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Abstract—Multiphysics phenomena, the coupling effects in-
volving different aspects of physics laws, are pervasive in the
real world and can often be encountered when performing
everyday household tasks. Intelligent agents which seek to assist
or replace human laborers will need to learn to cope with such
phenomena in household task settings. To equip the agents with
such kind of abilities, the research community needs a simulation
environment, which will have the capability to serve as the testbed
for the training process of these intelligent agents, to have the
ability to support multiphysics coupling effects.

Though many mature simulation software for multiphysics
simulation have been adopted in industrial production, such
techniques have not been applied to robot learning or embodied
AI research. To bridge the gap, we propose a novel simulation
environment named RFUniverse. This simulator can not only
compute rigid and multi-body dynamics, but also multiphysics
coupling effects commonly observed in daily life, such as air-solid
interaction, fluid-solid interaction, and heat transfer.

Because of the unique multiphysics capacities of this simulator,
we can benchmark tasks that involve complex dynamics due
to multiphysics coupling effects in a simulation environment
before deploying to the real world. RFUniverse provides mul-
tiple interfaces to let the users interact with the virtual world
in various ways, which is helpful and essential for learning,
planning, and control. We benchmark three tasks with reinforce-
ment learning, including food cutting, water pushing, and towel
catching. We also evaluate butter pushing with a classic planning-
control paradigm. This simulator offers an enhancement of
physics simulation in terms of the computation of multiphysics
coupling effects. The simulation environment, videos, and other
supplementary materials can be viewed on the website: https:
//sites.google.com/view/rfuniverse.

I. INTRODUCTION

Physics laws govern the real world and therefore generate
various object dynamics. Multiphysics phenomena can happen
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(a) Navigation. (b) Pick and place. (c) Cutting.

(d) Water pushing. (e) Towel catching. (f) Butter pushing.

Fig. 1. Tasks in RFUniverse: Standard tasks such as (a) Navigation (b) Pick
and place, and tasks involving multiphysics interaction such as (c) Physics-
based cutting; (d) Water pushing; (e) Towel catching; (f) Butter pushing.

when objects in different states interact with each other.
Humans can encounter many these common phenomena when
conducting everyday household tasks. For instance, a piece
of towel dropping in the air can easily drift its path due to
aerodynamics. The water from a faucet can flush away the food
waste and dirts through fluid-solid interaction. The heating
process can soften the butter and transfer its state from solid to
liquid. An intelligent agent which learns to perform household
tasks will need to learn to react with object state changes due
to these common multiphysics coupling effects.

However, though many simulation environments [17, 44, 3,
29, 33, 25, 45, 32, 19, 9, 6, 13, 46, 48] have been developed
for embodied AI research in recent years, they usually focus
on tasks which only require the basic rigid and multi-body
dynamics simulation, such as abstract decision-making or

https://sites.google.com/view/rfuniverse
https://sites.google.com/view/rfuniverse


simple manipulation. Almost none of them considers the object
dynamics under coupled physics effects. A recent simulation
environment OmniGibson [20] supports over 2K household
tasks, which covers the largest scope of household tasks by far.
However, even though it contains tasks that involve complex
physics coupling effect, like water pouring and gas ignition,
the underlying multiphysics interaction is still simplified or
ignored in this environment. These kinds of simplification limit
the task scope of embodied AI research and limits the sim-to-
real transfer ability of the algorithms developed in simulation.

To bridge the gap and extend the task scope of embod-
ied AI research, we present a novel simulation environment
named RFUniverse. Aside from common rigid and multi-body
dynamics simulation, RFUniverse integrates three kinds of
multiphysics coupling effects into the simulation environment,
namely air-solid interaction (aerodynamics), fluid-solid inter-
action (hydrodynamics), and heat transfer (thermodynamics).
Without a doubt, in nature, different physics laws have more
than these three ways of coupling to influence the world. How-
ever, it is not practical to integrate all kinds of multiphysics
effects into the simulation while maintaining a real-time per-
formance which is essential for robot learning and control.
Therefore, we choose to implement these three multiphysics
effects which are the most commonly encountered in our daily
life and therefore will have the potential to better support
common household tasks. With the underlying support of
multiphysics, there will be chances for the research community
to evaluate the execution process for advanced physics-based
tasks. We focus on four key tasks in this paper, including
physics-based food cutting, water pushing, towel catching,
and butter pushing.

