46 52.15 40.50
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Fig. 5: Franka Kitchen - Single-Task Visuomotor Control Results. Visualization of the Franka Kitchen evaluation
environments, comprised of five unique tasks, with two camera viewpoints [Left]. Results (success rate for each of n
demonstrations) for Voltron and baselines, showing the benefit of language-driven learning (over 3 seeds) [Right]. In dashed
lines (not directly comparable), we plot CLIP (ViT-B), MVP (EgoSoup), and R3M (Ego4D) trained with n = 25 demonstrations.

Evaluation Details. We use the OCID-Ref Dataset [94]
grounded in scenes that are representative of robotics settings;
other datasets such as RefCoCo [100] are grounded in more
global scenes (e.g., multiple humans playing frisbee on a field)
that are less informative for robot learning. OCID-Ref also
provides splits based on the clutter level of the underlying scene,
letting us further evaluate robustness. We regress bounding box
coordinates directly from our frozen features using a shallow
MLP. All approaches condition on language (see expressions in

), using the given language encoder where possible. This
means using the multimodal encoder for VV — Cond and the
default learned text encoder for CLIP or R3M. However, for
approaches that only learn visual representations (e.g., MVP),
we append pretrained language features from DistilBERT —
the same language model used to initialize Voltron. We note
again that we omit ResNet results; though this task did not
require upsampling, we find trained models obtained no better
than random performance, again indicating a need for a more
sophisticated adaptation architecture (beyond the scope of this
work). We report average precision at 0.25 IoU for each split
following the evaluation procedure outlined in Wang et al. [94].
We provide additional details around the adaptation procedure
in and the open-source code repositories.

Experimental Results. Results for each model across the vari-
ous clutter splits are in . Voltron models are especially
strong, vastly outperforming R-MVP by 40% and R-R3M by
over 25% on all splits, showing that multimodal pretraining —
even just conditioning on language when optimizing for masked
reconstruction — can lead to substantial gains on downstream
multimodal tasks. We isolate the massive performance gains of
Voltron models over prior work due to the multimodal encoder
that learns fused embeddings of vision and language, allowing
language to shape the visual representations during pretraining.
In contrast, R3M, and CLIP models learn independent text
encodings that are only fused post-hoc, during adaptation. This
is even worse for MVP: these models need to learn to fuse

their strong visual embeddings with the language embeddings
from a completely different model (DistilBERT).

C. Single-Task Visuomotor Control

Learn a policy for a given task, predicting continuous joint
actions given the proprioceptive state of a robotic arm, and a
visual observation of the scene from an external camera.

Motivation. Imitation learning for visuomotor control has been
the de-facto evaluation for prior work [62, 58, 65], giving us the
closest comparison to the evaluations used in MVP and R3M.
This evaluation focuses on sample-efficient generalization,
measuring how well visual representations help in learning
policies from limited demonstrations n € {5,10,25}. This
evaluation takes place in simulation.

Evaluation Details. We look at policy learning in the Franka
Kitchen simulation environments as defined by Nair et al.
[58]. This domain consists of 5 tasks, with 2 distinct camera
viewpoints ( ). We learn shallow MLP policy heads via
behavioral cloning that predict 9-DoF joint velocities (7 joints,
2 gripper) from our (frozen) visual features and proprioceptive
state. We follow the R3M evaluation, reporting average success
rates for each setting with n demonstrations across the 5 tasks,
2 viewpoints, and 3 random seeds. We train separate policies
per task, with no language conditioning — using the exact code
provided by Nair et al. [58]. Additional details are in and
the open-source code.

Experimental Results. Most approaches perform similarly
across the various number of training demonstrations ( ;
right). However, we see some promising trends; Voltron models
perform better than both baselines, with approaches that learn
from multiple frame contexts VV — Dual and V — Gen showing
significant improvements over single-frame approaches. Yet, the
absolute success rates are low; learning for control is difficult,
and while good visual representations can help, learning closed-
loop policies from limited data remains an open challenge.
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textbook), to more drastic changes such as playing a clip from “Voltron — the Animated Series” in the background [Bottom].

D. Real-World Language-Conditioned Imitation

Given a dataset of language instructions (e.g. “throw the
bag of chips away”) paired with demonstrations (in a real-
world tabletop setting), learn an instruction following policy via
behavioral cloning. depicts the real-world environment.

Motivation. A large body of work looks at learning language-
conditioned policies for human-robot collaborative settings
[4, 86, 52, 41, 2]. This evaluation gets at the robustness and
reliability of learned representations, with the goal of validating
different approaches in real-robot settings.

Evaluation Details. We construct a “study desk” environment
( ) with five prototypical “tasks”: 1) closing the drawer, 2)
throwing the green bag of chips in the trash can, 3) discarding
the used coffee pods, 4) moving the cyan coffee mug to the
purple plate, and 5) moving the same mug to the yellow plate.
For each task, we collect 20 teleoperated demonstrations at
10 Hz, randomly resetting the scene between episodes. We
adopt the keyframe-based action space proposed in James and
Davison [36] for learning. This approach heuristically breaks
a demonstration into 4-5 “waypoints” (end-effector poses) that
are used as action targets during behavior cloning; during
policy execution, we plan min-jerk trajectories from the current
position to the predicted waypoint, feeding the subsequent
state and visual observation back to our policy [37, 81]. To
collect diverse instructions, we prompt ChatGPT [version dated
Jan 9th, 2023; 60] with simple task descriptions, asking it to
generate diverse language instructions, collecting 25 utterances
total (20 train, 5 held-out) per task.” We parameterize our
policy similarly to , adding a shallow MLP on top of
the extracted (frozen) visual representations [56]. This task

2ChatGPT Prompt (additional details and generated instructions on project
page): I'm trying to train a robot assistant that can follow diverse language
instructions. One task requires moving an empty chip bag (a green bag of
those jalapeno chips) to the garbage. Can you generate 25 natural-sounding
instructions (e.g., “throw away the chips”)?

is language-conditioned; as in OCID-Ref, we use the given
language encoders for each approach where possible, appending
DistilBERT features to pure visual representations otherwise.
We report success rates with partial credit — 0.25 points for
achieving each of the following “milestones”: reaching an
object, interacting with it, transporting it, and completing the
task. We provide additional details in ¢, and include videos
of policy rollouts on the project page.

Experimental Results. Looking at success rates of the various
representations ( ; top right) we see an exaggerated version
of the trends exhibited in the single-task control setting; Voltron
models obtain an extra boost in performance across the board
given that this task is language-conditioned, highlighting the
strength of its fused representations. Similarly, R-R3M models
exhibit the next best performance. Due to shared resource
constraints, we do not run out MVP (EgoSoup), R3IM (Ego4D),
or CLIP (ViT-B/16), though we expect similar trends.

E. Qualitative: Zero-Shot Intent Scoring

We perform a qualitative evaluation for the problem of
language-based intent scoring; given a language expression
describing an intent or behavior (e.g., “opening the faucet™)
and a corresponding video (that may or may not show the
described behavior), predict an “alignment score” for each
frame of a video. This alignment score should capture how
well the current visual context matches the described behavior
— ideally reflecting calibrated confidence over time (an example
language/video is shown in ; left).

Motivation. This evaluation is motivated by two active areas
of research: reward learning from language and demonstrations
[83, 77, 13, 5], and belief modeling for human-robot collab-
oration [31, 27, 6]. This evaluation probes for the ability to
reason over intents and visual behaviors jointly, without the
need for additional data or supervision.
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Fig. 7: Qualitative Zero-Shot Intent Scoring Results. Given a pair of videos from the WHiRL dataset [5] of a human and

robot performing a task, we evaluate the ability of VV — Gen, R3M (from Nair et al. [

]) and CLIP in scoring various frames

subject to the utterance “opening the faucet.” While CLIP and R3M produce extremely noisy scores, V — Gen is calibrated,
successfully tracking progress over time — both for the human user, as well as for the robot.

Evaluation Details. This is a qualitative evaluation that focuses
on measuring how well existing approaches “track” progress
conditioned on a language intent over time. Doing this zero-
shot means that we can only evaluate models that can produce
alignment scores given language and visual context: 1) CL/IP
(ViT-B/16) through cosine similarity of learned vision and text
representations, 2) R3M (Ego4D) through the “video-language
alignment” head, and 3) our V — Gen model (by measuring
the likelihood of a given language utterance conditioned on
visual context under the language generator). Given a video
of an agent performing some behavior described in language
(e.g., “opening the faucet”), we estimate and plot scores under
each model across a sequence of video frames. We use videos
from WHIRL [5] of humans and robots performing the same
tasks from different views; we choose to evaluate intent scoring
for both agents to better capture the robustness and transfer
potential for these approaches in similar real-world settings.

Experimental Results. The two curves in show the
predicted scores over time for the language intent “opening
the faucet.” Even though it has never been trained for this task,
we find that V — Gen is able to coherently predict not only
the exact frames corresponding to “keypoints” in each video
(e.g., touching the handle, observing when the water starts
running), but is also capable of measuring partial progress —
akin to a shaped, dense reward; however, both R3M (Ego4D)
and CLIP (ViT-B/16) fail at this task, predicting random scores
with high variance across sequential time steps. Note that the
intent scores are not perfect; after turning the faucet on for
the human video, predicted scores remain high, while for the
robot, the scores taper off. It is not clear why this happens,
but given a small amount of adaptation data, one could ensure
consistent behavior. We provide more examples from WHiRL
in , and additional evaluation details in

VI. ABLATIONS, EXTENSIONS, & FURTHER ANALYSIS

The comparative results across the various evaluation prob-
lem domains paint Voltron’s language-driven representations
in a favorable light relative to MVP and R3M baselines. Yet,
there remain key questions that we address in this section:
is language supervision actually driving these results? Why
generative language modeling over masked language modeling?
Will Voltron scale?

