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Fig. 1: Overview of the proposed Tactile-Filter. As shown in the figure, we consider the task of the part mating without any
prior knowledge of 3D mesh of objects and which objects fit together. We assume that the robot has access to a collection of
tactile images for the set of pegs as shown in figure (Offline data collection). During inference, the robot tries to identify which
peg would fit into a given hole by the proposed Tactile-Filter. An initial set of hypotheses (denoted by s ∈ S) is generated
using the tactile image from the first touch and a trained part mating model, which predicts the correspondence between parts
that fit together. We compute an optimal action for sampling the next image on the hole surface in order to minimize the
uncertainty of the current estimate using a maximum likelihood approach. This is also illustrated in the figure, where given an
initial touch, we can select an optimal action that results in maximum reduction of uncertainty. This method allows us to find
the peg for the right fit as well as localize the hole (as we finally get the correct hypothesis) while minimizing the number of
interactions during the task. (MLTF stands for Maximum Likelihood Tactile Filter). [Best viewed in color]

Abstract—Humans rely on touch and tactile sensing for a lot
of dexterous manipulation tasks. Our tactile sensing provides us
with a lot of information regarding contact formations as well as
geometric information about objects during any interaction. With
this motivation, vision-based tactile sensors are being widely used
for various robotic perception and control tasks. In this paper,
we present a method for interactive perception using vision-
based tactile sensors for a part mating task, where a robot can
use tactile sensors and a feedback mechanism using a particle
filter to incrementally improve its estimate of objects (pegs and
holes) that fit together. To do this, we first train a deep neural
network that makes use of tactile images to predict the proba-
bilistic correspondence between arbitrarily shaped objects that
fit together. The trained model is used to design a particle filter
which is used twofold. First, given one partial (or non-unique)
observation of the hole, it incrementally improves the estimate of
the correct peg by sampling more tactile observations. Second, it
selects the next action for the robot to sample the next touch (and
thus image) which results in maximum uncertainty reduction to
minimize the number of interactions during the perception task.
We evaluate our method on several part-mating tasks with novel
objects using a robot equipped with a vision-based tactile sensor.
We also show the efficiency of the proposed action selection
method against a naive method. See supplementary video at
https://www.youtube.com/watch?v=jMVBg e3gLw.

I. INTRODUCTION

Humans rely on tactile sensing to monitor and control
manipulation tasks during interactions with the environment.
Tactile sensing allows us to monitor and respond to contact
forces, adapt to object slip during grasping, and perform vari-
ous perception tasks to build models of the environment. Even
in situations where visual observation is not possible, tactile
sensing enables us to interpret different types of interactions
with the environment. For instance, we can locate objects in
cluttered environments even in the absence of visual cues,
identify the correct key for a lock by feeling the different
options, or determine the type of video port (e.g., HDMI)
on a monitor screen by touch alone. It has been the long-
standing goal of robotics to imitate such intelligent behavior
during manipulation tasks. Motivated by this goal, we present
an interactive perception method for robots that utilize vision-
based tactile sensors to construct reliable models for part
mating.

A lot of manufacturing tasks could be decomposed into a
sequence of insertion tasks. Object insertion is a well-studied
contact-rich manipulation task in robotics [16, 36]. However,
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the task becomes extremely challenging when the geometry
of the mating objects is unknown. Also, this can make the
task of part mating significantly complex as the uncertainty
in geometry can limit the ability to understand any possible
contact formation between the parts [16]. This complexity
is further amplified in assembly tasks that require precise
geometric information, as tolerances between mating parts
become critical. Achieving the required level of precision in
manufacturing tasks can be challenging when relying solely
on vision-based algorithms.

To address these challenges, we propose leveraging vision-
based tactile sensors located at the robot’s gripper for precise
perception in these tasks. We present an interactive perception
method, Tactile-Filter, using vision-based tactile sensors for
estimating part correspondence for part mating, i.e., to estimate
which parts fit into each other using tactile sensors in the
absence of any vision sensing. We train a deep learning model
to predict correspondence between the correct mating parts,
observed using a tactile sensor. In the presence of partial obser-
vation or non-unique contact patch, we make use of a particle
filter to aggregate the information from multiple touches and
improve the estimate of the correct fit for a given hole. To
minimize the number of interactions between the robot and the
object, a maximum likelihood-based action selection method is
used during the proposed interactive perception. The proposed
method is tested on several different test environments with
objects of different shapes and sizes that are not used in
training the model to show the generalization of the proposed
approach. Figure 1 shows the abstract idea of the proposed
interactive perception method.