Admittedly, a high-accuracy calculation of multiphysics
interaction [26, 35] requires considerable computational re-
sources so that is difficult to run in real time, making it
not suitable for the real-time requirement from the robotics
community. To balance usability and accuracy, we adopt
solutions with simplification on the physics side with a decent
computation speed while maintaining fidelity to real-world dy-
namics. To prove the fidelity, we conduct parallel experiments
to compare the multiphysics effects in the virtual world with
the ones in the real world. For example, with a glass of water,
we observe its weight and volume and find out it is the same
in the real world. We fix a towel and blow it with the wind,
finding the virtual world and the real one are quite aligned in
terms of the movement of the towel. We heat butter and see
it melting down similarly in simulation and the real world.
We hope our simulation environment with verified fidelity can
serve as a platform for multiphysics-based robot learning, and
facilitate the integration of advanced simulation techniques
into embodied AI research.

To help utilize the simulation environment, in addition
to the multiphysics simulation, RFUniverse also provides
full functionalities to support task simulation and learning:
physics-based rendering, multi-modal sensing, Python APIs,
and a gym-like wrapper for reinforcement learning. Besides,
we provide a ROS-free version of MoveIt [4], RFMove [49], as

a lightweight planner, and natively integrate it into RFUniverse
for full-body movement planning. In addition, we also provide
ROS interface to enlarge the ecosystem and expand the scope
of potential users. We also provide a VR interface to extend the
interactive ability from the real to the simulated environment.

We present a set of standard tasks trained with reinforce-
ment learning to showcase the usage of RFUniverse to robot
learning in supplementary materials, such as navigation in the
setting of multi-agent collaboration, locomotion in the setting
of goal reaching, and a few manipulation tasks (e.g. fruit
picking, cloth folding, sponge wiping). In the main paper, we
would like to highlight and focus more on introducing and
explaining the multiphysics-based system, which is seldom
considered by previous simulation environments. We evaluate
food cutting, water pushing, towel catching with reinforcement
learning, and butter pushing with classic planning control, to
demonstrate the usage of this multiphysics-based system. We
also perform experiments for visual pre-trained encoders for
reaching and cabinet closing.

We summarize our contributions as follows:
• We propose a multiphysics-based simulation environment

RFUniverse for embodied AI research. RFUniverse pro-
vides a client-server communication framework based
on gRPC, which can enable full functionality control of
Unity with multiple interfaces. It provides physics-based
rendering and multi-modal sensing, enabling the agent to
perceive the physics information in the virtual world.

• With consideration of the balance between fidelity and
computational cost, RFUniverse takes the first step to-
wards building a simulation platform for manipulation
tasks involving multiphysics dynamics in robot manip-
ulation, including structural mechanics, aerodynamics,
hydrodynamics, and thermodynamics.

• We conduct extensive parallel experiments and prove
the fidelity of the real-time simulation by comparing
them with the real world in the scope of tasks involving
multiphysics phenomena, and verify the fidelity of the
physics computation in the simulated environment.

• With RFUniverse, we extend the task scope to
multiphysics-based tasks, which have rarely been ex-
plored before. With the extended task scope, we are able
to benchmark three tasks with reinforcement learning,
namely physics-based cutting, water pushing, and towel
catching; we benchmark one task with planning and
control for butter pushing.