Ablation: The Impact of Language Supervision. The second
row of shows a subset of evaluation results across
three different problem domains when training a “no-language’
variant of the VV — Cond architecture — this variant is in essence
an alternate version of a masked autoencoder that uses the
small architecture modifications we added for training stability
in . As such, it also serves as an architecture ablation
when compared to the R-MVP results, enabling us to isolate
the impact of the small stability modifications described in

. Indeed, the results confirm our hypotheses: first, removing
language results in a definitive drop in performance across all
evaluation applications. Second, the respective results for each
evaluation application are on par with the corresponding results
for the R-MVP model, demonstrating that the performance of
Voltron models does not stem from the architecture. We delve
further into this ablation in

>

Ablation: Generative vs. Masked Language Modeling.
Looking at the Voltron objective, a natural question to ask
is why we chose language generation over masked language
modeling. Furthermore, recent and concurrent work propose
learning multimodal masked autoencoders (M3AE) both within
and outside of robotics [23, 49], showing promising results
in learning visual representations for image classification
tasks, amongst others. To assess the differences, we choose
to reproduce the M3AE model in a manner similar to our
reproduction of MVP and R3M; we keep the same Something-



Something-v2 pretraining data, adopting the exact procedure
described in Geng et al. [23], then evaluating the resulting
representations on the same subset of evaluation domains as in
the prior ablation (third row of ). Surprisingly, we see
drastic drops in performance across the board. Looking at the
pretraining curves, we identify a possible reason for this failure:
in optimizing M3AE on Sth-Sth, we see the language modeling
loss go to zero almost immediately, leading to overfitting. A
possible explanation is that the masked language modeling
conditioned on visual contexts in datasets annotated with short,
predictable narrations leads to degenerate representations,
while generative language modeling is not susceptible to the
same types of collapse; looking at ways to mitigate this seems
like a promising direction for future work. Explicit details
around pretraining and evaluating R-M3AE, with an in-depth
discussion are in

Extension: Scaling Up. Prior approaches have shown gains in
scaling model capacity; here, we present preliminary evidence
that Voltron models behave similarly. For each evaluation in ¢V,
we evaluate a ViT-Base variant of VV — Cond (86M parameters
vs. the 22M in the ViT-Small). We see universal improvement:
Top-5% precision for grasping ( ; middle row) increases
by 15%, expression grounding accuracy improves ( ;
middle row), as does performance on control.

Extension: Robustness to Real-World Distractors. Factors
such as lighting conditions, time of day, and accidental
environment perturbations (e.g., a colleague knocking over the
camera) can have a profound impact on performance of robotic
systems, especially if learned representations are not robust. We
run a limited “robustness” evaluation after training language-
conditioned policies from the demonstrations described in
Success rates before and after introducing visual distractors
for two of the “meta-tasks” are in (bottom right).” We
find that Voltron and R-MVP models are robust to even the
most extreme distractors — seemingly a benefit of per-patch
masking coupled with MAP-based extraction.

TABLE IV: Ablation Experiments. We select a subset of
evaluations from — grasp affordance prediction, referring
expression grounding, and single-task visuomotor control.

Grasp Refer Imitate

PR @ Top-1% Total Accuracy (n = 25)
V + Lang [Ours] 80.71 89.38 382 £ 5.09
No-Language | 65.83 53.44 33.1 £ 4.79
R-M3AE || 52.79 51.61 24.0 £ 4.21

3We try five distractors spanning simple changes such as swapping the
purple textbook in the background for a green one, to more extreme distractors
such as playing a clip from on a tablet in the
middle of the workspace. Videos are on the project page.

VII. DISCUSSION & CONCLUSION

We propose Voltron, a framework for language-driven repre-
sentation learning that balances conditioning and generation to
shape the balance of low and high-level features captured. We
introduce an evaluation suite spanning five diverse problems
within robotics for holistically evaluating visual representations.
Through controlled experiments and ablations, we validate
the strengths of our representations; across all evaluation
tasks, Voltron models that balance language conditioning and
generation strictly outperform prior approaches such as R3M
and MVP, and in many cases show performance competitive
with or exceeding that of approaches that use orders of
magnitude more data or more expressive models.

Yet, while language is a pivotal source of supervision, there
are still key questions to answer. Why is language-based
pretraining helpful on tasks that have nothing to do with
language? Why not try to learn one model that can encode
both low-level and high-level features, without tradeoffs? While
there is not a silver bullet yer we hope that future work takes
a deep, grounded look at these questions, identifying what
existing representations capture — and more importantly, what
they miss. Our hope is that Voltron serves as a starting point;
a flexible, unified framework for future improvements in visual
representation learning for robotics.

ACKNOWLEDGEMENTS

This work would not have been possible without the support
of entire communities of students, engineers, and various
domain experts; our gratitude cannot be understated. We would
specifically like to thank Shyamal Buch, David Hall, and John
Thickstun for their invaluable advice and suggestions around
pretraining and evaluation. We further thank Dilip Arumugam,
Suneel Belkhale, Masha Itkina, Tyler Lum, Vivek Myers, Karl
Pertsch, and Blake Wulfe for their feedback on earlier drafts.

Toyota Research Institute (“TRI”) provided funds to support
this work. This research — specifically model pretraining — was
supported with Cloud TPUs from Google’s TPU Research
Cloud (TRC). Siddharth Karamcheti is grateful to be supported
by the Open Philanthropy Project Al Fellowship. Annie Chen
is supported by the NSF Graduate Research Fellowship (NSF
GRFP). Finally, we thank the Stanford ILIAD, IRIS, and NLP
groups for their unwavering support and valuable discussions.



REFERENCES

[1] Armen Aghajanyan, Bernie Huang, Candace Ross,

2

3

[4

[5

[6

[7

[8

[9

[}

]

]

]

—_

—

[}

—

Vladimir Karpukhin, Hu Xu, Naman Goyal, Dmytro
Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, and
Luke Zettlemoyer. Cm3: A causal masked multimodal
model of the internet. arXiv preprint arXiv:2201.07520,
2022.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander
Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ru-
ano, Kyle Jeffrey, Sally Jesmonth, Nikhil Jayant Joshi,
Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu,
Carolina Parada, Peter Pastor, Jornell Quiambao, Kan-
ishka Rao, Jarek Rettinghouse, Diego M Reyes, Pierre
Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng
Xu, Sichun Xu, and Mengyuan Yan. Do as I can, not as
I say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691, 2022.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katie Millican, Malcolm Reynolds, Roman
Ring, Eliza Rutherford, Serkan Cabi, Tengda Han,
Zhitao Gong, Sina Samangooei, Marianne Monteiro,
Jacob Menick, Sebastian Borgeaud, Andy Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and
Karen Simonyan. Flamingo: a visual language model
for few-shot learning. arXiv preprint arXiv:2204.14198,
2022.

Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan,
Lawson L. S. Wong, and Stefanie Tellex. Accurately
and efficiently interpreting human-robot instructions of
varying granularities. In Robotics: Science and Systems
(RSS), 2017.

Shikhar Bahl, Abhi Gupta, and Deepak Pathak. Human-
to-robot imitation in the wild. In Robotics: Science and
Systems (RSS), 2022.

Tirthankar Bandyopadhyay, Kok Sung Won, Emilio
Frazzoli, David Hsu, Wee Sun Lee, and Daniela Rus.
Intention-aware motion planning. In Workshop for the
Algorithmic Foundations of Robotics (WAFR), 2013.
Hangbo Bao, Li Dong, and Furu Wei. BEiT: BERT
pre-training of image transformers. In International
Conference on Learning Representations (ICLR), 2022.
Iz Beltagy, Matthew E. Peters, and Arman Cohan.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-
berg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Association for Computational Linguistics (ACL), 2022.

(10]

(11]

[12]

[13]

[14]

[15]

Jeannette Bohg, Antonio Morales, Tamim Asfour, and
Danica Kragic. Data-driven grasp synthesis—a survey.
IEEE Transactions on Robotics (T-RO), 30:289-309,
2013.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas
Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen,
Kathleen Creel, Jared Quincy Davis, Dorottya Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,
Karan Goel, Noah Goodman, Shelby Grossman, Neel
Guha, Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha
Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass,
Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar,
Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec,
Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,
Ali Malik, Christopher D. Manning, Suvir Mirchandani,
Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko,
Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung
Park, Chris Piech, Eva Portelance, Christopher Potts,
Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda
Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christo-
pher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav San-
thanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramer, Rose E.
Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You,
Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun
Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and
Percy Liang. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.
Francois Chaumette and Seth A. Hutchinson. Visual
servo control. i. basic approaches. IEEE Robotics &
Automation Magazine, 13:82-90, 2006.

Annie S. Chen, Suraj Nair, and Chelsea Finn. Learning
generalizable robotic reward functions from "in-the-
wild" human videos. In Robotics: Science and Systems
(RSS), 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International
Conference on Machine Learning (ICML), pages 1597—
1607, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, A. Rao, Parker Barnes,



(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

Yi Tay, Noam M. Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, B. Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, M. Isard, Guy Gur-
Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
S. Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus,
Denny Zhou, Daphne Ippolito, D. Luan, Hyeontaek Lim,
Barret Zoph, A. Spiridonov, Ryan Sepassi, David Dohan,
Shivani Agrawal, Mark Omernick, Andrew M. Dai, T. S.
Pillai, Marie Pellat, Aitor Lewkowycz, E. Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan
Firat, Michele Catasta, Jason Wei, K. Meier-Hellstern,
D. Eck, J. Dean, Slav Petrov, and Noah Fiedel. PaLM:
Scaling language modeling with pathways. arXiv, 2022.
Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson,
Oliver Brock, Albert J. Causo, Kris K. Hauser, Kei
Okada, Alberto Rodriguez, Joseph M. Romano, and
Peter R. Wurman. Analysis and observations from the
first amazon picking challenge. Science, 15:172—188,
2016.