Contributions: This paper has the following contributions:
1) We present a part mating problem that deals with objects

of unknown shapes, aiming to identify and estimate
the pose of mating parts using minimal number of
interactions. To address this problem, we present a
novel approach called Tactile-Filter, which combines
contrastive learning, particle filter, and tactile sensing
for part mating.

2) Through our experiments conducted on novel objects,
we demonstrate that our proposed method effectively
resolves uncertainty by iteratively updating its belief dur-
ing interactions. We demonstrate the ability to generalize
to objects not encountered during training. Furthermore,
we introduce an action selection method within our
approach, which leads to significant improvements in
efficiency.

It is noted that for the sake of brevity and clarity of presenta-
tion, we will use the word peg for the male part and hole for
the female part in our paper.

II. RELATED WORK

Vision-based tactile sensors have attracted a lot of attention
recently [44, 22]. These sensors provide a high-resolution
capture of the contact patch during contact formation and
thus can help in localization of contacts, detection of slip,
etc [22, 29, 14]. Consequently, vision-based tactile sensors

have been used for a lot of control and perception tasks [34, 21,
16, 35, 25]. Most of these methods make use of displacement
of the contact patch to recover a signal indicating slip which
can be used for control of the manipulation task. Similarly,
there has been prior work that uses these sensors for object
classification and slip stabilization using feedback from these
sensors [6, 45], or for learning visuotactile servoing [7, 18].

Several studies have focused on estimating object pose
using tactile sensors which can be broadly categorized into
two directions. The first group of studies addresses pose
estimation from a single touch [27, 3, 17, 24], employing
regression [27, 17] and contrastive learning [3]. However,
these methods exhibit limitations when applied to large objects
or objects with non-unique contact patches. The second group
of studies focuses on pose estimation of large objects, often
utilizing particle filtering techniques to narrow down the
distribution of possible poses [28, 24, 38, 5]. However, these
methods face challenges when applied to real objects due to
factors such as low-dimensional sensors [28], the requirement
of a large number of interactions for training interaction
policies [24] or collecting samples [38], and the reliance on 3D
models of objects and/or simulators [24, 38, 5]. In contrast to
these two sets of works, we assume the shape of the objects
is not known a priori, and allow only a limited number of
interactions (a maximum of 10) by generating informative
actions that effectively reduce ambiguity. Furthermore, our
method not only estimates object pose but also identifies the
object type from multiple candidates, adding an additional
layer of complexity to the problem.

There exists another category of works that integrate vision
and tactile sensors to estimate object pose [28, 12, 7, 17]. By
leveraging the capabilities of vision sensors, these methods
can reduce the number of interactions required to estimate
object pose by narrowing down the distribution of possible
poses. While our study specifically focuses on object pose
estimation using vision-based tactile sensors, our method is not
mutually exclusive with the methods that combine vision and
tactile sensors. By integrating both modalities, we can leverage
the strengths of each sensor type and potentially improve the
accuracy and efficiency of object pose estimation.

Our problem setup is relevant to the interactive perception
literature, where the goal is also to interact with the objects and
update iteratively on the estimation of the states [4, 41, 37].
While previous work focuses mostly on state estimation from
raw visual perception [19, 4], point clouds [33, 40, 30], or 3D
states of the objects [31]. In contrast to these previous works,
we consider state estimation using tactile sensors.

Our work is also related to perception during insertion or
part mating. Vision is mostly insufficient to perform a lot
of insertion tasks due to the precision required during these
tasks [16, 26]. Consequently, there has been a lot of work
making use of tactile and/or wrench measurements on contact
formation between the mating parts. The idea behind most
of these tasks is to make use of tactile measurements and
a feedback mechanism to iteratively correct the pose error
between the mating parts [16, 13, 23]. In all these methods,



geometric information is not explicitly used. Furthermore, they
do not explicitly update the uncertainty in measurements. In
contrast, we present a method where the robot can make use of
the geometric information upon contact formation using tactile
sensors to iteratively estimate the part correspondence as well
as precise localization.

III. PROBLEM STATEMENT

In this section, we present a formal statement of the problem
which is studied in this paper. We also motivate the problem
by discussing some common scenarios where the proposed
problem could arise and the proposed method could be useful.