II. RELATED WORKS

A. Multiphysics Simulation Software

In the field of modern engineering and science research,
the problems left to solve usually require solutions that span a
multitude of physical phenomena. There are a lot of com-
mercial (e.g. COSMOL [26], Abaqus [35]) or open-source
(e.g. MOOSE [22]) softwares designed for such demands.
However, due to the requirement for high-accuracy, the algo-
rithms behind these softwares prefer to take a lot of time and



TABLE I

Environment Physics Learning Rendering Integrated Planner VR ROS
COSMOL [26] aero, hydro, thermo, multi-body / / / / /

Abaqus [35] aero, hydro, thermo, multi-body / / / / /
Chrono [40] hydro, multi-body / / / / /

AGX Dynamics [1] aero, hydro, multi-body ✓ photo- ✓ / /
HoME [3] multi-body ✓ photo- ✓ / /

AI2THOR series [17, 6, 9] multi-body ✓ photo- / / /
Habitat [25] multi-body ✓ photo- / / /

SAPIEN [46] multi-body ✓ physics- ✓ ✓ /
VirtualHome [29] multi-body ✓ photo- / / /
VRKitchen [13] multi-body ✓ photo- / / ✓

ThreeDWorld [11, 12] multi-body ✓ photo- / ✓ /
Gibson series [44, 45, 32, 19, 20] multi-body ✓ physics- ✓ ✓ ✓

Isaac Gym [24] multi-body ✓ physics- / / /
RFUniverse aero, hydro, thermo, multi-body ✓ physics- ✓ ✓ ✓

Comparison with different simulation environments. As some environments are developed in a long run as different versions, we summarize them
into a series and show the features based on the latest version.
Physics: “aero” for aerodynamics, “hydro” for hydrodynamics, “thermo” for thermodynamics, “multi-body” for multi-body dynamics. We check if it has at
least one function that involves such dynamics. To note, some simulators exhibit water rendering, but such fluid cannot provide interaction force.
Learning: whether support reinforcement learning or support to produce a visual dataset for perception tasks.
Rendering: “photo-” for photorealistic rendering effect, “physics-” for physics-based rendering effect (at least ray-tracing enabled).

computational resources to process, which make them hard to
be integrated into a learning pipeline, where the simulation
results should be produced on-the-fly.

Among these softwares, only a few provide interfaces for
robotics, namely Project Chrono [40], and AGX dynamics [1].
And only AGX dynamics supports real-time simulation. From
the multiphysics perspective, AGX dynamics supports fluid
mechanics and aerodynamics. The solid mechanics in AGX
dynamics are limited to the APIs it provides.

In our solution, we manage to integrate different physics
backends together, namely, PhysX [27], SOFA [10], Obi [38],
Zibra [15]. These physics backends do not provide robot
interfaces on their own, but they have specialties to simulate
different physics phenomena.

B. Physics-based Simulation in Embodied AI
In the past years, we have witnessed a rapid growth of

simulation environments for embodied AI or robot learning.
Most of the simulation environments adopt one physics engine
for physics simulation, such as PhysX [27], MuJoCo [41],
Bullet [5], Flex [21], ODE [36] and so on. Most of these
physics engines can provide high-fidelity rigid and multi-body
dynamics simulation. However, not a single physics engine
can support all the multiphysics simulations. The limitation of
simulation also setback the development of robot learning on
some advanced manipulation tasks such as deformable object
manipulation, arbitrary object cutting (i.e. not slicing the object
in advance), and those involving object state change due to
multiphysics interaction. As a result, though we already have
many simulation environments available [17, 44, 3, 29, 33,
25, 45, 32, 19, 9, 6, 13, 46, 48], among them, a most recent
simulation environment OmniGibson [20] comprises of the
most comprehensive household tasks so far. They all fail to
consider the multiphysics tasks.

A detailed comparison between RFUniverse and previous
environments can be referred to in Table I.
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Fig. 2. The framework of RFUniverse.

III. RFUNIVERSE SIMULATION ENVIRONMENT

RFUniverse is a simulation environment that provides high-
fidelity physics simulation for multiphysics interaction. Based
on a server-client interface, it supports multiple interfaces
to interact with the Unity server, which integrates different
physics backends for various object types, thus enabling the
simulation of multiphysics coupling effects.

A. Communication Framework & Interfaces

RFUniverse adopts a server-client framework based on
gRPC, enabling Python and VR interfaces to communicate
with the Unity backend. We show its structure in Fig. 2. This
communication framework supports multiple languages and
OS platforms. We adopt Python as the interfacing language,
which is widely used in learning frameworks [28, 16], due



to its simplicity and ecosystem. Different VR devices can be
connected to RFUniverse through SteamVR. We demonstrate
the VR interface with the HTC Vive headset and Noitom Hi5
glove in Fig. 3.