Yuchen Cui, Scott Niekum, Abhi Gupta, Vikash Kumar,
and Aravind Rajeswaran. Can foundation models per-
form zero-shot task specification for robot manipulation?
In Learning for Dynamics & Control Conference (L4DC),
2022.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos,
Davide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision: The
EPIC-KITCHENS dataset. In European Conference on
Computer Vision (ECCV), 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Computer Vision and Pattern
Recognition (CVPR), pages 248-255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Association for Computational Linguistics (ACL), pages
41714186, 2019.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? The KITTI vision
benchmark suite. In Computer Vision and Pattern
Recognition (CVPR), pages 3354-3361, 2012.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir
Nachum, and Marc G. Bellemare. Deepmdp: Learning
continuous latent space models for representation learn-
ing. In International Conference on Machine Learning
(ICML), 2019.

Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurams,
Sergey Levine, and P. Abbeel. Multimodal masked
autoencoders learn transferable representations. arXiv
preprint arXiv:2205.14204, 2022.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

Kim, Valentin Haenel, Ingo Friind, Peter N. Yianilos,
Moritz Mueller-Freitag, Florian Hoppe, Christian Thurau,
Ingo Bax, and Roland Memisevic. The ‘“‘something
something video database for learning and evaluating
visual common sense. In International Conference on
Computer Vision (ICCV), 2017.

Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Q. Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu,
Miguel Martin, Tushar Nagarajan, Ilija Radosavovic,
Santhosh K. Ramakrishnan, F. Ryan, Jayant Sharma,
Michael Wray, Mengmeng Xu, Eric Z. Xu, Chen Zhao,
Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean
Crane, Tien Do, Morrie Doulaty, Akshay Erapalli,
Christoph Feichtenhofer, Adriano Fragomeni, Qichen
Fu, Christian Fuegen, Abrham Gebreselasie, Cristina
Gonzdlez, James M. Hillis, Xuhua Huang, Yifei Huang,
Wengqi Jia, Weslie Yu Heng Khoo, Jichym Koldr,
Satwik Kottur, Anurag Kumar, Federico Landini, Chao
Li, Yanghao Li, Zhenqgiang Li, Karttikeya Mangalam,
Raghava Modhugu, Jonathan Munro, Tullie Murrell,
Takumi Nishiyasu, Will Price, Paola Ruiz Puentes,
Merey Ramazanova, Leda Sari, Kiran K. Somasundaram,
Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh
Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu,
Pablo Arbeldez, David J. Crandall, Dima Damen, Gio-
vanni Maria Farinella, Bernard Ghanem, Vamsi Krishna
Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou
Li, Richard A. Newcombe, Aude Oliva, Hyun Soo Park,
James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng
Shou, Antonio Torralba, Lorenzo Torresani, Mingfei
Yan, and Jitendra Malik. Ego4D: Around the world in
3,000 hours of egocentric video. In Computer Vision
and Pattern Recognition (CVPR), 2022.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and
Mohammad Norouzi. Dream to control: Learning behav-
iors by latent imagination. In International Conference
on Learning Representations (ICLR), 2020.

Kris K. Hauser. Recognition, prediction, and planning
for assisted teleoperation of freeform tasks. Autonomous
Robots (AURO), pages 241-254, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Computer Vision and Pattern Recognition (CVPR), 2016.
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollar, and Ross B. Girshick. Masked autoencoders are
scalable vision learners. In Computer Vision and Pattern
Recognition (CVPR), 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.
Guy Hoffman and Cynthia Breazeal. Cost-based antici-
patory action selection for human-robot fluency. IEEE
Transactions on Robotics (T-RO), 23:952-961, 2007.
Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-



(33]

[34

[}

[35

—_

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[40]

efficient transfer learning for NLP. arXiv, 2019.
Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models.
arXiv preprint arXiv:2106.09685, 2021.

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning (ICML), pages 448-456, 2015.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew
Zisserman, Oriol Vinyals, and Jodao Carreira. Perceiver:
General perception with iterative attention. In Interna-
tional Conference on Machine Learning (ICML), 2021.
Stephen James and Andrew J. Davison. Q-Attention:
Enabling efficient learning for vision-based robotic
manipulation. IEEE Robotics and Automation Letters
(RA-L), 7:1612-1619, 2022.

Stephen James, Kentaro Wada, Tristan Laidlow, and
Andrew J. Davison. Coarse-to-fine Q-Attention: Efficient
learning for visual robotic manipulation via discretisation.
In Computer Vision and Pattern Recognition (CVPR),
pages 13729-13738, 2022.

Shervin Javdani, Henny Admoni, Stefania Pellegrinelli,
Siddhartha S Srinivasa, and J Andrew Bagnell. Shared
autonomy via hindsight optimization for teleoperation
and teaming. International Journal of Robotics Research
(IJRR), 37:717-742, 2018.

Rico Jonschkowski and Oliver Brock. Learning state
representations with robotic priors. Autonomous Robots,
39:407-428, 2015.

Siddharth Karamcheti, Laurel Orr, Jason Bolton, Tianyi
Zhang, Karan Goel, Avanika Narayan, Rishi Bommasani,
Deepak Narayanan, Tatsunori Hashimoto, Dan Jurafsky,
Christopher D. Manning, Christopher Potts, Christopher
Ré, and Percy Liang. Mistral - a journey towards
reproducible language model training, 2021.

Siddharth Karamcheti, Megha Srivastava, Percy Liang,
and Dorsa Sadigh. LILA: Language-informed latent
actions. In Conference on Robot Learning (CoRL), 2021.
Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi,
and Aniruddha Kembhavi. Simple but effective: CLIP
embeddings for embodied Al. In Computer Vision and
Pattern Recognition (CVPR), pages 14809-14818, 2021.
Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Im-
age augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International
Conference on Learning Representations (ICLR), 2021.
Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,
P. Abbeel, and A. Srinivas. Reinforcement learning with
augmented data. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Juho Lee, Yoonho Lee, Jungtaeck Kim, Adam R. Ko-
siorek, Seungjin Choi, and Yee Whye Teh. Set trans-

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

former: A framework for attention-based permutation-
invariant neural networks. In International Conference
on Machine Learning (ICML), 2018.

S. Levine, Chelsea Finn, Trevor Darrell, and P. Abbeel.
End-to-end training of deep visuomotor policies. Journal
of Machine Learning Research (JMLR), 17, 2016.
Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and
C. Lawrence Zitnick. Microsoft COCO: Common objects
in context. In European Conference on Computer Vision
(ECCV), pages 740-755, 2014.

Hao Liu, Lisa Lee, Kimin Lee, and Pieter Abbeel.
Instructrl: Simple yet effective instruction-following
agents with multimodal transformer. arXiv preprint
arXiv:2210.13431, 2022.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
ViLBERT: Pretraining task-agnostic visiolinguistic rep-
resentations for vision-and-language tasks. In Advances
in Neural Information Processing Systems (NeurIPS),
2019.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh
Mottaghi, and Aniruddha Kembhavi. Unified-io: A uni-
fied model for vision, language, and multi-modal tasks.
In International Conference on Learning Representations
(ICLR), 2023.

Corey Lynch and Pierre Sermanet. Grounding language
in play. arXiv preprint arXiv:2005.07648, 2020.
Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayara-
man, Osbert Bastani, Vikash Kumar, and Amy Zhang.
Vip: Towards universal visual reward and represen-
tation via value-implicit pre-training. arXiv preprint
arXiv:2210.00030, 2022.

Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea,
and Ken Goldberg. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. In Robotics: Science and Systems (RSS),
2017.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin.
What matters in learning from offline human demonstra-
tions for robot manipulation. In Conference on Robot
Learning (CoRL), 2021.

Dipendra K. Misra, John Langford, and Yoav Artzi.
Mapping instructions and visual observations to actions
with reinforcement learning. In Empirical Methods in
Natural Language Processing (EMNLP), 2017.

Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter,
Silvio Savarese, and Chelsea Finn. Learning language-
conditioned robot behavior from offline data and crowd-
sourced annotation. In Conference on Robot Learning
(CoRL), 2021.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint



[59]

(60]

[61

—

[62]

[63]

[64

[}

[65]

[66

—_

[67]

[68]

[69]

arXiv:2203.12601, 2022.

Sharan Narang, Hyung Won Chung, Yi Tay, William
Fedus, Thibault Févry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam M. Shazeer, Zhenzhong
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus, Adam
Roberts, and Colin Raffel. Do transformer modifications
transfer across implementations and applications? In
Empirical Methods in Natural Language Processing
(EMNLP), 2021.

OpenAl. Chatgpt: Optimizing language models for
dialogue, 2022.

Jyothish Pari, Nur Muhammad (Mabhi) Shafiullah, Srid-
har Pandian Arunachalam, and Lerrel Pinto. The
surprising effectiveness of representation learning for
visual imitation. In Robotics: Science and Systems (RSS),
2022.

Simone Parisi, Aravind Rajeswaran, Senthil Purush-
walkam, and Abhinav Kumar Gupta. The unsurprising
effectiveness of pre-trained vision models for control.
arXiv preprint arXiv:2203.03580, 2022.

Ofir Press, Noah A. Smith, and Mike Lewis. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Conference
on Learning Representations (ICLR), 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In
International Conference on Machine Learning (ICML),
volume 139, pages 8748-8763, 2021.