We consider the task of perception during part mating while
performing automated assembly. We consider scenarios where
the robot can not use a vision sensor to perceive the target
object to perform the desired mating task. Such situations
could arise in tasks where a robot has to assemble a product
where occlusions are created by other parts (e.g., consider the
assembly of an electronic board). Apart from occlusion, these
tasks could also require precision in pose estimates which
might be very difficult to obtain using vision. To formalize
the problem, we define the task for the robot as identifying
the correct peg from a known set of possible choices by
multiple observations of the hole using the vision-based tactile
sensor(s). The goal here is to design algorithms that can
identify the correct peg with minimum physical interaction
with the hole using a tactile sensor. We make the following
assumptions in the proposed study:

1) The possible number of pegs for the part mating task is
fixed and known as apriori.

2) The rough location of the target hole is known so that
the robot can establish initial contact with the part and
it does not need to perform this rough localization using
touch.

3) The robot can collect a dense set of tactile images for
all the candidate pegs by touching each of the pegs
at various different locations and orientations, prior to
experiments.

The first assumption is not restrictive as we will generally have
a limited number of parts to assemble. The second assumption
is also very easily met using common vision methods with
rough precision in localization. The third assumption would
require that the robot has access to a detailed geometric model
of the possible pegs observed using tactile sensors. This would
require that the robot performs some exploration to collect
this data. This assumption is required as the size of the tactile
sensor may be small compared to the size of the objects that
the robot is interacting with.

We focus on the setup where the target objects are larger
than the size of a tactile sensor such that the entire object
can not be observed using a single touch or a single touch
can result in non-unique observations (consider when parts of
the objects could be similar). Such problems would require
multiple touches and a method to aggregate the data from
multiple touches. For example, consider the task of inserting
pegs into the shape of alphabet letters that are larger than

the sensor size (see Fig. 4). If the target hole is the letter ”A”,
whether we can be certain that it is indeed an ”A” with a single
touch depends on where we land our finger. For instance, if
the first touch is made on the horizontal line segment of the
letter ”A,” this feature may also be present in other alphabets
such as ”B,” ”D,” ”E,” and so on. However, by making contact
with features unique to the letter ”A,” such as the lower
left intersection, the probability of other candidates can be
reduced. So the question is how do we aggregate information
from multiple touches, and how do we select places to touch
that will maximize the information so as to reduce required
interactions?

IV. TACTILE FILTER

We propose Tactile-Filter, an uncertainty-aware interactive
perception method to identify the correct peg from a candidate
set that fits into a given hole for assembly using tactile sensors.
At the core of the framework is a feature-matching model
that computes the probability that a peg can pair with a
hole by measuring the distance between the corresponding
tactile images in a joint feature space. Using the feature
matching model, we can construct the three critical steps in
standard particle filtering: (1) we can initialize a set of possible
hypotheses from the first touch by comparing the tactile image
on the hole with the candidate images for the pegs collected
before the experiment, (2) we then sample the most probable
hypothesis and generate an action that maximizes uncertainty
reduction, and (3) we apply the inferred action to the real
system and update beliefs about the shape and pose of the
target hole. Next, we detail each of these components.

A. Learning to find mating part

Given a pair of peg and hole images, we train a model
that maximizes the similarity score if the image for the hole
corresponds to the image for the peg. To this end, we use
a contrastive learning framework [8, 20] to learn the feature
space, similar to the work MoCo-v3 [9].

MoCo-v3 has two encoders, fq and fk, with output vectors
q and k. The goal of learning is to find the key vectors k that
correspond to the query vectors q. In our case, we consider
the query vectors q to be the vectors from images of the holes
and learn to maximize the similarity score between q and the
vectors computed from the corresponding peg images k, while
minimizing the similarity between the query vectors and a set
of vectors from the negative peg images {k−}. In MoCo-v3,
this is formulated by minimizing the InfoNCE loss [32]:

L = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

k− exp (q · k−/τ)
, (1)

where τ is the hyperparameter. More details can be found
in [9], implementations in [11], and the training procedure is
shown in Fig. 3. We denote the model used for measuring
similarities between the hole images and peg images as fHP,
and name it part mating model. Additionally, we train a model,
denoted as fPP and referred to as the peg distance model,
to calculate the similarity between peg images. This model



will be utilized to produce informative actions (as detailed in
Section IV-C).

B. Generating hypotheses

In cases where only a partial shape of a hole can be
observed using a tactile sensor, multiple corresponding choices
for peg may exist. Thus it might be hard or impossible to
determine the object with a deterministic approach. To address
this uncertainty, we explicitly generate and maintain a set of
hypotheses representing potential candidate choices using a
particle filter.

Since the class of the target hole and its orientation and lo-
cation is unknown (Sec. III), we generate a set of hypotheses S
where each hypothesis sk is a quadruple: sk = (ck, xk, yk, θk),
where ck represents the possible object categories ck ∈ C, and
xk, yk, θk are the SE(2) relative planar displacements from the
center of the object. An example is shown in Fig. 1 and is also
explained in Fig. 2.