Fig. 3. The VR interface with HTC Vive and Noitom Glove.

B. Multiphysics Interaction

Object state in daily life is governed by different physics
laws. Conventionally, these physics phenomena are studied
by different branches of mechanics, such as solid mechanics,
fluid mechanics (hydrodynamics), aerodynamics, and ther-
modynamics. Despite the fact there are mature commercial
softwares for precise computation of these mechanics during
multiphysics interaction, they usually cost a decent amount of
computational resources and time, making it hard for them to
satisfy the need for real-time computation from the robotics
side, and therefore seldom considered in embodied AI. To take
the first step towards building a simulation environment for the
manipulation tasks involving multiphysics dynamics, we adopt
the solvers that balance physics fidelity and computational
efficiency and integrate them in Unity.

In Unity, we borrow the wisdom from modern physics
engines including [10] and [15] which support mesh-based and
particle-based solvers. To be specific, for solid mechanics, we
model the computation process with finite element mechanics
with different constitutive models. By treating the object as
a volume instead of a 2-manifold surface, it can support
cutting the object from arbitrary positions in a physics realistic
way. For hydrodynamics, aerodynamics, and thermodynamics,
we leverage particle-based methods to simulate the diffusion
process of fluid, air, and heat.

C. Physics-based Rendering System

Visual input is one of the important modalities for agents
to perceive the world. Simulating a high-fidelity physics-
based rendering system can mitigate the sim-to-real gap when
deploying the algorithms from simulation to the real world.
Though many previous simulation environments claim their
simulators can provide “photorealistic” rendering effects, we
realize such photorealism might be unfaithful in physics. As
shown in Fig. 4, a “photorealistic” rendering pipeline cannot
produce correct refraction effects for a glass and the liquid
in a glass. In comparison, RFUniverse supports ray-tracing
techniques for rendering and therefore is capable of handling

complex optical effects in real-time. It can be rendered at 55
fps on an Nvidia RTX 3090 graphics card.

(a) Refractive effect in real world.

(e) Lightning: Night.

(d) Lightning: Noon.

(c) Lightning: Dawn.

(b) Refractive effect in RFUniverse.

(f) Basic rendering. (g) Unity HDRP rendering. (h) Ray-tracing rendering.

Fig. 4. (a)(b): Refractive effect in real world and in RFUniverse. Two wine
glasses with gray code behind them. Here we mainly compare the refraction
effects because it can reveal the physics fidelity of the rendering system; (c)-
(e): different indoor lighting conditions; (f)-(h): Liquid in refraction rendering
effects under basic rendering, ’photorealistic’ rendering claimed by other
simulation environments, and ray-tracing (physics-based) rendering.

D. Multi-modal Sensing

To interact with the environment, the agent needs to have
multi-modal sensory information. RFUniverse supports a set of
physics realistic sensors to equip the agent with the capability
of perception. For visual input, we leverage ray-tracing tech-
niques and integrated the IR-based depth rendering proposed
in Sapien [50] to RFUniverse, which mimics the sensor
noise of IR-based depth sensors like RealSense D415 camera.
Besides, we also notice the trending of vision-based tactile
sensing research in the robotics community [34, 8, 42, 39, 37].
We re-implement and improve the DIGIT sensing [18] from
TACTO [43], and provide a simulated vision-based DIGIT
tactile sensing with a less sim-to-real gap. In Fig. 5(c), we
place a mug which has a real-world copy into the scene.
We then can compare our implementation of DIGIT sensing
in RFUniverse with the original ones in TACTO. For force
sensing, RFUniverse also has force/torque sensors in the robot
joints as shown in Fig. 5(d).



(a) Visual sensor.
Point Cloud

Depth

(b) IR-based depth sensor.

Real Ours
Official 
Impl.

(c) Tactile sensor. (d) Force sensor.

Fig. 5. Multi-modal Sensor. (a) Visual sensor: RGB, Instance mask, Perfect depth and Normal map; (b) IR-based depth sensor; (c) DIGIT Tactile Sensor
with tactile image. We also compare our implementation with real-world DIGIT sensor and official implementation in Pybullet to show that the gap between
DIGIT in real-world in RFUniverse is significantly smaller. For the real-world one, we take the image in the same setting.; (d) Force/Torque Sensor.