Ilija Radosavovic, Tete Xiao, Stephen James, P. Abbeel,
Jitendra Malik, and Trevor Darrell. Real-world robot
learning with masked visual pre-training. In Conference
on Robot Learning (CoRL), 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision
transformers see like convolutional neural networks?
In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay,
Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali
Razavi, Ashley D. Edwards, Nicolas Manfred Otto
Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar
Bordbar, and Nando de Freitas. A generalist agent. arXiv
preprint arXiv:2205.06175, 2022.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu.
Can Wikipedia help offline reinforcement learning?
arXiv preprint arXiv:2201.12122, 2022.

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Ashutosh Saxena, Justin Driemeyer, and A. Ng. Robotic
grasping of novel objects using vision. International
Journal of Robotics Research (IJRR), 27:157-173, 2008.
Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia lJitsev, and Aran Ko-
matsuzaki. LAION-400M: Open dataset of CLIP-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114, 2021.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, Patrick Schramowski, Srivatsa Kundurthy,
Katherine Crowson, Ludwig Schmidt, Robert Kaczmar-
czyk, and Jenia Jitsev. LAION-5B: An open large-
scale dataset for training next generation image-text
models. In Neural Information Processing Systems Track
on Datasets and Benchmarks (NeurlPS Datasets and
Benchmarks), 2022.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jas-
mine Hsu, Eric Jang, Stefan Schaal, and Sergey Levine.
Time-contrastive networks: Self-supervised learning
from video. In International Conference on Robotics
and Automation (ICRA), pages 1134-1141, 2018.
Rutav Shah and Vikash Kumar. Rrl: Resnet as repre-
sentation for reinforcement learning. In International
Conference on Machine Learning (ICML), 2021.
Dandan Shan, Jiaqi Geng, Michelle Shu, and David F.
Fouhey. Understanding human hands in contact at inter-
net scale. In Computer Vision and Pattern Recognition
(CVPR), pages 9866-9875, 2020.

Lin Shao, Toki Migimatsu, Q. Zhang, Karen Yang, and
Jeannette Bohg. Concept2robot: Learning manipulation
concepts from instructions and human demonstrations.
In Robotics: Science and Systems (RSS), 2020.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. Conceptual captions: A cleaned, hy-
pernymed, image alt-text dataset for automatic image
captioning. In Association for Computational Linguistics
(ACL), 2018.

Noam M. Shazeer. GLU variants improve transformer.
arXiv preprint arXiv:2002.05202, 2020.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport:
What and where pathways for robotic manipulation. In
Conference on Robot Learning (CoRL), 2021.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox.
Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning (CoRL),
2022.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. FLAVA: A foundational



[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

language and vision alignment model. In Computer
Vision and Pattern Recognition (CVPR), pages
15617-15629, 2022.

Laura Smith, Nikita Dhawan, Marvin Zhang, P. Abbeel,
and Sergey Levine. Avid: Learning multi-stage tasks
via pixel-level translation of human videos. In Robotics:
Science and Systems (RSS), 2020.

A. Srinivas, Michael Laskin, and P. Abbeel. CURL.:
Contrastive unsupervised representations for reinforce-
ment learning. In International Conference on Machine
Learning (ICML), 2020.

Krishna Srinivasan, Karthik Raman, Jiecao Chen,
Michael Bendersky, and Marc Najork. Wit: Wikipedia-
based image text dataset for multimodal multilingual
machine learning. In ACM Special Interest Group on
Information Retreival (SIGIR), 2021.

Simon Stepputtis, J. Campbell, Mariano Phielipp, Ste-
fan Lee, Chitta Baral, and H. B. Amor. Language-
conditioned imitation learning for robot manipulation
tasks. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Robin Strudel, Ricardo Garcia Pinel, Ivan Laptev, and
Cordelia Schmid. Segmenter: Transformer for semantic
segmentation. In International Conference on Computer
Vision (ICCV), pages 7242-7252, 2021.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. Roformer: Enhanced transformer with rotary
position embedding. arXiv preprint arXiv:2104.09864,
2021.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth J Teller,
and Nicholas Roy. Understanding natural language
commands for robotic navigation and mobile manip-
ulation. In Association for the Advancement of Artificial
Intelligence (AAAI), 2011.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. In
Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with
image transformers. In International Conference on
Computer Vision (ICCV), pages 32-42, 2021.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum,
and David Chiang. Decoding with large-scale neural
language models improves translation. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1387-1392, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

Ke-Jyun Wang, Yun-Hsuan Liu, Hung-Ting Su, Jen-Wei
Wang, Yu-Siang Wang, Winston H. Hsu, and Wen-Chin
Chen. OCID-Ref: A 3d robotic dataset with embodied

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

language for clutter scene grounding. In Association for
Computational Linguistics (ACL), 2021.

Lee E. Weiss, Arthur C. Sanderson, and Charles P.
Neuman. Dynamic sensor-based control of robots with
visual feedback. IEEE Robotics and Automation Letters
(RA-L), 3:404-417, 1987.

Ross Wightman. Pytorch image models. https://github.
com/rwightman/pytorch-image-models, 2019.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra
Malik. Masked visual pre-training for motor control.
arXiv preprint arXiv:2203.06173, 2022.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and
Jianxiong Xiao. Lsun: Construction of a large-scale
image dataset using deep learning with humans in the
loop. arXiv preprint arXiv:1506.03365, 2015.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung,
Mojtaba Seyedhosseini, and Yonghui Wu. Coca: Con-
trastive captioners are image-text foundation models.
arXiv preprint arXiv:2205.01917, 2022.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C.
Berg, and Tamara L. Berg. Modeling context in referring
expressions. In European Conference on Computer
Vision (ECCV), 2016.

Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon,
Francois Robert Hogan, Maria Bauzd, Daolin Ma, Orion
Taylor, Melody Liu, Eudald Romo, Nima Fazeli, Ferran
Alet, Nikhil Chavan Dafle, Rachel Holladay, Isabella Mo-
rona, Prem Qu Nair, Druck Green, lan Taylor, Weber Liu,
Thomas A. Funkhouser, and Alberto Rodriguez. Robotic
pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching.
International Journal of Robotics Research (IJRR), 41:
690-705, 2017.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and
Lucas Beyer. Scaling vision transformers. In Computer
Vision and Pattern Recognition (CVPR), pages 1204—
1213, 2022.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin
Gal, and Sergey Levine. Learning invariant representa-
tions for reinforcement learning without reconstruction.
In International Conference on Learning Representations
(ICLR), 2021.

Biao Zhang and Rico Sennrich. Root mean square
layer normalization. In Advances in Neural Information
Processing Systems (NeurlPS), 2019.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian
Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng
Feng, Tao Xiang, Philip H. S. Torr, and Li Zhang.
Rethinking semantic segmentation from a sequence-to-
sequence perspective with transformers. In Computer
Vision and Pattern Recognition (CVPR), 2021.


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

OVERVIEW

In the appendices below, we provide additional details around the implementation, pretraining, and adaptation procedures
described in the main text, in addition to delving deeper into various discussions. Finally, we add additional results and
visualizations that further complement the findings from the main text.

We provide open-source code for loading and using pretraining models, hosted links for our preprocessing splits (including the
actual batches seen during training), and a separate, standalone open-source code repository for our evaluation suite. Our hope
is that the evaluation suite especially is general and easy to use for downstream work on evaluating learned representations.

The full manifest of resources are as follows:
o Project Page (videos & additional links): https://sites.google.com/view/voltron-robotics
¢ Open-Source Modeling Repository (pretraining & model usage): https://github.com/siddk/voltron-robotics
e Open-Source Evaluation Suite (API for automated evaluation): https://github.com/siddk/voltron-evaluation

All code is in PyTorch; however, the evaluation code can be easily extended to support various frameworks and infrastructure.

An overview of each appendix can be found below. We further indicate which parts of the appendices are best viewed here in
the text or on the project page; for videos and visualizations, we highly recommend navigating to the latter.

We index a list of “motivating” questions that may arise from reading the main text and that we expand on further
here (e.g., “why only evaluate frozen representations”). Our answers here are direct, and in many cases link to actual
experiments further on in the appendices.

We provide code and other implementation details around the modifications to the Transformer architecture described
in the Implementation and Reproducibility Section (see of the main text), along with additional details around
the released models and data artifacts from this work. The section is structured as follows:

Side-by-side comparisons of the Voltron and “standard” Vision Transformer blocks.
Additional details around encoding multimodal inputs (e.g., position encoding, modality tokens, etc.).

Voltron pretraining loss curves (reconstruction error, language modeling error) over training; useful for
characterizing the behavior of downstream models (and the trade-offs between the losses).

We release pretrained Voltron models — V — Cond, V — Dual, V — Gen — in addition to intermediate
checkpoints to facilitate future work. We also release the larger V — Cond model (ViT-Base).


https://sites.google.com/view/voltron-robotics
https://github.com/siddk/voltron-robotics
https://github.com/siddk/voltron-evaluation

We report additional results and visualizations from experiments mentioned in the main text, as well as other
experiments that further support our conclusions.

We revisit the language vs. no-language ablation from the main text, looking at pretraining curves to help
explain why language is so helpful as a supervision signal. We find that language-conditioning significantly
lowers reconstruction loss, allowing models to pick up on more low-level features.

We look further at the masked language modeling ablation from the main text, via the reproduction
of Multimodal Masked Autoencoders [M3AE; 23]. We find in the pretraining curves high evidence of
overfitting with masked models early in training, impacting the learned representations.