One can initialize the particle set by sampling from a
uniform distribution within a reasonable range (e.g., ck from
candidate categories, xk from [−XMAX, XMAX], which is the
lower and upper limits of reasonable sizes of the peg, etc.).
However, it will be inefficient as the sampling space becomes
huge as the target object becomes larger, and/or the number of
candidate categories increases. As an alternative, we initialize
the particle set after obtaining the first tactile image of the
target hole IH

t=1 (which we denote as IH
1 ) by utilizing the

previously collected set of peg images IP and pre-trained part
mating model fHP. Specifically, we compute the similarities,
wi, between the observed initial tactile image for the hole IH

1

and each tactile image of the peg IP
i from the set of peg images

IP as:
wi = fHP(I

H
1 , I

P
i ). (2)

We sample a particle proportional to this likelihood. Therefore,
the probability of a particle given the initial hole image can
be written as:

p(s = i|IH
1 ) =

wi∑
i∈{1,...,|IP |} wi

(3)

where, i is the index of the set of previously collected peg
images as i ∈ {1, ..., |IP|} (see Fig. 1). We then initialize the
set of hypotheses by independently sampling K particles with
the above distribution. It is noted that the above distribution
is a categorical distribution over all peg images.

C. Selecting informative action

In order to efficiently determine the category and pose of
the target hole, we aim to calculate an optimal action that can
maximize uncertainty reduction. While it is possible to com-
pute such an optimal action by maximizing information gain
against all possible peg images, it necessitates the integration
of all latent variables, making it computationally infeasible
within a reasonable time frame. As an alternative, we utilize
the existing hypothesis set S to enhance the sample efficiency.

We sample the most probable hypothesis from the current
set of particles s∗ = arg max

sk∈S
wk and determine the optimal
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Fig. 2: This picture defines particles and actions available to
the robot. A particle s is defined as a tuple consisting of the
class of the object and a pose in SE(2) w.r.t. a frame attached to
the center of the object. Each particle si is associated with the
corresponding image IP

si observed via the tactile sensor at that
location. An action a is equivalent to the transform in SE(2)
applied to a particle si. The pose of a particle obtained by
applying an action a can be obtained by applying the transform
in SE(2) to the pose of the particle s, and we denote it as si,a.
Thus, an action a will result in the observation of the contact
patch IP

si,a at the new pose corresponding to the particle si,a.
[Best viewed in color]

action by simulating it on a set of previously collected peg
images IP (see Fig. 1). The action a = (dx, dy,dθ) is
represented as a transform in SE(2) to the pose of the particles,
and we denote the particle sk with the updated pose by
applying the action a as sk,a. With this updated pose and
the peg images IP, we can also obtain the peg image when
applied to the action a, which we denote IP

sk,a
. If there is no

corresponding pose in the collected set of images, we assign
an empty image which is a tactile image without any contact
INoContact. We visually explain the definition of particles and
actions in Fig. 2.

Given a current most-likely hypothesis, the next optimal
action can be selected by finding the most informative action.
To do that, we compute the distance between the tactile images
obtained by applying any possible action to the most probable
hypothesis and the remaining particles in set S. The action
that maximizes the sum of this distance over all the particles
is selected as the optimal action. Such an action is favored
only when the peg image of the sampled particle is close to
the hole image, while other images have a greater distance
when applying the same action to all the other particles. More
concretely, we define the likelihood of an action as

la =
∑

si∈S\{s∗}

1/fPP(I
P
s∗,a , I

P
si,a). (4)

The optimal action can be then selected by maximizing the
likelihood as:

a∗ = arg max
a∈A

la, (5)

where A is a set of actions with which the tactile sensor can
observe the peg after applying the action. This action set A



Algorithm 1 Tactile-Filter
Input Number of candidate pegs NP. A set of dense tactile images for each peg categories IP = {IP

1 , · · · , IP
NP}, number of

particles K, maximum number of interactions Nmax, pre-trained part mating model fHP and peg distance model fPP (Sec. IV-A),
threshold to stop iteration δprob

Output Mating peg category and its displacement in x, y, θ coordinate from the center of the peg
1: Touch and observe the first hole image IH

1

2: Compute similarity score wi between the hole image IH
1 and a peg image IP

i ∈ IP as wi = fHP(I
H
1 , I

P
i )