E. Assets

Our assets include objects and agents. The simulation envi-
ronment supports a wide range of object types. For example,
we have .obj, .ply, .stl file format for rigid and softbody object,
URDF and FBX for articulated object, vtk for volumetric
objects used for FEM simulation. We provide a ready-to-use
full set of PartNet-Mobility [46], AKB-48 model repository
[23], and Google Scanned dataset [7]. For robots, we support
the most common robot arms, such as Franka Emika Panda,
and UR5, and mobile robots including Stretch and Fetch, dual-
arm mobile manipulator, for instance, PR2. As for the robot
hand, we support Robotiq85, Barrett Hand, Allegro, Schunk
5-finger hand, and Shadow hand. If users want to use their
custom objects or agents, they can simply load them on the
fly via GUI or Python API.

F. Lightweight ROS-free Motion Planner

In many cases, an easy-to-use lightweight planner can help
with prototyping and performing experiments. We modify
Moveit! [4] to a lightweight ROS-free version, RFMove [49].
It can utilize the OMPL library for motion planning, and
support obstacle avoidance by synchronizing the simulation
scene and planning scene through Python API. We integrate it
into the simulation environment to help alleviate the pain of
a heavy stack when trying to use libraries for planning.

G. Gym-like Wrapper for Reinforcement Learning

As for reinforcement learning, we provide a standard gym-
like wrapper for different kinds of environments. It sup-
ports multi-thread parallelization, which means users can train
multiple agents simultaneously. We will later detail the RL
experiments in Sec. IV, and we leave the basic manipulation
experiments in supplementary materials.

IV. EXPERIMENTS

To verify the fidelity of RFUniverse, we perform three
experiments involving multiphysics coupling effects for hy-
drodynamics, aerodynamics, and thermodynamics in Sec. IV-B
and compare them with the ones in the real world. We perform
reinforcement learning for manipulation tasks involving multi-
physics coupling effects in Sec. IV-C. We showcase the usage
of our lightweight planner for melted butter manipulation task
in Sec. IV-D. We also perform experiments for visual pre-
trained encoders with reinforcement learning.

A. Machine Specification

During training, all experiments are benchmarked on
Ubuntu 22.04 platform with Intel(R) Core(TM) i9-10900K
CPU and 1 NVIDIA Geforce GTX 1080Ti graphic card. Due
to different calculating burdens in the tasks, we dynamically
adjust the action time step. We set the action time step for rigid



object interaction tra = 1
50s , for deformable object, fluid, and

air interaction tda = 1
25s, and for cutting task tca = 1

20s.

B. Physics Simulation Verification Experiments
a) Water Weight: We place a cup onto a weighing scale

as shown in Fig. 6 (a). Then, we slowly add the water to the
cup. Since the volume (Vw) and mass of water (mw) satisfy
mw = ρ·Vw, where ρ is considered as density and is calibrated
from real-world, we can verify the weight reading by checking
the volume of the water in the cup.

b) Towel in Wind: In the real world, we fix a towel to
a pole and set up a hair dryer with different levels of wind
aside. We record a video of it, and set up the same setting
with similar wind conditions. We observe the video and find
out they have similar trends.

c) Heat Transfer: We take a video clip of a human
pushing a slice of butter on a heated skillet and imitate the
pushing behavior from the video in simulation. We can observe
the simulated butter is melted down in a similar way.

(a)

(b)

(c)

Fig. 6. Physics simulation verification experiment setting. (a) depicts water
force in RFUniverse. Water is modeled with particles and each particle weighs
about 1g. The left image contains an empty glass that weighs around 140g,
while the glass in the middle image contains 200 particles and the glass in
the right image contains 300 particles; (b) contains two cloth swaying in the
wind in the real world and RFUniverse, which present a similar configuration;
(c) contains two butter-melting scenes in the real world and RFUniverse.