We present results on the Adroit Visumotor Control environments from Nair et al. [58], finding that while
language is again superior, higher-level features perform better. This is preliminary evidence that even for
individual evaluation domains (e.g., single-task visuomotor control), there is no silver bullet; different
types of representations perform differently.

Visualizations of real-world policy rollouts from the various representation learning approaches.

Additional intent scoring visualizations using videos from the WHiRL dataset [5].

We provide additional discussion around the reproductions of MVP and R3M on the Something-Something-v2 dataset:

Additional discussion of how we preprocess Something-Something-v2 [Sth-Sth; 24] for pretraining, with
a comparison of how prior work such as MVP source and process pretraining data.

Detailed explanation of the Multiheaded Attention Pooling [MAP; 46] feature extraction strategy, with
analysis and results comparing to alternative methods.

We provide further descriptions of the adaptation pipeline for each of the five evaluation domains.



APPENDIX A
MOTIVATING QUESTIONS

Q1. From the results, some Voltron models outperform larger models such as MVP-Base trained on significantly more data,
even on tasks that do not necessarily need language information. How do you make sense of this?

We find that in many of our evaluation domains, especially domains with episodic tasks such as single-task and language-
conditioned imitation learning, it is important to discern differences across frames in the same overall visual context, or
otherwise pay attention to small visual distinctions. Looking at the original MVP work [65], we see that the original pretraining
datasets are compiled by sampling frames from various video datasets once, in a single-step procedure, at low sampling rates.
For many datasets (such as Sth-Sth and Ego4D), this means only seeing 1-2 frames per video clip in total during training.

In contrast, when we sample data from Sth-Sth, we ensure to sample ar least 5 frames per clip, per epoch; while the
aggregate amount of diverse contexts is much lower than in the original MVP work, seeing multiple frames per context seems
to significantly help learning, and not just for Voltron models! On the tasks where Voltron models outperform MVP (EgoSoup)
(with a larger ViT-Base encoder), we also see commensurate gains in our reproductions R-MVP and R-R3M. For example,
R-MVP is at par with or only slightly less performant than M VP (EgoSoup) on grasp affordance prediction and single-task
control. We offer further discussion in

Q2. Why don’t you evaluate models trained with o = 1 (pure language generation)?

In preliminary experiments, we partially pretrained variants of V — Gen with values a = 0.25,0.5,0.75; we focused on
evaluating the downstream performance of these representations in the context of the single task visuomotor control evaluation.
With oo = 0.75 we observed significant performance degradation on control tasks; furthermore, looking at the pretraining loss
curves, we saw the reconstruction error plateau early in training. We found that oo = 0.5 balanced learning, and allowed us to
continue to push reconstruction error down while also pushing the language generator loss (cross-entropy) lower; with o« = 0.25,
we saw the opposite trend as with o« = 0.75.

These results are to be taken with a grain of salt, given the limited pretraining duration. However, we worry that with a = 1,
we might suffer doubly for 1) never conditioning on language, which is so clearly helpful from our results, and 2) potentially
fall into the same failure mode as the R-M3AE multimodal masked autoencoder from Section in the main text, overfitting
to the language loss. In general, ¥V — Gen with o = 0.5 already converges to a substantially higher reconstruction loss as V —
Cond and V - Dual, as shown in the pretraining curves in . That being said, it is a promising avenue for future work to
understand if this is inherent or a problem with the specific optimization procedure we used — perhaps changing the relative
scaling of the two losses over the course of pretraining may mitigate this issue, or even adaptively clipping the gradient updates
depending on the relative contribution of the visual reconstructor or language generator.

Q3. Why does language during pretraining help for downstream tasks that don’t use language?

Consider a masked visual input of a “black, curved object above a wooden surface.” Given this information — and this
information alone — what is a plausible reconstruction? There are myriad objects that fit those percepts — a black, curved object:
we could lbe looking at the side of a bowl, the handle of a briefcase, the arm of a chair or stool, or in general, any number of
possible options. A masked autoencoder optimizing for reconstruction must embed in the representation of this input as many
of the features possible to enable good downstream reconstruction loss. It needs to model everything, as the visual context
is under-specified and ambiguous. This compressed bottleneck is core to learning a masked autoencoder, but the unfortunate
byproduct of this — in light of a vast world of possibilities — are representations that try to capture everything they possibly can.

Contrast this with a world in which you are told that the same visual context is associated with the language caption “lifting
a black coffee mug on the table.” What changes? The posterior over possible objects collapses down to the narrow slice of
possibilities captured by “black coffee mug”; under this new set of possibilities, what does the encoder focus on? What fype of
black coffee mug is on the table? If it is being lifted, how is it being lifted? From what part of the object — the handle (seen in
frame), or somewhere else? What are the features that help further reconstruct the black coffee mug? The other nearby surfaces
— what is the mug resting on (a wooden table? the wooden arm of a chair?), is it at an angle? The additional visual context —
what type of scene are we in — a living room, a coffeehouse? What else can I specifically encode that helps me reconstruct this
cup in high-fidelity? The edges of the cup, its texture, the way the light is reflecting off of it in this particular visible context?

Conditioning on a language description both simplifies and focuses what I need to represent. My encoded features are no
longer general enough to cover the full range of objects that could follow from the visible context alone; instead, I can use
that same capacity to represent this specific context, as denoted by language. The encoder can focus on all of things left



unspecified by language — arguably, the very things we want a visual encoder for robotics to represent. Because we know
that it is a “black coffee mug,” we can encode features around different types of black coffee mugs as a first level, and at a
second level, go deeper, and actually model the low-level features that are not tied to semantics, but tied to core, perceptual
primitives: the texture of the mug, the edges/boundaries of the object relative to other objects, even the way light reflects off
of the surface. These are the features that help in tasks like grasp affordance prediction (the edges of objects), and when we
learn joint representations of language and vision, the features that help with localization (grounding referring expressions) and
detection. Though speculative, we can attempt to make this concrete with results: if language is indeed reducing the space over
plausible reconstructions (and focusing the encoder), we might expect lower reconstruction error when language-conditioning
vs. when we condition solely on the visual context alone. This is exactly what we show in , and a hint at why Voltron is
able to perform so strongly downstream (even without language input). The simple presence of language during pretraining
refocuses the features in our representations.

Q4. Why only evaluate frozen representations? Why not fully finetune the backbones for each downstream evaluation?

Both MVP and R3M [65, 58] only evaluate frozen visual representations, following a precedent set by a long tradition of
work in self-supervised learning from the computer vision community [!4, 64, 29]. There are two reasons for the validity of
evaluating frozen representations. First, the hope is that evaluating frozen representations (via adapted per-evaluation “heads” on
top) help us isolate the relative impact of what the representations contain — otherwise, the separation between the standalone
representations and the downstream evaluation parameters (and the co-mingling of the two when optimizing all weights
via gradient descent) becomes much less clear. Second, for many of the evaluations we look at, we have extremely small
amounts of data — on the order of 1000 examples for grasp affordance prediction, 10 - 20 demonstrations for single task and
language-conditioned imitation. There is a valid fear that full-finetuning the sizeable visual encoders vs. just the adaptation
parameters (< 50K parameters) could lead to extreme overfitting. In general, finetuning Transformers with minimal data is an
active area of research in and of itself, with work like adapters, low-rank approximations, and partial finetuning [32, 33, 9].

QS. Assuming pretraining datasets of (video, language) pairs feels restrictive; is there a way to leverage other sources of data?

While Voltron expects a dataset of videos and associated language narrations, there is a wealth of visually diverse and

relevant data that does not subscribe to this type signature:: datasets of standalone images from curated datasets [19, 21, 98],
curated images paired with language captions as in Conceptual Captions [48, 78], and large in-the-wild datasets of images
paired with text scraped from the internet [72, 85, 73].

Luckily (though beyond the scope of this initial work), incorporating this data into the existing Voltron learning pipeline is
straightforward; for image data without language, we can simply “annotate” each example with an empty <NULL> token in
the worst case, or alternatively, with some minimal textual metadata (e.g., a class label, dataset descriptor, or even a URL if
available). To accommodate for training on variable length image contexts, a naive solution would be adopting frame dropout
or padding; there are myriad ways to do this efficiently — from Perceiver-based resampling of large patch sequences [35, 3] to
different position encoding schemes [£8, 63], to more efficient attention variants [£].



APPENDIX B
VOLTRON IMPLEMENTATION & ARTIFACTS

We provide complete implementation details for the various Voltron models, from the small modifications to the Transformer
block for added pretraining stability, to the added structural components for embedding multimodal (vision and language) inputs.

All of these details are made explicit in our code release, linked on our project page.