3: Initialize a particle pool S = ∅
4: for k ← 1 to K do
5: Sample a particle from the set of the peg images according to the categorical distribution defined in Eq.(3)
6: Add the sampled particle sk = (ck, xk, yk, θk) to the particle pool: S ← S ∪ sk.
7: end for
8: for t← 2 to Nmax do
9: Select the most probable particle s∗ = arg max

sk∈S
wk

10: Infer the optimal action a∗ according to Eq. (5) using s∗ and S.
11: Move the robot with the inferred action a∗ and get the tactile image IH

t

12: for k ← 1 to K do
13: Compute importance weight for the particle wk = fHP(I

H
t , I

P
sk
)

14: end for
15: Compute the posterior distribution defined in Eq.(6)
16: Re-sample K particles from S using the posterior distribution
17: Compute updated posterior pt(c|IH

1:t) of each peg category from the particles as defined in Eq. (9)
18: if maxj∈{1,...,NP} pt(cj) > δprob then
19: Break the current loop
20: end if
21: end for
22: Select the most probable particle s∗ = (c∗, x∗, y∗, θ∗) = arg max

sk∈S
wk (to get the localization estimate, i.e., x∗, y∗, θ∗)

23: return Object category c∗ and its displacement x∗, y∗, θ∗.

can be obtained by calculating the L1 pixel distance between
the tactile image of the peg after applying the action IP

s∗,a and
the peg image that does not have contact IP

NoContact, and see if
it exceeds a threshold as I(∥IP

s∗,a − INoContact∥1 < δact).
This procedure is visually depicted in Fig. 1, where the

optimal action a∗ is shown to generate a more distinct contact
patch (observable through touch) when applied to all particles
(s∗ and s1 in the figure). On the other hand, the non-
informative action a1 produces similar contact patches that
would not effectively disambiguate the current belief.

D. Update hypotheses
After obtaining the optimal action at at time step t, we

apply it on the real robot and observe the tactile image of the
hole IH

t . We then update the probability of each hypothesis
by comparing the observed hole image IH

t and the peg images
from the current hypotheses IP

sk,at
:

p(st|IH
1:t, a1:t−1) ∝ p(IH

t |st)p(st|IH
1:t−1, a1:t−1)

≈
K∑

k=1

wkp(st|IH
1:t−1, a1:t−1),

(6)

where wk =
fHP(I

H
t ,I

P
sk,at

)∑K
k=1 fHP(IH

t ,I
P
sk,at

)
is the likelihood (weight) for

the hole image to match with the peg image of the kth particle.

The second term can be written as:

p(st|IH1:t−1, a1:t−1)

=
∑

st−1∈S
p(st|st−1, at−1)︸ ︷︷ ︸

forward dynamics

p(st−1|IH1:t−1, a1:t−1)︸ ︷︷ ︸
obtain through recursion

,

(7)

where the first term represents the deterministic forward dy-
namics. Given the particle is in state sk at time step t, the
dynamics can be expressed as:

p(st+1|st, at) =
{

1 if st+1 = sk,at

0 otherwise. (8)

The second term in Eq.(7) is initialized with the prior defined
in Eq. (3) and can be obtained through recursion. We update
the distribution of the particles by regenerating a new set of
particles through weighted sampling based on w. The full
algorithm is shown in Alg. 1.

E. Terminal condition

After updating the posterior of the particles with Eq. (6),
we compute the posterior probability of each peg category as
follows:

pt(c|IH1:t) =
∑

sk∈S I(sk ∈ c)

|S|
, (9)
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Fig. 3: Data Collection, Training, and Inference of the Part Mating Model: The left block depicts the data collection process
using the MAZE board that features various shapes, including hole and peg shapes in the upper and lower halves, respectively.
This board is placed on the robot platform and the robot arm equipped with a tactile sensor at the tip of the wrist makes contact
with the board to collect data denoted as IH and IP, which corresponds a set of images for pegs and holes, respectively. The
middle block illustrates the training procedure for the part mating model. It is trained in a self-supervised manner using a
contrastive loss that encourages the model to produce high scores only when images corresponding to true mating parts are
provided. The right block demonstrates the model’s generalization to different shapes after training. [Best viewed in color]

where I(sk ∈ c) is an indicator function that returns 1 only
when the category of the particle ck belongs to the category c.
The algorithm terminates when the majority of particles belong
to a specific class, indicated by maxj∈{1,...,NP} pt(cj) > δprob,
which is a user-specified parameter for termination.

V. EXPERIMENTS

In this section, we evaluate the performance of the Tactile-
Filter algorithm in two different test scenarios. The first
scenario, referred to as the small objects, involves a collection
of small objects that can be fully captured by a single touch
of the tactile sensor, thereby making the estimation problem
relatively simpler to solve. The second scenario, referred to as
the large objects, involves objects that are larger than the size
of the tactile sensor, requiring multiple touch measurements
to accurately estimate their shape. All the test objects used in
the pose estimation experiments are novel and are not used
for training the contrastive learning model.