C. Manipulation experiments with Reinforcement Learning
1) Physics-based Cutting:

a) Task Description: A banana is placed on the ground,
and a Flexiv robot arm with an AG-95 gripper holds a knife in
its hand. In each episode, the robot will reset to a fixed pose
and the task is divided into two phases. In the first phase, a
goal pose of the knife is given and the Flexiv robot arm should
move and make the knife-in-hand closer to the given pose. This
pose is sampled on the top surface of the banana with proper
orientation. Then in the second phase, the Flexiv robot will
move along its end-effector’s Z-axis to cut the banana.

(a) Physics-based Cutting (b) Water pushing (c) Towel Catching

Fig. 7. Experimental results for manipulation experiments with reinforcement
learning. Upper: The snapshots of task scenes. Bottom: The relationship
between success rate and training step for manipulation tasks are displayed.

b) Task Implementation: In each step, a 6-d action is
needed with the first 3 dimensions representing the delta
translation of the gripper along the X, Y, and Z axis and the
last 3 dimensions representing delta Euler angles along X, Y,
and Z axis. The observation includes the pose and velocity
of the end-effector, the pose of knife-in-hand, and the goal
knife pose. All orientations in observation are in quaternion
format. We use a two-stage sparse reward function in this task:
the default reward is 0, and if the distance between knife-in-
hand and goal knife is less than 4cm, the reward will add 0.5;
if the minimal angle between knife-in-hand and goal knife
is less than 5 degree, the reward will add 0.5. The task is
regarded as successful when the reward is 1. Since this is a
goal-conditioned RL task, we use SAC [14] algorithm with
HER [2] replay buffer to train the policy for this task.

2) Water Pushing:
a) Task Description: A fixed-base UR5 robot arm is

placed in the scene, with a Robotiq85 gripper as its end-
effector. A 10cm cube is placed outside the reachable space of
the UR5 robot. A water pipe is grasped by a Robotiq85 gripper
and water is flowing out from the pipe. The robot controls the
orientation of the pipe to make the cube move to a target area
(red area in Fig. 7(b)) with water. It is similar to the pushing
task, so we call it water-pushing.

b) Task Implementation: In each step, a 4-d action is
needed with the first 3 dimensions representing the delta
translation of Robotiq85 along the X, Y, and Z axis and the
last 1 dimension representing the gripper width. Note that the
initial velocity and volume per unit time of water spray are
proportional to gripper width. In each episode, UR5 is reset to
a fixed pose and the cube will be sampled within a range. The
target area will be sampled within a range around the initial
cube position. The observation includes the position, velocity,
and width of the gripper and cube, as well as the center of
the target area. The reward function is the negative distance
between the cube and the center of the target area. The task
is regarded as successful when the distance between the cube
and the target area center is less than 10cm. This task is also
goal-conditioned, so we use the SAC algorithm with HER.

3) Towel Catching:
a) Task Description: A Kinova Gen2 robot arm is fixed

in the scene and a towel will fall down. When the towel is
falling down, a wind with random strength and orientation



is added to the scene to add some randomization to the
movement of the towel. The movement of the end-effector
is restricted to a horizontal plane with a fixed height lower
than the initial falling height of the towel, so it is required to
predict the falling point and catch the towel.

b) Task Implementation: In each step, a 2-d action rep-
resenting the delta movement along the fixed horizontal plane
is needed. In each episode, the Kinova Gen2 robot arm will
be reset to a fixed pose but the towel will fall from a random
position with a wind of random strength and orientation added
to the scene. Since the towel is a high-dimensional deformable
object, we calculate the average position among all vertices
of the towel. Thus, the observation includes the position and
velocity of the end-effector, the average position and velocity
of the towel and initial falling position, wind orientation, and
strength. The reward function is shown as Equ. 1:

reward = 2− tanh(10 · |vYc |)− tanh(10 · |ve|), (1)

where vYc is the Y-axis velocity of cloth and ve is the 3-d
velocity of the end-effector. The task is regarded as successful
if the towel is caught at the end of an episode. The task is
trained with the SAC algorithm.