( 1 class StandardBlock:

1 class VoltronBlock:

~

2 def __init__(self, embed_dim: int, n_heads: int, mlp_dim: int) -> None: 2 def __init__(self, embed_dim: int, n_heads: int, mlp_dim: int) -> None:
2 Wi 3 Wi
3 3
4 Standard ViT Transformer Block with LayerNorm and GELU() activation. 4 Voltron Transformer Block with RMSNorm, SwishGLU() activation, and
5 5 LayerScale.
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9 oo o ) ! 9 MLP (standard) respectively; adds residual LayerScale as well!
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21 22
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23 x = x + self.attn(self.pre_norm_attn(x)) 24 x = x + self.scale_attn(self.attn(self.pre_norm_attn(x)))
24 x = x + self.mlp(self.pre_norm_mlp(x)) 25 x = x + self.scale_mlp(self.mlp(self.pre_norm_mlp(x)))
25 return x 26 return x
1 class SwishGLU: 1 class RMSNorm:
2 def __init__(self, in_dim: int, out_dim: int) -> None: 2 def __init , dim: int) -> None:
3 self.g, self.dim = nn.Parameter(T.ones(dim)), dim
4 SwishGLU as defined in PalLM (Google) 4
5 => Ref: "GLU Variants Improve Transformers" (Shazeer) 5 def forward(self: x: T[..., dim]) -> T[..., dim]:
6 6 return self.g * (x / (norm(x) / sqrt(self.dim)))
7 self.project = nn.Linear(in_dim, out_dim) 7
8 self.gate = nn.Linear(in_dim, out_dim) 8 class LayerScale:
9 9 def __init__(self, dim: int, init: float = 0.1) -> None:
0 def forward(self: x: T[..., in_dim]) -> T[..., out_dim]: 10 self.gamma = nn.Parameter(init * T.ones(dim))
1 pr ed = self.project(x) 1
12 gate = self.gate(x) 12 def forward(self: x: T[..., dim]) -> T[..., dim]:
13 return projected * nn.SilLU(gate) 13 return self.gamma * x
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Fig. 8: Standard vs. Voltron Transformer Implementation. The Voltron Transformer Block is near-identical to the “standard”
Transformer block used in prior work in Vision Transformers, with exceptions marked in . Notably, we switch LayerNorm
for RMSNorm, a standard MLP with a GELU activation [30] with a SwishGLU activation, and adopt LayerScale for each residual
connection; these components are defined explicitly below the block definitions. In ablating these architecture modifications, we
find no impact on downstream performance, but increased pretraining stability.

A. Voltron Transformer Implementation

As mentioned in , we perform a series of modifications to the typical Transformer block used in prior work in the Vision
Transformer and Masked Autoencoding literature to help with pretraining stability; these changes are motivated by recent work
from the NLP community on training stable and performant Transformer models [59, 40, [5].

We show the side-by-side comparison of the “standard” Transformer block implementation vs. the Voltron Transformer block
in . The changes are three-fold:

o Using Root Mean-Square Normalization [|04] over the default LayerNorm; not only does RMSNorm have fewer parameters,
but it has been shown to increase stability and performance [5°].

o Using the SwishGLU activation [79, |5] over the default GELU [30].

e Using LayerScale [91] for scaling down the magnitude of residual connections; prior work has found this to have a
powerful stabilizing effect during pretraining [40].

We also provide pseudocode for implementing the various modifications in (bottom); these modifications are all simple
and transferable across Transformer implementations. Furthermore, as part of the no-language implementation in , we ablate
the effects of these modifications on performance; we find that these modifications do not change downstream performance, but
significantly increase pretraining stability, following our initial motivation.


https://github.com/siddk/voltron-robotics
https://sites.google.com/view/voltron-robotics

B. Jointly Processing Vision & Language

To incorporate language into the typical masked autoencoding pipeline, we add a series of small structural changes to handle
1) multi-modality, 2) sharing a Transformer decoder for both visual reconstruction and language generation, and 3) handling
position encoding for both visual patch embeddings and textual tokens.

Multimodal Encoder. We make the following adjustments to enable a Transformer encoder to embed multiple modalities.
First, we project both our learned “patch embeddings” (obtained as in a standard ViT, by learning a linear transformation of
our flattened RGB patches of size p x p x 3) and our pretrained language embeddings to the same space R%, where d is the
Transformer dimensionality (e.g., d = 384 for a ViT-Small). While we learn our patch embedding end-to-end, we initialize
our language embeddings from a pretrained (and frozen) DistilBERT model [70]; this is following R3M [58]. We pad each
language annotation c in our dataset to a maximum length L = 20 tokens, additionally storing a binary length mask to ensure
that each Transformer block does not attend to padding.

Once projected into the Transformer’s embedding space, we add learned modality embeddings (e.g., an embedding for <IMG>
and <LANG>) to each of the respective inputs; we find that this better allows the Transformer to reason over different modalities.
We initialize these learnable embeddings via a truncated normal distribution, with scale o = 0.02, following how other special
embeddings are initialized in the MAE and Vision Transformer literature [29].

The final step is for handling multi-frame contexts; we learn a set of frame index embeddings (e.g., for FRAME-1, FRAME-2,
etc.) and add these to the corresponding patch embeddings — i.e. we add the FRAME-i embedding to all patch embeddings from
the first frame and so on. This further allows us to distinguish individual frame patches from one another.

At this point, we concatenate the full sequence of flattened visual patch embeddings and language token embeddings, and
feed them through the stack of Transformer blocks that form the multimodal encoder. This output is fed to the decoder, in the
same fashion as a traditional masked autoencoder.

Shared Transformer for Reconstruction & Generation. As mentioned in , we make one crucial change to the standard
Transformer decoder in a masked autoencoder to additionally allow for language generation: namely adding a prefix mask over
the language inputs [600]. The goal of this mask (as stated in the main text) is to prevent information leakage when decoding;
this mask selectively zeroes out dependencies in the multiheaded attention during training such that when generating language
given a visual context, each language embedding at a given timestep ¢ can only attend to prior generated language at timesteps
< t, as well as the entire visual context. This masking operates in the same way as the original decoder masking described in
Vaswani et al. [92]; the attention scores for all “invalid” inputs (> t) are set to 0, restricting the model from incorporating
future predictions as it processes the sequence.

Apart from this, the only other change we make to the MAE decoder is learning a separate set of modality embeddings
(as described in the prior section) — i.e. embeddings for <IMG-DECODER> and <LANG-DECODER>; the reason for this is that the
Decoder sees a series of <MASK> embeddings representing the “unseen” visible context to reconstruct, as well as the new language
context to generate (recall that because of the « gating, the language generator never sees language embeddings from the
encoder). We add these to the corresponding embeddings fed to the decoder, then resume the standard MAE decoding pipeline
(reconstructing visual patches), and the language generation pipeline (autoregressively generating the original annotation).

Position Encoding. We follow standard pratice in the masked autoencoding literature (and the same practice used by MVP), as
position encode each of the patch embeddings subject to a fixed (deterministic) 2D sinusoidal embedding that reflects both
vertical and horizontal positioning of each patch within a grid — this is taken directly from the original MAE codebase. To
encode text, we use a similar strategy, using a 1D sinusoidal embedding added to each token embedding in a sequence.


https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
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Fig. 9: Voltron Pretraining Learning Curves (Reconstruction Error). We visualize the reconstruction error over pretraining

epoch for each of the Voltron models. Note that each model learns differently, converging to different reconstruction errors:

both the language-conditioned models (a = 0) converge to low reconstruction error, with }V — Dual showing that encoding and

learning over multi-frame contexts allowing for a better fit. The language generative model V — Gen (o = 0.5) converges to a

relatively higher reconstruction error, showing the tension between balancing two disparate objectives.

C. Pretraining Curves

To further contextualize our results and enrich some of the discussion (and further on in the appendices), we include
the pretraining loss curves for each of the three Voltron models we train in this work — V — Cond, V - Dual, and V — Gen.
The reconstruction error curves for the three models can be found in . In general, we find that the “trade-off” between

language-conditioned reconstruction and visually-grounded language generation is made concrete in the pretraining loss — both
purely language-conditioned models (V — Cond, V — Dual with a = 0) converge to fairly low reconstruction error; however,
V - Gen (with a = 0.5) converges to a much higher reconstruction error — due to the tension between optimizing for both
reconstruction and language generation. We additionally note that adding even simple, dual-frame contexts enables lower
reconstruction error — even with the ViT-Small models, on the Sth-Sth dataset.

D. Index of Released Artifacts
All of the following are linked in our code release and project page:

o Checkpoints for V — Cond, V - Dual, and V — Gen after 400 epochs of training on Sth-Sth.
Checkpoints for our reproductions R-MVP and R-R3M (both with a ViT-S and RN-50 backbone).
o All index files (serialized frames/order seen during training) for reproducible pretraining.

« Intermediate checkpoints every 20 epochs for each of the three Voltron models — along with optimizer states.
o Checkpoints for the ViT-Base variant of ¥V — Cond (86M parameters vs. 22M for a ViT-Small).

The modeling code release additionally provides documentation and scripts for 1) training these models from scratch, and 2)
downloading and extracting representations from the pretrained models. The evaluation code release provides a unified API for
the various problem domains we evaluate on in this work.


https://github.com/siddk/voltron-robotics
https://sites.google.com/view/voltron-robotics
https://github.com/siddk/voltron-robotics
https://github.com/siddk/voltron-evaluation

APPENDIX C
ADDITIONAL RESULTS & VISUALIZATIONS

We present additional results and visualizations to further support our claims from the main text. We provide additional
discussion of 1) the impact of language supervision (in the context of pretraining reconstruction loss), 2) a further discussion of
masked vs. generative language modeling as an objective, with an analysis of pretraining language modeling loss, 3) additional
single task control results on the Adroit dexterous manipulation environments, 4) qualitative trajectory rollouts from the V —
Gen language-conditioned imitation policy, and 5) additional qualitative intent scoring results.

No-Language Ablation: Pretraining Reconstruction Loss
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Fig. 10: Pretraining Curves for the No-Language Ablation Experiment. Training with language-conditioning (V — Cond)
converges to a lower reconstruction error while also learning faster, compared to no-language (single-frame MAE) pretraining.