A. Training the part mating model

Tactile sensor. We use a commercially available GelSight
Mini [2] tactile sensor, which provides 320× 240 compressed
RGB images through the Robot Operating System (ROS) at a
rate of approximately 25 Hz, with a field of view of 18.6×14.3
millimeters.

Robot platform. The MELFA ASSISTA robot [1], a col-
laborative robot with 6 DoF, is used in this study. The tactile
sensor is mounted on the robot’s wrist during data collection
(see Fig. 3). It is noted that we do not use the force torque
sensor mounted at the wrist of the robot as shown in the Fig. 3.

Data collection. In order to train a model that is capable of
generalizing to a diverse set of shapes, we designed a board for
data collection so that it features random polygonal shapes to
simulate pegs and holes of arbitrary shapes. The shapes were
generated through a process that involved creating a maze (we
name it MAZE board), adding random perturbations to the

position and size of the walls that make up the maze, and then
exporting the result for 3D printing. This board was designed
such that any arbitrary hole patch sampled from the upper
half has a corresponding mating peg patch in the lower half
(see Fig. 3). To collect data for training, we sampled several
different locations and orientations on the upper half MAZE
board from a high-resolution grid to collect the hole images,
and then collect the corresponding peg images from the lower
half. This resulted in a total of approximately 23, 000 pairs of
images of pegs and holes which perfectly fit with each other.

Preprocessing. In this study, the tactile sensor used has
RGB LEDs with different colors on each of the three sur-
faces [2]. As a result, even when the same object is in contact,
the color may differ depending on the position of the image
captured. To mitigate the potential impact on generalization
performance, we obtained an image of a non-contact situa-
tion INoContact during data collection, reducing the impact by
subtracting the image. Then, the average and variance of each
RGB channel were calculated for all images, and the images
were normalized before being input into the model.

Training. As described in Sec. IV-A, we use MoCo-v3 for
our part mating model fHP and peg distance model fPP. We
train the models with the collected images using the MAZE
board for 500 epochs. To improve generalization capability, we
augment the data by using random cropping and horizontal or
vertical flips, which will be applied to the pairs of images
inputted to the model during training.

B. Small objects

We first evaluate the performance of the TactileFilter when
applied to objects that fit in the size of the sensor.

Baselines. To understand the challenges encountered when
identifying objects that might not be fully captured through
a single touch, we compare our method against two methods
that only use the initial image. The first baseline, referred to
as Pixel, computes the L1 distance between the peg and hole
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Fig. 4: Alphabet boards for our experiments. The left board
contains small characters, each with a length of 12 mm and a
maximum width of 16 mm, to fit within the size of the sensor if
the robot makes contact with the center position. The sensor
size is shown in the middle image. The board on the right
has large characters with a length of 32 mm and a maximum
width of 40 mm, requiring multiple interactions with the tactile
sensor to obtain complete geometry for the object.

images and returns the index of the nearest neighbor image.
The second baseline, MoCo, utilizes the pre-trained MoCo-v3
model to calculate the distance (negative of the MoCo-v3’s
output) based solely on the first tactile image and without
incorporating any subsequent interactions. The results of our
method are denoted as Ours (n), where n indicates the number
of interactions. It is important to note that the value of n
includes the initial contact, therefore, Ours (n = 1) represents
the results obtained without any additional interactions.

Settings. For this experiment, we have designed an eval-
uation board consisting of 12 alphabet characters (ranging
from “A” to “L”), each with a maximum width of 16 mm
and height of 12 mm, so the characters fit within a single
touch. Since we would like to evaluate the model in situ-
ations where the pose of the object is unknown, resulting
in only partial observation of the object and requiring mul-
tiple touches for accurate estimations, we collect data with
displacements in X,Y ∈ {−8,−4, 0, 4, 8} millimeter and
θ ∈ {−90,−60, ..., 90} degree from their center position.
This results in 12 × 5 × 5 × 7 = 2100 images. Figure 4
shows examples of the characters we used for the experiment.
The hyperparameter we used for our algorithm is the number
of particles K = 100, the maximum number of iterations
Nmax = 10, and the threshold to stop the iteration δprob = 0.95.