D. Butter Pushing: Manipulation experiments with Planning
& Control

a) Task Description: By taking the reference video of
butter melting, we first mark the trajectory waypoints in
RFUniverse. A spatula is attached to the end-effector of a
Flexiv robot arm and pushes the butter to follow the trajectory.

b) Task Implementation: The inverse kinematics calcu-
lation and the continuous trajectory are produced by RFMove
[49]. To make the butter melt similarly to the reference video,
we use 200 particles to simulate the butter from solid to
liquid. In the beginning, all particles are solidified to form
a butter cube, i.e., all particles are with high viscosity and
surface tension value. When particles at the bottom collide
with the pot’s collider, their viscosity and surface tension value
decrease and act like a melted liquid. Let Ti be the temperature
of the particle i. To simulate the heat transfer process, the
simulation follows [30], and applies dTi

dt = −Ti/Dr to the
particles, where Dr denotes the radiation half time. The value
of Dr can be used to suggest the cooling speed of the particles.
When bottom particles become liquid, particles with a higher
initial position will fall and collide with the pot. Meanwhile, in
each step, all particles within a fixed margin will average their
viscosity and surface tension. The overall process simulates the
heat transfer effect of butter melting from the bottom to the
top. All parameters in the experiment are hand-crafted to align
with the reference video.

E. Visual pre-trained encoder with Reinforcement Learning

In these experiments, we follow the setting in [47] where we
use a pre-trained encoder to encode the image from the current
camera perspective. Note that the vector after encoding is the
only observation of RL algorithms and the weights of the pre-
trained encoder are fixed during training. We build two tasks

named Franka Reach and Cabinet Closing and use the identical
encoder. For each task, we provide a structured scene version
and a cluttered scene version, as well as a camera from a first-
person perspective (eye-on-hand) and third-person perspective
(eye-on-base) for each version respectively. We use PPO [31]
algorithm to train both versions with both perspectives for each
task. The experimental results for the relationship between
training steps and success rate are shown in Fig. 8.

1) Franka Reach: Franka robot resets to a fixed position pf

and a target position is randomly sampled from the 30cm ×
30cm×30cm space around pf . Franka robot arm needs to let
its gripper’s grasp point reach the target position. The tolerance
is 5cm and the target range is a sphere with 5cm radius, which
is highlighted in the scene. The reward is the negative distance
between the grasp point and the target position.

2) Franka Cabinet Closing: A double-layer cabinet with
prismatic drawers is initialized with two drawers randomly
opened and in a random pose. The Franka robot arm needs to
push two drawers back. The reward is the sum of the negative
open length of drawers.

Cluttered Scene

Structured Scene

(a) Cluttered and structured scene screenshots for Franka Reach task.

Cluttered Scene

Structured Scene

(b) Cluttered and structured scene screenshots for Franka Cabinet Closing
task.

Fig. 8. Scene screenshots and experimental results for visual pre-trained
encoder with reinforcement learning. Cluttered means with the background
of the room environment, while structured means without the background. In
legend, v1 means eye-on-hand with structured scene; v2 means eye-on-base
with structured scene; v3 menas eye-on-hand with cluttered scene; v4 means
eye-on-base with cluttered scene.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel multiphysics-based sim-
ulation environment named RFUniverse. With user-friendly
interfaces and a Unity-based backend, it provides a chance for
the users to seamlessly interact with the virtual world which
supports aerodynamics, hydrodynamics, and thermodynamics.
We aim at taking the first step towards building a physics
realistic world that supports multiphysics coupling effects,
with the hope of extending the task scope of current robot
manipulation in simulation to the next level.



We would like to propose such a question: Do intelligent
agents really need high-precision simulation for embodied AI?
As humans, we never compute accurate physics when we are
interacting with the real world. Instead, we observe and learn
to react. Therefore, we can assume that the world human (or
any sensors) observe is also noisy. Seemingly realistic physics
simulation could already support many tasks. And for policy
learning, such computational inaccuracy could bring more
diversity in sensory information and benefit the generalization
ability of learned models. Similar ideology is presented in
domain randomization techniques.

We regard the RFUniverse simulation environment as an
infrastructure for multiphysics-based robot learning and will
integrate more physics solvers into the system to keep enlarg-
ing the research scope of embodied AI.
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