A. Analysis: Impact of Language-Conditioning on Reconstruction Loss

As part of the ablation experiments in , we evaluate the impact of language-supervision during pretraining via a no-language
ablation, training a single-frame masked autoencoder with the Voltron Transformer architecture as described in ; this
resulting model does not condition on language at all, but is otherwise identical to V — Cond. In the main text, we evaluated
the corresponding no-language model on a subset of evaluation tasks, showing a noticeable drop in performance across every
evaluated application (even those without language input) — thereby showing concrete evidence as to the value of language-driven

pretraining. Here we expand on those results by characterizing the behavior of both V — Cond and the no-language ablation
thereof in terms of their pretraining behavior.

shows the reconstruction error for both ¥V — Cond (yellow) and the no-language ablation (gray) over the course of
pretraining. There are two noticeable properties of these curves: first, V — Cond converges to a substantially lower reconstruction
error than the same model trained without language. Second, )V — Cond is able to learn faster, showing a steeper decline in
reconstruction error earlier on in training. Taken together, these curves suggest that language-conditioning is able to focus
feature learning in a way that allows the learned visual encoder to better encode masked contexts — especially considering
that the visual reconstructor is by definition not language-conditioned. Furthermore, from the aggregate evaluation results, the

features learned as a result somehow generalize better across the board, from low-level tasks like grasp affordance prediction,
to high-level tasks such as control.
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Fig. 11: Pretraining Curves for the Generative vs. Masked Language Ablation Experiment. Compared to multimodal
masked language modeling (R-M3AE), V - Gen (o = 0.5) shows that with language generation as an objective, language

modeling perplexity (PPL = exp(NLL)) gradually decreases. R-M3AE overfits to language prediction almost immediately (PPL
= 1), impacting its learned representations.
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Fig. 12: Adroit — Single-Task Visuomotor Control Results. Visualization of the high-dimensional Adroit environments,
comprised of two dexterous manipulation tasks, with three camera viewpoints [Left]. Results (success rate for each of n
demonstrations with n € [25, 50, 100]) for Voltron and baselines (over 3 seeds) [Right]. Note the flipped trends relative to the
Franka Kitchen results — notably, the more “high-level” representations (from CLIP, R3M, or V — Gen) tend to do better on
this task; yet, V — Gen is still outperforming R-R3M and CLIP, showing the benefit of language-driven flexible learning.

B. Analysis: Generative vs. Masked Language Modeling

Later in , we raise the question: why generative (autoregressive) language modeling over masked language modeling? To
help contextualize this choice, we look at recent work on combining masked autoencoders (for vision) with masked language
modeling (for text), through multimodal masked autoencoders [M3AE; 23]. We reimplement this M3AE model, pretraining on
the same Sth-Sth dataset used throughout this work, following the same standard of quality as for R-MVP and R-R3M. When
we evaluate the corresponding R-M3AE model, we notice substantially worse performance across all evaluation domains; in
the main text we attributed this to overfitting during pretraining — here, we provide that concrete evidence.

shows the language model perplexity over time for both the R-M3AE, and the V — Gen model (trained with « = 0.5).
Perplexity (PPL) = exp(NLL) is a monotonic function of the cross-entropy loss; lower values are “better” with a lower bound
value of 1.0. Almost immediately, the R-M3AE model overfits to the masked language modeling task, hitting a “perfect”
perplexity of 1 (loss of 0.0) within the first 20 epochs. Contrast this with VV — Gen that learns to gradually lower perplexity of
the entire course of training, almost driving down to a PPL of 1.0 by the 400th epoch. We attribute R-M3AE’s poor performance
to this extremely early overfitting of the language loss, again echoing the hypothesis that language generation is slightly more
robust to these settings — predict short language captions given visual context — than a masked language modeling objective.
We note that this pretraining data (Sth-Sth) is significantly different than the data used to train the original M3AE model in
Geng et al. [23]; the original M3AE work used Conceptual Captions 12M [78], a rich dataset of images paired with long,
descriptive captions. Further work on extending M3AE models as in Liu et al. [49] further pretrain on fext-only datasets such
as Wikipedia and Toronto Books [20] suggesting the need for diverse, broad coverage text when training (multimodal) masked
language models.

C. Results: Adroit Visuomotor Control

To supplement our single-task visuomotor control results, we run out evaluations on the Adroit dexterous manipulation tasks
from the R3M paper [58]. The two tasks we evaluate on, depicted in (left) consist of controlling a high degree-of-freedom
robotic hand (24-DoF) for the task of 1) relocating a ball on the table to a specified target position, and 2) reorienting a pen
within the hand to reach a target orientation. Given the innate difficulty of controlling a high-dimensional dexterous robotic hand
over a 9-DoF fixed arm manipulator, these tasks are evaluated with n € [25, 50, 100] demonstrations instead of n € [5, 10, 25]
as with the Franka Kitchen evaluation. In general, learning policies in this environment is difficult, especially from limited data.

Looking to the results we see that on this environment, V — Gen and R-R3M models tend to be the most performant,
in contrast with the Franka Kitchen results which favored V — Cond and V — Dual (the reconstruction-leaning models).
Interestingly, this flipped trend seems to suggest that even within single-task control, different tasks and environments seems to
prefer different visual features to perform well — in this case, the more high-level features under models such as R-R3M and
V - Gen seem to be preferred. In a way, this makes sense; unlike with Franka Kitchen, the actual background objects and
interactions thereof — turning knobs, opening microwaves, or sliding doors with clearly marked handles — seem more sensitive
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Fig. 13: Real-World Language-Conditioned Imitation Rollouts from )V — Gen. We visualize some rollouts from the best-
performing real-world language-conditioned imitation learning model, V — Gen. While some tasks — e.g., discarding the plate
of used coffee pods in the trash — prove hard for all methods, ¥V — Gen shows smooth motion on a series of tasks, even when
challenging visual distractors are present. Videos with evaluation rollouts for each method are on our project page.

to low-level features (where on the microwave is the handle, which knob of the various possible needs to be turned). In Adroit
however, these tasks are on clean backgrounds, with individual objects; the high-level behaviors instead that are more important
(e.g., “is the ball getting closer to the target location?”). It would be an interesting direction for future work to further profile
other “common” visuomotor control tasks along this axis, to get a better understanding of what visual representations must
capture to be generally useful (predictive of performance on downstream real-world control problems).

D. Qualitative: Real-Robot Language-Conditioned Policy Rollouts

While the experimental results in §V capture the quantitative success rates of various methods for language-conditioned imitation,
they do not paint a picture of how these policies behave. In we show three different rollouts for the best-performing V
— Gen model: a task success (in-distribution), a task failure (in-distribution), and an example rollout from the visual distractor
split. With the waypoint-based action space described in &V, we generally see smooth motions; however, the failure mode of
these policies are “oscillations” ( ; middle) where the policy collapses to predicting the same two waypoints repeatedly.
Full videos of rollouts from each representation learning approach are all on our project page.

E. Qualitative: Additional Intent Scoring Visualizations

presents additional intent scoring qualitative visualizations for two other tasks from the WHiRL dataset [5] — specifically
“lifting the lid off a pot” and “stacking cups.” In both scenarios, we see similar behavior to the results from §V of the main text:
YV — Gen shows a propensity for not only tracking the key progress points in the videos for both human and robot agents, but
also providing a dense and smooth measure of intermediate progress. Both CLIP (ViT-Base) and R3M (Ego4D) unfortunately
predict high-variance scores, seemingly random across the video.


https://sites.google.com/view/voltron-robotics
https://sites.google.com/view/voltron-robotics

APPENDIX D
DATA-EQUIVALENT REPRODUCTIONS & REPRODUCIBILITY

In this section we provide additional discussion around two aspects of the reproduction and pretraining procedure discussed
in : 1) preprocessing, and specifically the importance of selecting multiple images from the same context, and 2) how to
operationalize the representations from the visual encoder for downstream learning.

“Lifting the Lid off the Pot” - Human

Score - Estimated Progress

1 2 3 4 5 6 7 8
CLIP (ViT-8) R3M(Ego4D)  —— V-Gen(ViT-S) === Lid SetDown

“Lifting the Lid off the Pot" - Robot

5 ; H
H i 6 [ 0 2 P) 3 B
- CLIP (ViT-8) R3M(EgoD)  —— V-Gen (VIT-S) Lid Grasped =~ Lid Set Down

*Stacking the Cups® - Human

1
CLIP(ViT-8) -~ R3M(Ego4D) ~—— V-Gen(ViT-§)  —=- Cups Stacked

*Stacking the Cups” - Robot

Initial State

Grasped! Stacked! Finished..

°

Score - Estimated Progress
° .

o H i 6 8 © ©
CLIP (ViT-B) R3M(Ego4D)  —— V-Gen (ViT-S) Lifted Cup ==~ Cups Stacked

Fig. 14: Additional Qualitative Zero-Shot Intent Scoring Examples. Given more videos of humans and robots performing
similar behaviors from the WHiRL dataset [5], we evaluate the zero-shot intent scoring capabilities of V — Gen, R3M (Ego4D)
and CLIP (ViT-Base). In general, ¥V — Gen continues to show a nuanced understanding of semantics over time, in general
tracking key points in each video smoothly, whereas both baselines are for the most part predicting random scores.

A. Additional Preprocessing Discussion

We described our preprocessing approach in : following the R3M paper, we sample five frames from each video clip for each
epoch of pretraining. Seeing multiple frames from the same visual context is minimally necessary for the R3M time-contrastive
learning objective, but we posit in this discussion (following the questions in $A) that repeatedly sampling from the same
visual context — even with a reconstruction objective — allows for picking up on finer-grained changes within a context. The
best evidence we have for this is in looking at how prior work constructs their pretraining datasets.

The original MVP work [97, 65] constructs static datasets of images by iterating through the various video clips in their
pretraining datasets — Sth-Sth, Ego4D [25], 100 Days of Hands [70] — at a fixed rate, usually from 0.2 to 1 frames per second.
Given video clip lengths of 2 seconds, this means that in aggregate these pretraining datasets comprise maybe 2-3 frames
sampled from the same clip, if that. Contrast that with this work and R3M, sampling multiple frames from each video clip for
every pretraining epoch (for 400 epochs). This not only means that we are seeing the same context repeatedly, but also that we
are seeing different views of the same context; this can help tune reconstruction towards picking up on finer-grained features
(e.g., if a high-capacity model is able to memorize prior contexts given enough repetition).