Metrics. The performance of the results is assessed through
two metrics. Firstly, we evaluate the accuracy in classifying the
objects. For the baseline calculation, we calculate the distance
between a hole image and all previously gathered peg images,
select the image with the minimum distance, and consider the
prediction to be accurate when the predicted image’s class
matches the class of the inputted hole image. Additionally,
the distance between the predicted pose and the ground truth
pose is quantitatively measured.

With regard to the evaluation of the proposed method,
we utilize the likelihood used for updating the particles to
weight the prediction. The object with the highest weighted

TABLE I: Quantitative evaluation of single touch experiments
with small objects on the alphabet board.

Pixel MoCo Ours
n = 3 n = 5 n = 10

Accuracy [%] 0.0 39.6 81.8 90.7 95.0
Error XY [mm] - 0.7 0.2 0.1 0.1
Error θ [deg] - 5.4 0.9 0.3 0.1

TABLE II: Quantitative evaluation of multiple touch experi-
ments with large objects on the alphabet board.

Pixel MoCo Ours
n = 3 n = 5 n = 10

Accuracy [%] 11.9 41.9 58.7 72.3 85.0
Error XY [mm] 6.9 4.4 1.3 1.0 0.7

Error θ [deg] 16.6 15.5 4.4 2.9 1.5

probability is then evaluated with the target object. We also
use weighted error between the particles and the ground truth
image to compute the quantitative error.

Results and Analysis. The results are presented in Table I.
A comparison between the two baselines, Pixel and MoCo,
reveals that correspondences between parts cannot be obtained
simply by comparing pixel values. The contrastive framework
captures the features of mating parts, resulting in improved
performance. However, the results using only the first contact
are still not sufficiently accurate as the tactile sensor only
observes a partial view of the object. In contrast, our method
demonstrates a gradual improvement in performance as inter-
actions are added. Additionally, as we can see from Table I,
our method is able to achieve good localization accuracy both
in position and orientation. In particular, we are able to achieve
a submillimeter average error in localization which might be
required for industrial insertion tasks.

C. Large objects

Settings. In the next set of experiments, we evaluate the
performance of the proposed method when applied to objects
that are larger than the size of the sensor. This scenario
requires the robot to interact multiple times with the object to
gain a comprehensive understanding of its shape. To this end,
we have designed an evaluation board consisting of twelve
alphabet characters (ranging from “A” to “L”), each with a
maximum width of 40 mm and height of 32 mm. We tested
the method on the location and orientation of the robot from
X,Y ∈ {−20,−16, ..., 20} mm and θ ∈ {−90,−60, ..., 90}
with respect to the center position of each character. Figure 4
presents examples of the characters utilized in the experimental
setup. As for the baselines, we compare the method against the
same baselines as the previous experiment on small objects.

Results and Analysis. Table II shows the results on the
large objects. Similar to the results obtained in the setting
of small objects, our proposed model demonstrates improved
performance compared to the baselines. However, it is also
observed that a larger object size requires a greater number
of interactions in order to achieve comparable accuracy. In



Fig. 5: Classification accuracy of the pro-
posed method with a different number of
classes evaluated on the Large objects.
The result shows our method can quickly
identify the correct class if the number of
classes (shown by N ) is limited.

(a) Small objects (b) Large objects

Fig. 6: Classification accuracy for Small and Large objects with different action
strategies. As could be seen from these bar plots, our proposed method demon-
strates significant improvement in comparison to the random action selection with
regard to classification accuracy.

Figure 5, we show the classification accuracy with respect
to the number of interactions, and the results with randomly
sampled smaller sets of 4 and 8 characters to evaluate the
performance with a smaller number of possible candidates.
The bar plots demonstrate that the proposed method can
quickly identify the correct class if the number of classes is
small.

D. Ablation on action selection strategy

Settings. To assess the effectiveness of the proposed action
selection strategy, we compare the proposed method with a
random action selection method (which we call Random). We
evaluate the two methods on the Small and Large objects
settings described earlier.

Results and Analysis. The results in Fig. 6 indicate
the proposed maximum likelihood action selection approach
demonstrates significant improvement in comparison to the
method with regard to classification accuracy.

E. Evaluation on industrial connectors

Settings. To further evaluate the performance of the trained
part mating model in an industrial setting, we collect tactile
images of connectors and sockets from a Raspberry-Pi board,
as depicted in Fig. 7.