This offers a speculative explanation of why Voltron models outperform M VP (EgoSoup) models that are both higher-capacity
and trained on orders of magnitude more data — but definitely requires further experiments to prove. In the meantime, it seems
as though taking steps to use as much of the pretraining datasets we have access to as possible is in our best interest.
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Fig. 15: Default Feature Extraction in MAE Models. Prior work in masked autoencoding including MVP use the embedding
corresponding to a dummy <CLS> token appended to the Transformer input for downstream adaptation. While this is motivated
in the supervised learning setting, it is not clear what this embedding captures in the MAE setting, as it never receives explicit
supervision. We find that pooling the learned patch embeddings is strictly better.

B. Multiheaded Attention Pooling — Extracting Representations

There is a critical difference between pretraining visual representations and identifying the “right” way to use these representations
for downstream adaptation tasks. Especially for Vision Transformers trained as part of a masked autoencoder — as mentioned at
the end of Section of the main text — identifying a method for extracting information from the learned representations is an
open problem. The main text states — by fiat — that we use multiheaded attention pooling [MAP; 46] as suggested by Zhai
et al. [102] to operationalize our learned representations for our downstream tasks. Here, we further contextualize that decision
with a description of alternative approaches, as well as comparative results ( ) that show the superiority of MAP-based
“feature extraction” (referring to the process of taking the output of a Vision Transformer and producing a dense, summary
vector for downstream learning) over alternative approaches.

MVP and prior work in masked autoencoding with Vision Transformers [29] make an interesting choice when it comes to
extracting features: during pretraining, these works append a dummy <CLS> token to the input of the encoder and decoder in
the masked autoencoding pipeline (depicted in ). This “free” embedding is motivated by how Vision Transformers for
supervised learning (e.g., classification) are parameterized: in these settings, after encoding an input image, the <CLS> embedding
is used as (the sole) input to a linear projection into label space, thus obtaining supervision from the global loss function (e.g.,
the cross-entropy loss for classification). Crucially, the <CLS> embedding in these cases gets direct supervision during training.

TABLE V: Feature Extraction Results. We evaluate various feature extraction strategies on the Franka Kitchen visuomotor
control tasks at n = 10 demonstrations. We find that MAP is strictly superior for all Vision Transformer backbones; even
mean-pooling over patch embeddings outperforms the default strategy from the MVP work that uses the frozen <CLS> embedding.

Architecture Default Extractor Mean-Pooling Multiheaded Attention Pooling (MAP)
R-R3M ViT-S 16.07 (Default = Mean-Pooling) - 14.73
R-MVP ViT-S 7.90 (Default = <CLS> Token) 9.50 26.73
V - Cond ViT-S - 19.07 27.33
V - Dual ViT-S - 17.40 33.07
V - Gen ViT-S - 15.67 30.33
VY - Cond ViT-B - 19.40 30.80
V - Dual ViT-B - 16.40 37.27
V - Gen ViT-B - 15.73 32.13
CLIP ViT-B 17.73 (Default = Pool & Normalize) 16.33 22.20

MVP (EgoSoup) ViT-B 18.20 (Default = <CLS>) 20.13 33.87




However, in the masked autoencoding setting, this <CLS> embedding is just passed through the various Transformer layers of
the encoder and decoder, never obtaining any direct or indirect supervision; while it does attend to all other patch embeddings
as a byproduct of the multiheaded attention mechanism, there is no guarantee that this embedding captures or summarize all
the useful information necessary.

Instead, recent work from the same authors of the original Vision Transformer [102] eschew the <CLS> embedding completely
during training, instead identifying that two other strategies — mean-pooling all the patch embeddings output by the encoder, or
using multiheaded attention pooling [40] — are almost always preferable. As an aside — this work is what motivates Voltron
models to also do away with the <CLS> embedding.

Multiheaded attention pooling (MAP) can be thought of as a form of cross-attention with a learned query. Starting with a
randomly initialized query vector (or optionally, set of query vectors), a MAP block implements a shallow multiheaded attention
operation, using the initialized query vector to cross-attend over the patch embeddings output by the Vision Transformer — the
resulting output is a “weighted” combination of the individual patch embeddings that is shaped on a per-adaptation basis. We
evaluate MAP-based extraction against mean-pooling and any other “default” strategy (e.g., the <CLS> embedding used in MVP,
the learned dense representation under CL/P) in . We find that MAP universally outperforms all other strategies on
the Franka Kitchen control tasks (with n = 10 demonstrations), informing our usage of MAP as the sole feature extraction
approach throughout this work. Notably, we find that MAP-based extraction when applied to the original model M VP (EgoSoup)
released in the original work almost doubles success rate on downstream control tasks. We even find that simple mean-pooling
over patches outperforms the <CLS> embedding, further motivating alternate strategies.



APPENDIX E
ADAPTING REPRESENTATIONS FOR EVALUATION

The description of the adaptation pipeline described in outlines all major details for the adaptation experiments for each
evaluation domain; the role of this section is to clarify any potentially ambiguous details, and further motivate some of the
choices we make in implementing each evaluation. In general, all of the details for adapting representations for each evaluation
in the same manner used in this work are in the released evaluation code repository that provides a unified harness for evaluating
arbitrary visual representations on all evaluation domains used in this work — this codebase is also linked from our project page.

In general, for each evaluation domain, we keep the adaptation architecture and optimization parameters as simple as possible.
For all applications we use an AdamW optimizer [43] with the default learning rate of le-3, and weight decay of 0.01.

Grasp Affordance Prediction. We implement the adaptation head for the grasp affordance prediction task following recent
work in learning segmentation heads on top of vision transformer features, specifically following the procedure outlined in
Segmentation Transformers via Progressive Upsampling (SETR-PUP) [105]. A PUP block is straightforward — we first extract
all patch embeddings from the output of our Vision Transformer encoder, using a shallow MAP block with the same number of
seed vectors as patches output by the encoder. We then reshape the extracted features into a grid, then stack a series of 4
upsampling blocks (channel depths of [128, 64, 32, 16], ReLU activation) that consist of a 2D convolution followed by a bilinear
upsampling, until we recover a grid of the same size of the original image. We finally apply a spatial softmax, predicting
distributions over each of the possible labels (“graspable,” “non-graspable,” “background”), and compute our loss per-pixel. We
optimize with a batch size of 64, for 50 epochs in total. Given the small size of the dataset, we find that there is a great deal of
variance across random initializations; we report results by running 5-fold cross-validation, taking the model with the best
performance across validation folds to compute final test statistics.

Referring Expression Grounding. We use a simple adaptation head for referring expression grounding that extracts a single
dense representation from our learned encoder via a shallow MAP block with a single seed vector (the default extractor for
obtaining a vector representation of a visual input). For representations that are not language-conditioned, we concatenate this
vector with the language embedding under the appropriate model — e.g., the CLIP text embedding for CL/P (ViT-Base) — or the
DistilBERT language embedding for pure visual models (e.g., MVP). We then feed this context through a 4-layer MLP (hidden
dimensions of [512,128, 128, 64], GELU activation) that directly predicts bounding box coordinates as (x, y, width, height). We
use a Huber loss to compute error. We optimize with a batch size of 512, for 10 epochs in total, using the provided validation
set for model selection.

Single-Task Visuomotor Control. We first extract a dense representation using a shallow MAP block (as described above),
then follow the exact procedure for evaluating both Franka Kitchen and Adroit policy learning as described in the R3M work
[58]. Namely, we concatenate the visual representation with the robot’s proprioceptive state, followed by a BatchNorm layer
[34]. These are then fed to a 2-layer MLP (d = 256) that directly predicts action targets for computing mean-squared error
against the ground-truth actions. Following R3M, we run 20,000 gradient steps with a batch size of 32, evaluating the models
online every 5000 steps on a heldout set of 50 environments (fixed seed) — we report success rate subject to the best performing
model from the online evaluation. We run three seeds for each combination of viewpoint, number of demonstrations, and task.

Real-World Language-Conditioned Imitation. The full set of language instructions generated by ChatGPT can be found on
our project page. For adaptation, we first extract a representation as with the referring expression evaluation by using a shallow
MAP block, and concatenating the corresponding language embedding as appropriate. We concatenate this fused vector with
the robot’s proprioceptive state, and pass the corresponding embedding to a BatchNorm layer. Then, following recent work on
real-world imitation learning [55], we only train a shallow 2-layer MLP with (d = 64) to predict action targets for computing
mean-squared error against the ground-truth waypoint actions. We optimize with a batch size of 256, and train for 10 epochs.
As policy evaluation in the real-world is expensive — especially for the five approaches we evalaute — we uniformly choose the
last epoch checkpoint to perform evaluation rollouts.

Qualitative: Zero-Shot Intent Scoring. This is a zero-shot evaluation with no adaptation data, only applicable to the
representation learning models capable of “scoring” joint vision-language contexts: V — Gen, CLIP (ViT-Base), and R3M
(Ego4D). We download videos from the WHiRL dataset off of the WHiRL website: https://human2robot.github.io/. To generate
plots, we sample frames at 2 FPS from each video, center cropping and resizing each frame prior to passing it to each model.


https://github.com/siddk/voltron-evaluation
https://sites.google.com/view/voltron-robotics
https://sites.google.com/view/voltron-robotics
https://human2robot.github.io/
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