Results and Analysis. The results of the evaluation of the
Pixel baseline and our part mating model for the classification
of connectors and sockets from the Raspberry-Pi board are pre-
sented in Table III. The Pixel baseline demonstrates improved
performance in comparison to the small and large object
experiments, due to the reduced number of classes in this
setting and the unique size of each connector/socket, which
simplifies the classification through the use of only L1 pixel
distance. Although the part mating model outperforms the
Pixel baseline, it misclassifies the female HDMI connector as
the male USB-A connector. This is attributed to the significant
distribution shift between the training set and the test set,
where the pins on the surface of the male part are not present
in the training data. To address this issue, future work can
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Fig. 7: Experimental setup for industrial connector identi-
fication on a Raspberry-Pi board. This image shows the
observations of the six pegs and holes using the GelSight Mini
sensor. Table III shows the classification results obtained by
our model. [Best viewed in color]

TABLE III: Classification accuracy on the Raspberry Pi Board.

Pixel MoCo
Accuracy [%] 50.0 83.3

focus on enhancing the generalization capabilities of the part
mating model.

F. Application to multi-object assembly

Settings. Once Tactile-Filter localizes the hole and identifies
the corresponding peg, the robot can successfully insert the peg
into the right hole. This is facilitated by the algorithm’s ability
to estimate the pose with high precision, as demonstrated by
the submillimeter average prediction error (refer to Table I
and Table II). Consequently, we assess the proposed method
in a real multi-object assembly scenario during the final
experiment.
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Fig. 8: Visualization of belief maps for holes categorized as “M”, “L”, “T”, and “F”. In each figure, the red regions in the
left column show the spatial and temporal region captured by the tactile sensor during interactions, represented as IH

t , where
t indicates the interaction number or timestep. The center image shows the hole image captured by the tactile sensor, and
the right figure illustrates the belief map generated by the current particles. Across all hole types, the results indicate a rapid
convergence of the distribution of the hole’s initial contact pose and its corresponding category.

The task involves identifying and localizing four pegs and
holes shaped like the alphabet characters “M”, “L”, “T”, and
“F” (Maximum Likelihood Tactile Filter). Each peg has a
length of 32 mm and a maximum width of 28 mm, as depicted
in Fig. 1 (leftmost picture). Although the algorithm achieves
accurate pose estimation for the holes, the robot still fails in
insertion due to errors during grasping. To account for this,
we design holes with a tolerance of 2 mm and treat insertion
as a simple pick-and-place operation using an impedance
controller. For more precise assembly, we can combine our
method with prior work, such as [16, 15].

Results and Analysis. The qualitative results are available
in the video accessible at https://www.youtube.com/watch?v=
jMVBg e3gLw. The video demonstrates the algorithm suc-
cessfully identifies the correct peg and pose of the hole,
and the robot successfully inserts the pegs. Moreover, the
visualization generated from this experiment as shown in
Fig. 8 demonstrates that our method is iteratively corrects
its belief during the interactive perception. Finally, in terms
of computational time, the most time-consuming steps of the
algorithm involve updating importance weights using the part
mating model fHP in Eq. (2) and the peg distance model fPP
in Eq. (4). However, each of these steps takes approximately
0.3 seconds on a single GPU, which is significantly shorter
than other robot operations. Thus, our algorithm is suitable
for online control.

VI. CONCLUSIONS AND FUTURE WORK

Tactile sensing can allow robots to build reliable models
of their environment to perform precise manipulation tasks.

In this paper, we presented a novel method called Tactile-
Filter. We presented an interactive perception method where
a robot can improve its estimate for the perception task using
tactile sensors while minimizing the number of interactions
required with its environment. We considered the design of the
method in the context of the task of part mating. In the absence
of any vision input, we described a method where the robot
could incrementally improve its estimate of correspondence
between parts within a fixed number of available choices. We
also proposed a maximum likelihood-based approach to select
future actions to minimize the number of interactions during
the perception task. The proposed method was verified using
a vision-based tactile sensor and a physical robot on several
tasks of part mating. The generalization of the proposed
method to previously unseen scenarios was also illustrated.

As our method was trained and evaluated on a physical
system, data collection was performed using a real robot.
However, in future work, we aim to explore the possibility of
utilizing an appropriate simulation environment [10, 43, 42,
39] to simulate contact patches for various object geometries.
This approach would enable us to reduce reliance on physical
robots for data collection and instead leverage simulations to
acquire data. By doing so, we can learn and develop complex
perception techniques with minimal usage of real-world data.

Another limitation of the proposed method is that we
assume that tactile images consist of only the peg and hole
parts. Therefore, the underlying deep learning model can get
easily confused if distractors are present in the image (such
as attachments to connectors in Fig. 7). In future research,
we can work on this limitation by localizing the mating parts

https://www.youtube.com/watch?v=jMVBg_e3gLw
https://www.youtube.com/watch?v=jMVBg_e3gLw


from the tactile image to make the method more robust to such
distractors.
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